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1. Introduction

Since the classic paper by Kermack and McKendric [1] the mathemtical theory
of epidemics rests on compartmental SIR models in which the population is divided
into three compartments: the number of susceptible S(t), infected I(t) and recov-
ered R(t) individuals at time t. The evolution of the dynamical variables above is
ruled by nonlinear systems of ordinary differential equations (ODEs). The original
structure of the SIR models has been variously extended to include more compart-
ments (e.g. SEIR models, in which also the number of exposed individuals E(t) is
considered) and has been largely used in modelling and forecasting the still ongo-
ing COVID-19 pandemic (see [2][3][4] for an assessment review). Analytic solutions
for this nowadays large family of models are known only in a limited number of
cases and, in general, the quantitative epidemiological data analysis is mainly based
either on the numerical integration of systems of ODEs of the SIR type or on fit-
ting the data to analytic approximate ansatze, suggested by empirical observations.
Searching for analytical solutions of compartmental models of epidemics has an in-
trinsic mathematical interests and may allow control on the use of approximate
methods and in the analysis of stability. In this paper we provide families of special
solutions of a nonlinear system of ODEs that has been recently proposed to model
the COVID-19 epidemics. The model has ben proposed to forecast the evolution
of the virulence of the infection by a very active group lead by Eugene Koonin at
the NCBI center of the National Institutes of Health, in the US. The model adds,
to the usual S and I compartments, A(t) the number of asymptomatic infectious
hosts and the number of symptomatic infectious hosts C(t) [5]. This model was
designed to afford the problem of incorporating the latent period between when
an individual is exposed to a pathogen and when that individual becomes infected
and contagious, a time scale that is left out in the basic SIR models [2]. From the
mathematical point of view, our choice of the model in [5] was motivated by the
observation that the proposed system of first order ODEs has a right-hand side
that is homogeneous in the 4 dependent dynamical variables, a property that has
been previously associated to families of analytic solutions [6].

Here are the equations:

(1a)
·
x̃1 = −kDx̃1 + αkR (x̃3 + x̃4) ,

(1b)
·
x̃2 = kBx̃1 + [kB − kD − f (x̃1, x̃2, x̃3, x̃4)] x̃2 + [kB + (1− α) kR] (x̃3 + x̃4) ,

(1c)
·
x̃3 = f (x̃1, x̃2, x̃3, x̃4) x̃2 − (kR + kD + kP ) x̃3,

(1d)
·
x̃4 = kP x̃3 − (kR + kD + kDV ) x̃4,

where

(1e) f (x̃1, x̃2, x̃3, x̃4) =
kI (x̃3 + βx̃4)

x̃1 + x̃2 + x̃3 + βx̃4
.

Notation. We maintained the original notation of [5], except for the following re-
placement of the 4 dependent variables I (t) (number of Immune hosts), S (t) (num-
ber of Susceptible hosts), A (t) (number of Asymptomatic and infectious hosts), C (t)
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(number of Symptomatic and infectious hosts) used there, and the use of a super-
imposed dot (instead of an appended prime) to denote differentiation with respect
to the dependent variable t (”time”):

(2)

I (t) = x̃1 (t) , S (t) = x̃2 (t) , A (t) = x̃3 (t) , C (t) = x̃4 (t) ;
·
x̃ (t) ≡ dx̃(t)/dt .

Note that in the following we occasionally omit to indicate explicitly the t-
dependence of the dependent variables: and see below Remark 1 for our (notational)
motivation of the tilde superimposed on these coordinates x̃n (t). �

For the epidemiological significance of this model see [5], as well as for references
to analogous models, considered in references [3] and [4].

Remark 1. The system of 4 nonlinearly-coupled ODEs Eq. (1) features the 8 a
priori arbitrary (of course time-independent) parameters kD, kR, kB , kP , kDV, kI ,
α, β, for whose epidemiological significance we refer to [5]; in this paper we focus
mainly on some mathematical properties of this system, so we generally assume
that these are 8 a priori arbitrary (possibly even complex) numbers, although we
shall comment occasionally on the relevance of such mathematical treatment on the
epidemic model (when these numbers are positive real numbers).

One observation which is relevant for the mathematical discussion of this model
Eq. (1)—which we think is reasonable to state at the very beginning of this paper—
is to note that the parameter kD plays a relatively trivial role in this system, because
it can be altogether eliminated from it via the following very simple change of
dependent variables:

(3a) x̃n (t) = xn (t) exp (−kDt) , n = 1, 2, 3, 4 ,

implying of course

(3b) x̃n (0) = xn (0) , n = 1, 2, 3, 4 ;

indeed the system of ODEs satisfied by the 4 variables xn (t) is then identical with
the original system Eq. (1), except for the elimination of the parameter kD:

(4a) ẋ1 = αkR (x3 + x4) ,

(4b) ẋ2 = kBx1 + [kB − f (x1, x2, x3, x4)]x2 + [kB + (1− α) kR] (x3 + x4) ,

(4c) ẋ3 = f (x1, x2, x3, x4)x2 − (kR + kP )x3 ,

(4d) ẋ4 = kPx3 − (kR + kDV )x4 ,

where of course now

(4e) f (x1, x2, x3, x4) =
kI (x3 + βx4)

x1 + x2 + x3 + βx4
.

Hence hereafter we shall mainly deal with this, marginally simpler, system
Eq. (4).

In the following Section 2 we investigate a very simple solution of this model
Eq. (4), characterized by the fact that the 4 components xn (t) of this solution all
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evolve proportionally to the same exponential function of time, exp (µt), with µ an
appropriate parameter determined in terms of the parameters of the model; im-
plying that the quantity f (x1, x2, x3, x4) is time-independent (see Eq. (4e)), hence
that the system Eq. (4), for this class of solutions, reduces to a linear system of 4
ODEs.

In the subsequent Section 3 we discuss the solutions characterized by the require-
ment that each of the 4 components xn (t) of the solution be linear combinations—
with time-independent coefficients—of 2 exponential functions of time, exp (µ1t)
and exp (µ2t) , and moreover that the quantity f (x1, x2, x3, x4) , see Eq. (4e), be
again time-independent. The related restrictions on the parameters of the model
and the initial-data of this solution are also explicitly determined, up to algebraic
operations.

The subsequent Section 4 outlines the analogous treatments when the solution
is the sum of 3, or 4, exponentials.

A final Section 5 concludes the paper, by mentioning its applicative relevance
and possible further developments of the approach used in this paper.

2. A very simple solution

The right-hand sides of the 4 ODEs Eq. (4) are all homogeneous of degree 1 in
the 4 dependent variables xn (t) . This implies a well-known (see for instance [6])
consequence, which can be stated as the following

Proposition 1. The system of 4 ODEs Eq. (4) features the simple explicit solution

(5) xn (t) = xn (0) exp (µt) , n = 1, 2, 3, 4 ,

where xn (0) are clearly the 4 initial values of the 4 dependent variables xn (t) and µ
is an a priori arbitrary time-independent parameter, provided these 5 quantities—i.
e., xn (0) and µ, together with the 7 parameters of the model Eq. (4)—satisfy (as it
were, a posteriori) the following 4 algebraic equations:

(6a) µx1 (0) = αkR [x3 (0) + x4 (0)] ,

(6b) µx2 (0) = kBx1 (0) + [kB − f (0)]x2 (0) + [kB + (1− α) kR] [x3 (0) + x4 (0)] ,

(6c) µx3 (0) = f (0)x2 (0)− (kR + kP )x3 (0) ,

(6d) µx4 (0) = kPx3 (0)− (kR + kDV )x4 (0) ,

where of course (see Eq. (4e) and Eq. (5))

(6e) f (x1, x2, x3, x4) ≡ f (0) =
kI [x3 (0) + βx4 (0)]

x1 (0) + x2 (0) + x3 (0) + βx4 (0)
.

The validity of Prop. 1 can be easily verified by inserting the solution Eq. (5) in
the system Eq. (4) and by then taking advantage of the conditions Eq. (6).

Somewhat less trivial is to ascertain which are the constraints on the 4 initial
data xn (0) and on the parameter µ—by solving the system of algebraic equations
Eq. (6)—when we consider the model Eq. (4) for an arbitrary assignment of its 7
parameters kR, kB , kP , kDV , kI , α, β. Remarkably, as we show below, this turns out
to be explicitly doable by purely algebraic operations.
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Since all the five equations Eq. (6) are invariant under a common rescaling of
the 4 initial data xn (0), it is convenient to assume that one of them, say x4 (0),
can be arbitrarily assigned, and to focus on the ratios of the other 3 to that one,
hence on the 3 quantities

(7) rm = xm (0) /x4 (0) , xm (0) = rmx4 (0) , m = 1, 2, 3 ;

thereby replacing the 5 equations Eq. (6) with the following 5 equations:

(8a) µ r1 = αkR (r3 + 1) ,

(8b) µ r2 = kBr1 + [kB − F (r1, r2,r3)] r2 + [kB + (1− α) kR] (r3 + 1) ,

(8c) µ r3 = F (r1, r2,r3) r2 − (kR + kP ) r3 ,

(8d) µ = kP r3 − (kR + kDV ) ,

where of course (above and hereafter)

(8e) F (r1, r2,r3) = kI (r3 + β) / (r1 + r2 + r3 + β) .

It is now convenient, in order to get rid of the nonlinear function F (r1, r2,r3),
to sum the 2 equations Eq. (8b) and Eq. (8c), getting thereby

(9) µ (r2 + r3) = kB + (1− α) kR + kBr1 + kBr2 + (kB − kP − αkR) r3 .

The 3 equations Eq. (8a), Eq. (8d) and Eq. (9) constitute now a system of 3
linear algebraic equations for the 3 unknowns r1, r2, r3, which can be easily solved.
Indeed from Eq. (8d) we get

(10a) r3 = (µ+ kDV + kR) /kP ;

then from Eq. (8a) and Eq. (10a) we get

(10b) r1 = αkR(µ+ kDV + kP + kR)/ (µkP ) ;

and then from Eq. (9), Eq. (10a) and Eq. (10b) we get

r2 = −µ+ kDV
kP

− µ− kB + kDV
µ− kB

− [(1 + α)µ+ α (kDV + kP )] kR + α (kR)
2

µkP
.(10c)

Note that these are explicit expressions of the 3 parameters rm in terms of the
6 parameters kR, kB , kP , kDV , kI , α of the system Eq. (4), and moreover of the
parameter µ featured by the solution Eq. (5) (where of course now xm (0) = rmx4 (0)
for m = 1, 2, 3, with x4 (0) remaining as a free parameter).

Our remaining task in order to get the special solution Eq. (5) of the system
Eq. (4) is to ascertain the permitted values of the parameter µ, as implied by
inserting the following expression of F (r1, r2, r3) (obtained by inserting the 3 ex-
pressions Eq. (10) of r1, r2, r3 in Eq. (8e)),

(11) F (r1, r2r3) =
−kI (µ− kB) (µ+ kDV + βkP + kR)

kP [(1− β) (µ− kB) + kDV ]
,
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into any one of the 2 equations Eq. (8b) or Eq. (8c). This yields the following
algebraic equation of degree 4 (hence explicitly solvable) for the quantity µ:

(12a)

4∑
k=0

(
ck µ

k
)

= 0 ,

with the following definitions of the 5 parameters ck:

(12b) c4 = kI − kP + βkP ,

c3 = 2kDV kI − 2kDV kP + kIkP − (kP )
2

+ 2kIkR − 2kP kR

+αkIkR − kB [kI − (1− β)kP ] + βkP (kDV + kI + kP + 2kR) ,(12c)

c2 = (kI − kP )
[
(kDV )

2
+ kR(kP + kR)

]
+ αkIkR(kP + 2kR)

+βkP [(kI + kR)(kP + kR) + αkIkR]

+kDV {(2 + β) kIkP + 2kI (kR + αkR)− kP [(2− β)kP + (3− β)kR]}
+kB { (1− β)kP (kP + 2kR) + kDV (−2kI + kP − βkP )

−kI(kP + 2kR + αkR + βkP ) } ,(12d)

c1 = (kDV + kR) [kDV kP (kI − kP − kR) + αkIkR(kDV + kP + kR)]

+βkIkP [kDV kP + αkR(kDV + kP + kR)]

+kB { − (kDV + kR) [kDV kI + (kI − kP )(kP + kR)]

−αkIkR(2kDV + kP + 2kR)

−βkP [(kI + kR)(kP + kR) + kDV (kI + kP + kR) + αkIkR] } ,(12e)

(12f) c0 = −αkBkIkR (kDV + kP + kR) (kDV + kR + βkP ) .

Remark 2. For completeness let us mention that the results reported just above
require the validity of the following inequalities:

(13) µ 6= 0 , kP 6= 0 , (1− β) (kB − µ)− kDV 6= 0.

Some of these expressions of the 5 parameters ck, see Eq. (12), are rather cum-
bersome (albeit quite explicit), featuring the 7 a priori arbitrary parameters kR,
kB , kP , kDV , kI , α, β characterizing the system Eq. (4); and of course much more
complicated are the—in principle easily available—explicit expressions of the 4
roots µn (n = 1, 2, 3, 4) of the fourth-degree equation Eq. (12a). We do not con-
sider useful to report these formulas in this paper; since analogous—much more
practical—formulas can be easily obtained from eq. Eq. (12a) in applicative con-
texts, whenever the 7 a priori arbitrary parameters kR, kB , kP , kDV , kI , α, β have
been assigned specific numerical values, entailing, via the explicit expressions of the
parameters ck written above (see Eq. (12)), the corresponding numerical values of
these parameters ck, to be then inserted in Eq. (12a) before the standard task of
solving this quartic equation is performed.
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Remark 3. Let us finally mention that clearly, by setting

(14) µ = kD ,

one is looking (see Eq. (3a) and Eq. (5)) at the equilibrium solution

(15) x̃n (t) = x̄n ,
·
x̄n (t) = 0 , n = 1, 2, 3, 4 ,

of the original pandemic system Eq. (1), as given by the formulas (implied via
Eq. (7) by Eq. (10))

(16a) x̄1 = x̄4 [αkR(kD + kDV + kP + kR)/(kDkP )] ,

x̄2 = x̄4

{
−kD + kDV

kP
− kD − kB + kDV

kD − kB
(16b)

− [(1 + α) kD + α (kDV + kP )] kR + α (kR)
2

kP kD

}
,(16c)

(16d) x̄3 = x̄4(kD + kDV + kR)/kP ,

where x̄4 is of course an arbitrary parameter. �

Remark 4. Note that throughout this paper we assume that the 4 roots µn of the
quartic algebraic equation Eq. (12a) are all different among themselves. �

To conclude Section 2, let us mention that the special solutions Eq. (5) are
not very interesting in applicative contexts, since they imply that the 4 dependent
variables xn (t) all evolve in the same, very simple, manner. But fortunately, as
shown below, it is also possible to identify other explicit solutions of the system of
nonlinear ODEs Eq. (4).

3. Solutions that are the linear combination of 2 exponentials

In this section we investigate the following class of solutions of the system of
ODEs Eq. (4):

(17a) xn (t) = an1 exp (µ1t) + an2 exp (µ2t) , n = 1, 2, 3, 4 ,

where µ1 and µ2 are 2 different roots of eq. (12); while corresponding values for
the 8 time-independent parameters an1 and an2 are obtained below.

Remark 5. Since there are 4 (assumedly different) solutions µ of the fourth-order
algebraic eq. Eq. (12a), there are (4 · 3)/2 = 6 different assignments of the pair of
values µ1, µ2. Note moreover that, even if the 7 parameters kR, kB , kP , kDV, kI ,
α, β of the system of ODEs (4) are all real numbers (as is of course the case in the
pandemics case), the 4 solutions µn of the fourth-order algebraic eq. Eq. (12a) need
not be real numbers; but if the 7 parameters of the system of ODEs Eq. (4) are all
real numbers, then non-real solutions of the algebraic eq. Eq. (12a) must be present
in complex conjugate pairs. �

Remark 6. Note that we are again assuming, throughout this Section 3, that the
quantity f (x1, x2, x3, x4) in the system Eq. (4) is time-independent, hence equal to
its value at the initial time t = 0 (see (Eq. (6e))); although this property, which
was obvious in the treatment of Section 2 (see Eq. (4e) and Eq. (5))—and which
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is essential to justify the existence of the subclass of solutions Eq. (17a)—is now
instead far from obvious: indeed conditions for it to hold—involving the initial data
of these solutions, and also 1 constraint on the parameters of the system Eq. (4)—
shall have to be ascertained, see below. �

The 4 equations Eq. (17a) involve of course the following 4 relations among the
8 parameters an1 and an2 and the 4 initial data xn (0):

(17b) xn (0) = an1 + an2 , n = 1, 2, 3, 4 .

The assumption (see Remark 6) that the function f (x1, x2, x3, x4) be time-
independent implies that the system Eq. (4) is again a linear system of 4 ODEs
with time-independent parameters; hence each of the 2 exponential functions in the
right-hand side of the ansatz Eq. (17a) must satisfy (as it were, separately) the
system Eq. (4). Therefore each of the 2 sets of 4 parameters an1 and an2 must
satisfy the same requirements (see the 4 equations Eq. (6)) satisfied by the initial
data xn (0) in the treatment of the previous Section 2; namely there must now hold
the 8 relations

(18a) µ`a1` = αkR (a3` + a4`) , ` = 1, 2 ,

(18b) µ`a2` = kBa1` + [kB − f (0)] a2` + [kB + (1− α) kR] [a3` + a4`] , ` = 1, 2 ,

(18c) µ`a3` = f (0) a2` − (kR + kP ) a3` , ` = 1, 2 ,

(18d) µ`a4` = kPa3` − (kR + kDV ) a4` , ` = 1, 2 ;

where of course we again set

(18e) f (x1, x2, x3, x4) ≡ f (0) =
kI [x3 (0) + βx4 (0)]

x1 (0) + x2 (0) + x3 (0) + βx4 (0)
;

but now with the 4 initial data xn (0) related to the 2 parameters an1 and an2 by
the Eq. (17b).

We can therefore now proceed in close analogy to the treatment of the previous
Section 2, introducing 6 parameters bm` via the following position:

(19) am` = bm`a4` , bm` = am`/a4` , m = 1, 2, 3, ` = 1, 2 .

These 6 parameters bm` (m = 1, 2, 3, ` = 1, 2) are then explicitly expressed in terms
of the parameters of the system Eq. (4) as follows (see Eq. (10)):

(20a) b1` = αkR(µ` + kDV + kP + kR)/ (kPµ`) , ` = 1, 2 ,

b2` = −µ` + kDV
kp

− µ` − kB + kDV
µ` − kB

− [(1 + α)µ` + α (kDV + kP )] kR + α (kR)
2

kPµ`
, ` = 1, 2 ,(20b)

(20c) b3` = (µ` + kDV + kR)/kP , ` = 1, 2 ;

with a41 and a42 remaining as 2 free parameters.
To complete the treatment of this case, it is necessary to identify the constraints

on the parameters of the system Eq. (4) and on the parameters of the solution under
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present consideration, see Eq. (17a). These constraints are necessary in order to
comply with the requirement—essential for our treatment—that the quantity h (t),
related to the quantity f (x1, x2, x3, x4), see Eq. (4e), by the simple relation

(21a) f (x1, x2, x3, x4) = kIh (t)

—hence reading as follows,

(21b) h (t) =
x3 (t) + βx4 (t)

x1 (t) + x2 (t) + x3 (t) + βx4 (t)

—be time-independent : therefore given in terms of the initial data as follows:

(21c) h (t) = h (0) =
x3 (0) + βx4 (0)

x1 (0) + x2 (0) + x3 (0) + βx4 (0)
.

To fulfill this task, we now note that the solutions xn (t) under consideration in
this Section 3 are defined by the relations (Eq. (17a)), hence their insertion in the
definition Eq. (21b) implies the following expression of h (t):

(21d) h (t) =
a31 + βa41 + (a32 + βa42) exp [(µ2 − µ1) t]

a11 + a21 + a31 + βa41 + (a12 + a22 + a32 + βa42) exp [(µ2 − µ1) t]
.

It is therefore easily seen that the requirement that this expression of h (t) be
time-independent implies that the 8 parameters an` (n = 1, 2, 3, 4; ` = 1, 2) satisfy
the following single constraint on the 8 parameters an`:

(22) (a12 + a22) (a31 + βa41)− (a11 + a21) (a32 + βa42) = 0 ;

entailing then that

(23) h (t) = h (0) =
a31 + βa41

a11 + a21 + a31 + βa41
=

a32 + βa42
a12 + a22 + a32 + βa42

.

By inserting the formulas Eq. (19) in Eq. (22) we then get, for the 6 parameters
bm` (m = 1, 2, 3; ` = 1, 2), the following single constraint :

(24) (b12 + b22) (b31 + β)− (b11 + b21) (b32 + β) = 0 ;

and, via Eq. (20), we finally get the following single constraint on the 7 parameters
of the system Eq. (4) for the existence of the solution Eq. (17a):

(1− β) (kB)
2 − kBkDV + kDV (kDV + βkP + kR + µ1)

+ [kDV + (1− β)µ1]µ2 − (1− β) kB (µ1 + µ2) = 0 ,(25a)

provided there hold the following inequalities:

(25b) kP 6= 0 , kB 6= µ1 , kB 6= µ2 , µ1 6= µ2 .

Remark 7. Let us recall that there are in general 6 different versions of the con-
straint Eq. (25) due to the 6 different possible selections of the 2 roots µ1 and µ2

(see Remark 5); and that the simplicity of this formula Eq. (25) as providing a con-
straint on the 7 parameters of the system Eq. (4) is somewhat misleading, due to
the explicit but quite complicated dependence on these parameters of the solutions
µ1 and µ2 of the fourth-degree algebraic equation Eq. (12a). However, as already
mentioned above, all these complicated relations (including those yielding the ini-
tial data of the class of solutions considered in this Section 3) become much more
easily managed whenever any 6 of the 7 a priori arbitrary parameters featured by

Special issue in memory of Emma Previato, Albanian J. Math. Vol. 17 (2023),
no. 1, 69–82

http://albanian-j-math.com/vol-17.html
http://albanian-j-math.com/vol-17.html


Explicit solutions of an epidemiological model 78

the system Eq. (4) are assigned specific numerical values, so that the remaining
task left is to ascertain the values of the 7-th parameter implied by the constraint
Eq. (25) (as well as those characterizing the initial data xn (0) of the class of so-
lutions considered in this Section 3), thereby identifying the corresponding class of
systems Eq. (4) featuring the simple explicit solutions of type Eq. (17a). �

4. Solutions which are the linear superposition of 3 or 4
exponentials

In this Section 4 we treat the subclass of solutions of the system (Eq. (4)) whose
time-evolution is a linear superposition of 3 or 4 exponentials.

Remark 8. Throughout this Section 4 we assume that the quantity f (x1, x2, x3, x4)
in Eq. (4) is time-independent. This property is far from obvious (as in Section 3:
see for instance Remark 6). Indeed, conditions for it to hold—involving the initial
data of these subclass of solutions, as well as constraints on the parameters of the
system Eq. (4)—shall have to be ascertained, see below. �

4.1. Solutions which are the linear superposition of 3 exponentials. Here
we investigate the following class of solutions of the system of ODEs Eq. (4):

(26a) xn (t) = an1 exp (µ1t) + an2 exp (µ2t) + an3 exp (µ3t) , n = 1, 2, 3, 4 ,

where µ1, µ2, µ3 are 3 different roots of the 4th-degree algebraic eq. Eq. (12a);
while corresponding values for the 12 time-independent parameters an1, an2, an3
are obtained below.

Of course these formulas Eq. (26a) imply the following relations among the 4
initial data xn (0) and the 12 parameters anj (n = 1, 2, 3, 4; j = 1, 2, 3):

(26b) xn (0) = an1 + an2 + an3 , n = 1, 2, 3, 4 .

Remark 9. Clearly symbols such as xn, µn`, an` need not have the same sig-
nificance nor the same values when appearing on this paper. But of course the
statements made in Remark 5 concerning the possibility that not all the 4 roots of
the fourth-order algebraic eq. Eq. (12a) be real numbers are generally valid. �

Remark 10. Since there are 4 (assumedly different) solutions µ of the fourth-
order algebraic eq. Eq. (12a), there are 4 different selections—from the quartet
of solutions µn of eq. Eq. (12a)—of the trio of values µ1, µ2, µ3 in the ansatz
Eq. (26a). �

Let us now proceed in close analogy to the treatment provided in Section 3.
Again we assume that the quantity f in the right-hand sides of the ODEs Eq. (4b)
and Eq. (4c) is a time-independent parameter, up to identifying below conditions on
the parameters of the system Eq. (4) and on the initial data of the solution Eq. (26)
under consideration which are sufficient to guarantee—as it were, a posteriori—
that this be the case; hence that the system of ODEs Eq. (4) be equivalent to a
system of 4 linear ODEs, featuring independent solutions a exp(µt) each depending
exponentially on the independent variable t (which can therefore be added without
loosing the property to satisfy the system of ODEs Eq. (4)).
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We thus obtain—in analogy to the 8 relations Eq. (18)—the following 12 rela-
tions:

(27a) µja1j = αkR (a3j + a4j) , j = 1, 2, 3 ,

(27b) µja2j = kBa1j+[kB − f (0)] a2j+[kB + (1− α) kR] (a3j + a4j) , j = 1, 2, 3 ,

(27c) µja3j = f (0) a2j − (kR + kP ) a3j , j = 1, 2, 3 ,

(27d) µja4j = kPa3j − (kR + kDV ) a4j , j = 1, 2, 3 .

Next we set (in analogy to Eq. (19))

(28) amj = bmja4j , bmj = amj/a4j , m = 1, 2, 3, j = 1, 2, 3 ,

getting thereby the following 9 relations:

(29a) b1j = αkR(µj + kDV + kP + kR)/ (kPµj) , j = 1, 2, 3 ,

b2j = −µj + kDV
kp

− µj − kB + kDV
µj − kB

− [(1 + α)µj + α (kDV + kP )] kR + α (kR)
2

kPµj
, j = 1, 2, 3 ,(29b)

(29c) b3j = (µj + kDV + kR)/kP , j = 1, 2, 3 ;

with a41, a42, a43 remaining as 3 free parameters.
We must now investigate the restrictions on the parameters amj implied by the

requirement that the quantity h (t) be time-independent. The analogous formula to
Eq. (21d) now reads as follows:

(30a) h (t) = numh (t) /denh (t) ,

numh (t) = a31 + βa41 + (a32 + βa42) exp [(µ2 − µ1) t]

+ (a33 + βa43) exp [(µ3 − µ1) t] ,(30b)

denh (t) = a11 + a21 + a31 + βa41

+ (a12 + a22 + a32 + βa42) exp [(µ2 − µ1) t]

+ (a13 + a23 + a33 + βa43) exp [(µ3 − µ1) t] .(30c)

It is then easily seen that the condition Eq. (22) is now replaced by the following
2 restrictions:

(31) (a11 + a21) (a3k + βa4k) = (a1k + a2k) (a31 + βa41) , k = 2, 3 .

Hence, after the change of parameters Eq. (28), we get the following 2 constraints,

(32) (b11 + b21) (b3k + β) = (b1k + b2k) (b31 + β) , k = 2, 3 ,

on the 9 parameters bmj (m = 1, 2, 3; j = 1, 2, 3). Which, via the expressions
Eq. (29) of these 9 parameters, entail the following 2 constraints on the original 7
parameters of the system Eq. (4):

(1− β) (kB)
2

+ (kDV )
2

+ (1− β)µ1µ2 + kDV (βkP + kR + µ1 + µ2)

−kB [kDV + (1− β) (µ1 + µ2)] = 0 ,(33a)
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kDV (kDV + βkP + kR + µ1) + [kDV + (1− β)µ1]µ3

− (1− β) kB (µ1 + µ3) + kB [(1− β) kB − kDV ] = 0.(33b)

While of course the initial data xn (0) of the solution under consideration in
this Section 4.1 are explicitly given by the formulas Eq. (26b) with Eq. (28) and
Eq. (29).

4.2. Solutions which are the linear superposition of 4 exponentials. The
treatment in Section 4.2 is quite terse, since it is quite analogous to that provided
above in Section 4.1; hence we only report the key formulas which play an analogous
role to the key formulas in Section 4.1.

Instead of Eq. (26) we now have

(34a) xn (t) =

4∑
q=1

[anq exp (µqt)] , n = 1, 2, 3, 4 ,

(34b) xn (0) =

4∑
q=1

(anq) , n = 1, 2, 3, 4 .

In place of the 12 equations Eq. (27) we now have the following 16 equations:

(35a) µqa1q = αkR (a3q + a4q) , q = 1, 2, 3, 4 ,

µqa2q = kBa1q + [kB − f (0)] a2q + [kB + (1− α) kR] (a3q + a4q) ,

q = 1, 2, 3, 4 ,(35b)

(35c) µqa3q = f (0) a2q − (kR + kP ) a3q , q = 1, 2, 3, 4 ,

(35d) µqa4q = kPa3q − (kR + kDV ) a4q , q = 1, 2, 3, 4 .

Likewise, in place of the 9 equations Eq. (28), we now write the 12 relations

(36) ajq = bjqa4j , bjq = ajq/a4j , j = 1, 2, 3 , q = 1, 2, 3, 4 ,

getting thereby, from Eq. (35), the following 12 relations (analogous to Eq. (29)):

(37a) b1q = αkR(µq + kDV + kP + kR)/ (kPµq) , q = 1, 2, 3, 4 ,

b2q = −µq + kDV
kp

− µq − kB + kDV
µq − kB

− [(1 + α)µq + α (kDV + kP )] kR + α (kR)
2

kPµq
, q = 1, 2, 3, 4 ,(37b)

(37c) b3q = (µq + kDV + kR)/kP , q = 1, 2, 3, 4 ;

with a41, a42, a43, a44 remaining as 4 free parameters.
Next come the constraints on the parameters of the system Eq. (4) needed in

order that the more general solution Eq. (34a), when inserted in the definition
Eq. (4e) of the function f (t), hence now reading

(38a) f (t) =
kI
∑4
q=1 [(a3q + βa4q) exp (µqt)]∑4

q=1 [(a1q + a2q + a3q + βa4q) exp (µqt)]
,
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—or, equivalently, see Eq. (36)—

(38b) f (t) =
kI
∑4
q=1 [(b3q + 1) exp (µqt)]∑4

q=1 [(b1q + b2q + b3q + β) exp (µqt)]
,

be time-independent.
And since it is easily seen that

(39a) f (t) =
kI (b31 + 1)ϕ (t)

(b11 + b21 + b31 + β)
,

with

(39b) ϕ (t) =
1 +

∑4
q=2

{(
b3q+1
b31+1

)
exp [(µq − µ1) t]

}
1 +

∑4
q=2

{(
b1q+b2q+b3q+β
b11+b21+b31+β

)
exp [(µq − µ1) t]

} ,

the requirement that f (t) be time-independent amounts to the following 3 con-
straints:

(40)
b3q + 1

b31 + 1
=
b1q + b2q + b3q + β

b11 + b21 + b31 + β
, q = 2, 3, 4 ,

which clearly entail—via the expressions Eq. (29)—3 corresponding constraints on
the parameters of the original model Eq. (4).

5. Concluding remarks

In this paper we have identified certain solutions of the pandemic model intro-
duced in the paper [5]; these solutions and the constraints on the parameters of the
model required for their validity, are all identified by algebraic equations which can
be explicitly solved; we did not report the corresponding explicit formulas because
they are so complicated to be hardly useful when written for a priori arbitrary
assignments of the parameters of the pandemic model, while they can instead be
easily managed for any specific numerical assignment of these parameters. We
therefore leave the utilization of these findings to the interested pandemics experts.

Additional solutions, more special but perhaps displaying more interesting evo-
lutions, correspond to the special cases in which the algebraic quartic-equation
Eq. (12) features 4 roots µn which are not all different among themselves. This
case shall be eventually treated in a separate paper by ourselves or others.
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