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Department of Mathematics,
University of Sarajevo

Zmaja od Bosne 35, 71 000 Sarajevo, Bosnia and Herzegovina.

In memory of Emma Previato.

Abstract. In Cogdell et al., LMS Lecture Notes Series 459, 393–427 (2020),

the authors proved a type of Kronecker’s limit formula associated to any divisor
D on any smooth Kähler manifold X, assuming that D is smooth in codimen-

sion one. In the present article, it is shown how the aforementioned analogue

of Kronecker’s limit formula applies to reprove and generalize Weil reciprocity.
More precisely, we extend Weil reciprocity to (suitably normalized) meromor-

phic modular forms of even weight on a smooth, compact Riemann surface,

and present a variant of Weil reciprocity for a class of harmonic functions with
special types of singularities on a finite volume quotient of a symmetric space
or a compact, smooth projective Kähler variety. We also prove an integral

version of Weil reciprocity for a compact, smooth projective Kähler variety.

E-mail addresses: cogdell@math.ohio-state.edu, jjorgenson@mindspring.com,

lejlas@pmf.unsa.ba.
2020 Mathematics Subject Classification. 14H05, 35J08.
Key words and phrases. Weil reciprocity, Kronecker limit formula, resolvent kernel.
The second named author acknowledges grant support PSC-CUNY..

©2023 Albanian Journal of Mathematics, albanian-j-math.com

29

http://albanian-j-math.com


An analytic perspective of Weil reciprocity 30

1. Introduction

In its nascent form, Weil reciprocity is the following statement. Let Y be a
smooth, compact Riemann surface, meaning a non-singular algebraic curve over C.
Let f and g be two meromorphic functions on Y , so then f and g can be viewed
as elements of the function field C(Y ). Let Df ∶= ∑m(P )P and Dg ∶= ∑n(Q)Q be
the divisors of f and g, respectively. If Df and Dg are disjoint, then

(1) f(Dg) = g(Df)

where
f(Dg) = ∏

Q∈Dg

f(Q)n(Q) and g(Df) = ∏
P ∈Df

g(P )m(P ).

Weil reciprocity (1) is attributed to [We40] over a finite field and is employed in the
study of the Weil pairing, which itself is vital in the Weil’s proof of the Riemann
hypothesis for zeta functions attached to function fields over finite fields; see [We41].
At this time, (1) can be stated and proved in introductory textbooks; see page 242
[GH78] or Exercise 2.11 of [Si86]. We note that the proof of (1) in [GH78] amounts
to an application of the residue theorem.

If Df and Dg are not distinct, one can state a generalization of (1) which we
now describe. For every point P ∈ Y , define the local symbol

(2) (f, g)P = fordP (g)(P )/gordP (f)(P ) ⋅ (−1)ordP (f)⋅ordP (g),

where (2) is interpreted as the constant term in a Laurent expansion of the quotient
f/g at a common point P ∈ Df ∩Dg. Note that for all but a finite number of P ,
one has that (f, g)P = 1. In this notation, Weil reciprocity is the statement that

(3) ∏
P ∈Y

(f, g)P = 1.

In the case Y = P1(C) with f(x) = x − a and g(x) = x − b for constants a and b,
then Weil reciprocity states that a−b = −(b−a), which is an enjoyable computation
from (3).

In one of her first articles [Pr91], Emma Previato gave a proof of (3), though
not stated in this notation, using a correspondence between certain differential
operators on C(Y ) and meromorphic functions on Y . One can find the formulation
of (3) in Deligne’s article [De91], who attributes the point of view to Tate and cites
[Se79]. In fact, Tate’s article [Ta68] develops an abstract theory of residues which
permits the generalization of Weil reciprocity to function fields K(Y ) when K is
not necessary equal to C.

In a later paper which Emma Previato wrote with J.-L. Brylinski [BP00], the
authors refer to (3) as the “Weil-Tate reciprocity law”. Futhermore, it is stated
in [BP00] that the identity (3) is “is an essential tool in the abelian class field
theory of its function field”; see page 89 of [BP00]. Indeed, in [HM16] the authors
specifically state on page 88 that Weil reciprocity is one of the main tools at their
dispose, and in fact use Weil reciprocity to prove the version of Artin reciprocity
needed in their work; see section 4, in particular page 89, of [HM16]. Finally, let
us call attention to the very interesting articles [AP02], [MP08], and [MNPP20],
and references therein, which place Weil reciprocity as part of an algebraic theory
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which emanates from [Ta68] and is further developed in [ACK89] and complements
the ideas from [Pr91].

In this note we will use the main results from [CJS20] and give a new proof
of (1), from which (3) follows by a limiting argument as asserted in [Pr91]. In
essence, our approach to Weil reciprocity begins with the spectral theory of certain
integral kernels on X, as developed in [CJS20], from which we prove a general
Kronecker’s limit formula. From the Kronecker limit formula, we show that Weil
reciprocity and its generalizations follow by studying properties of the Kronecker
limit function. All of the properties of the Kronecker limit function needed to prove
Weil reciprocity follow from properties of the integral kernels in question. We note
that the setting of [CJS20] is to consider a general Kähler variety Y and divisor D
which is smooth in codimension one. As such, we are able to obtain generalizations
of Weil reciprocity using properties of the Green’s function (the resolvent kernel)
on Y .

More specifically, in Theorem 1 below we extend Weil reciprocity to (suitably
normalized) meromorphic modular forms of even weight on a smooth, compact Rie-
mann surface Y . Theorem 2 is a variant of Weil reciprocity for harmonic functions
with Green’s function type singularities on a finite volume quotient of a symmetric
space or a compact, smooth projective Kähler variety, while in Theorem 3 we state
an integral version of Weil reciprocity for a compact, smooth projective Kähler
variety.

The paper is organized as follows. In section 2 below we introduce the notation,
and discuss properties of the resolvent kernel and meromorphic forms in the setting
of algebraic curves. If Y is an algebraic curve and the divisors under consideration
have degree zero, then, in section 3 we obtain (1), hence (3). If the divisors do not
have degree zero, in section 3.2 we show that our method yields a generalization
of Weil reciprocity for holomorphic forms of non-zero weight, meaning sections of
powers of the canonical bundle possibly twisted by a flat line bundle. In section 4 we
show that many of our arguments in the case of algebraic curves will extend mutatis
mutandis to the general setting of [CJS20]. In absence of an underlying complex
structure, our generalization of Weil reciprocity involves the space of harmonic
functions which have a finite number of specific singularities, one example of which
is the logarithmic absolute value of meromorphic functions on a smooth algebraic
curve. We will present various examples which illustrate the point of view presented
here.

2. Preliminaries

We begin by briefly recalling the necessary notation and assertions. For further
details, we refer to [CJS20] and references therein.

2.1. Notational set-up. Let Y be a smooth, compact Riemann surface of genus
g. For simplicity, let us assume that g > 1. Let µ be any positive (1,1) form on
Y , which provides a metric on Y as well as any power of the associated canonical
bundle K. For any local holomorphic coordinate z on Y , we can write

µ(z) =
i

2
∂z∂z̄ρ,
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where ρ is the Kähler potential. The form µ is scaled so that

∫
Y
µ = deg(K) = 2g − 2

As an example, one can take ρ(z) = −1
2π

log(Im(z)) where z is a local holomorphic
coordinate, so then µ is the hyperbolic metric on Y . Let f be a weight 2k modular
form, meaning a holomorphic section of K⊗k, with divisor D. Then the (pointwise)
norm ∥f∥µ of f with respect to µ is

(4) ∥f∥2µ(z) ∶= e
−2πkρ(z)

∣f(z)∣2,

so then

(5) dzd
c
z log ∥f∥µ(z) = δD(z) − kµ(z);

we refer to [La88] for the notation and scaling associated to the operators dz and
dcz.

2.2. Resolvent kernel and the prime form. For distinct points z,w ∈ Y , let
GY ;1/4(z,w; s) denote the resolvent kernel of the Laplacian ∆Y associated to the
metric induced by µ on the space of continuous functions. As is common, in the
notation of [CJS20], one takes ρ0 = 1/2. For notational convenience, we will write

G(z,w; s) = GY ;1/4(z,w; s).

From the discussion and results within [CJS20], we have the following statements.
The function G(z,w; s) is defined for Re(s) sufficiently large, and it is symmetric
in z and w, meaning that

G(z,w; s) = G(w, z; s).

It is admits a meromorphic continuation to all s ∈ C. In particular, its Laurent
expansion near s = 0 is of the form

(6) G(z,w; s) =
1

volµ(Y )

1

s(s − 1)
+G(z,w) + o(1) as s→ 0;

see Corollary 6.1 and Remark 6.3 of [CJS20]. The function G(z,w) is the Green’s
function which inverts the actions of the Laplacian on the space of smooth functions
and is orthogonal to the constant functions. Specifically, this means that

(7) ∫

Y

G(z,w)µ(z) = 0

and

(8) dzd
c
zG(z,w) = δw(z) − µ(z);

see page 431 of [CJS20] as well as section 2.5 and references therein. In words, (8)
implies that G(z,w) is locally a harmonic function away from z = w, and it has a
logarithmic singularity as z approaches w. More specifically, we can write

(9) G(z,w) = log ∥H(z,w)∥2µ

where

(10) ∥H(z,w)∥2µ = e
−(2πρ(z))/ce−(2πρ(w))/c∣H(z,w)∣2
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and c = (2g−2). The function H(z,w) is equal to a constant multiple of Fay’s prime
form times a degenerate theta function as in [La82]; see [Fa73] and the discussion
in section 7.5 of [JvPS18]. As such, we have that H(z,w) is locally holomorphic in
z and w, non-vanishing if z ≠ w, has a first order zero as z approaches w, and is
anti-symmetric meaning that H(z,w) = −H(w, z).

In effect, the differential equation (8) and symmetry in z and w determines the
function H(z,w) in (10) up to a multiplicative constant. That constant is deter-
mined further, up to a multiplicative constant of modulus one, by (7). Without
further considerations, the remaining constant of modulus one cannot be deter-
mined.

2.3. Product formula and normalization of modular forms. Any meromor-
phic modular form on a smooth, compact Riemann surface Y can be represented
in terms of prime forms H(z,w). Namely, we have the following lemma.

Lemma 1. Let f be a meromorphic modular form on a smooth, compact Riemann
surface Y and let ordw(f) denote the order f at w. Define

Hf(z) ∶= ∏
w∈Df

H(z,w)ordw(f).

Then, there exists a complex constant cf such that

(11) f(z) = cfHf(z).

Proof. The argument is similar to that given in section 4.4 of [CJS22]. However,
the proof is somewhat evident. Indeed, the ratio f(z)/Hf(z) is holomorphic away
from z ∈Df , and near Df the numerator and denominator have singularities of the
same order. Thus, one can apply the Riemann removable singularity theorem to
conclude that f(z)/Hf(z) extends to a bounded, non-zero, holomorphic function
on Y , which is necessarily constant.

�

Let f be an even weight 2k meromorphic modular form on Y , with multiplier
system which may involve a one-dimensional unitary representation of the funda-
mental group of Y . In other terms, f is a meromorphic section of K⊗k ⊗Lχ where
Lχ is a flat line bundle. Let Df denote the divisor of f , and let ∥f∥µ(z) be the
pointwise norm of f as defined in (4). Then, from (5) we conclude that there is a
constant c such that

(12) log ∥f∥µ(z) = ∑
P ∈Df

m(P )G(z,P ) + c.

If we assume that

∫

Y

log ∥f∥µ(z)µ(z) = 0,

then, in view of (7) we normalize the constant c to be zero. In words, we can
describe such a normalizaton as saying that f has L1-log norm equal to zero.
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3. A proof of Weil Reciprocity on algebraic curves

In this section we prove (1) and (3) and extend Weil Reciprocity to the setting
of meromorphic modular forms on Y of non-zero weight.

3.1. Weil reciprocity for meromorphic modular forms. Let f, g be two mero-
morphic modular forms on Y . Then, f can be represented as (11), while, according
to Lemma 1 we can write

g(z) = cgHg(z) where Hg(z) ∶= ∏
w∈Dg

H(z,w)ordw(g).

Recall that Df ∶= ∑m(P )P and Dg ∶= ∑n(Q)Q. For notational convenience, let
us write

f(z) = cf ∏
P ∈Df

H(z,P )m(P ) and g(z) = cg ∏
Q∈Dg

H(z,Q)n(Q)

Then

f(Dg) = ∏
Q∈Dg

f(Q)n(Q) = ∏
Q∈Dg

⎛

⎝
c
n(Q)
f ∏

P ∈Df

H(Q,P )m(P )n(Q)
⎞

⎠

= c
deg(Dg)

f ∏
P ∈Df

⎛

⎝
∏
Q∈Dg

H(Q,P )m(P )n(Q)
⎞

⎠

= c
deg(Dg)

f c
−deg(Df )

g ∏
P ∈Df

⎛

⎝
cm(P )g ∏

Q∈Dg

H(Q,P )m(P )n(Q)
⎞

⎠

= c
deg(Dg)

f c
−deg(Df )

g (−1)deg(Df )deg(Dg) ∏
P ∈Df

⎛

⎝
cm(P )g ∏

Q∈Dg

H(P,Q)m(P )n(Q)
⎞

⎠

= C ⋅ g(Df)

where
C = c

deg(Dg)

f c
−deg(Df )

g (−1)deg(Df )deg(Dg).

However, Y is a smooth, compact Riemann surface, hence deg(Df) = deg(Dg) = 0,
so then C = 1, which completes the proof of (1).

Let us now consider the case when Df and Dg are not disjoint. As suggested
in [Pr91], we will view (3) as a limiting case of (1) by arguing as follows. For
simplicity, let us assume that Df and Dg have a single point, R, in common with
multiplicity m(R) in Df and n(R) in Dg. Let D′

f =Df ∖ {R} and D′

g =Dg ∖ {R}.
Let D be a holomorphic disc on Y containing R with holomorphic coordinate t. Let
Pt and Qt be two holomorphic functions of t with image in D such that P0 = Q0 = R
and Pt ≠ Qt for t ≠ 0. Define the functions

ft(z) = cf ∏
P ∈D′

f

H(z,P )m(P ) ⋅H(z,Pt)
m(R)

for any non-zero constant cf , and similarly

gt(z) = cg ∏
Q∈D′g

H(z,Q)n(Q) ⋅H(z,Qt)
n(R)
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By arguing as above, and setting m(Pt) =m(R) and n(Qt) = n(R) we get that

(13) ∏
Q∈D′g∪{Qt}

ft(Q)
n(Q)

= ∏
P ∈D′

f
∪{Pt}

gt(P )
m(P ).

One now factors out the single term H(Pt,Qt) from both sides of (13). Using that
H(z,w) is anti-symmetric, (13) immediately implies (3) upon letting t→ 0.

3.2. Weil reciprocity for modular forms of non-zero weight. The following
statement can be viewed as a Weil reciprocity for modular forms of even, nonzero
weight 2k.

Theorem 1. Let Y be a smooth, compact Riemann surface and let f and g be two
meromorphic modular forms of even, nonzero weight 2k1 and 2k2, respectively, and
with divisors Df and Dg, respectively. Assume that Df and Dg are disjoint, and
assume that both f and g are normalized to have L1-log norm equal to zero. Then

(14) ∏
Q∈Dg

∥f∥µ(Q) = ∏
P ∈Df

∥g∥µ(P ).

Proof. The proof is an immediate consequence of (12) with c = 0 and the symmetry
of the Green’s function G(z,w) in the variables z and w. �

One could seek to extract from (14) a more detailed identity by observing that
the ratio

⎛

⎝
∏
Q∈Dg

∥f∥µ(Q)
⎞

⎠
/
⎛

⎝
∏
P ∈Df

∥g∥µ(P )
⎞

⎠

is not only equal to 1 but, as one can see from (4) its dependence on µ is explicit.
We will not pursue that line of inquiry here. Rather, we will use the above approach
to Theorem 1 and obtain analogues of Weil reciprocity in other geometric settings.

4. Extensions of the main result

Our proof of Weil reciprocity (3) is based on the following points, which we list in
increasing order of specificity. First, there exists a Green’s function which satisfies
(7) and (8), and the Green’s function is symmetric in its two variables. With that
information, we then have the trivial identity

(15) ∑
P ∈A

∑
Q∈B

G(P,Q) = ∑
Q∈B

∑
P ∈A

G(Q,P )

where A and B are finite sets of points on the underlying Riemann surface Y .
Second, one can express the Green’s function using the holomorphic function theory
on Y as in (9). In doing so, one is able to “drop the absolute values” and study
Weil reciprocity for holomorphic functions since the aforementioned singularities
are logarithmic. With these two points, our proof of (1) and (3) can be derived.
Furthermore, the generalization (14) follow as above.

Let us now describe two other settings where our approach to Weil reciprocity
applies.

For now, let X be either a finite volume quotient of a symmetric space or a
compact, smooth projective Kähler variety. In either case, there is a well-defined
Laplacian which acts on the space of smooth functions, as well as a Green’s function
G(z,w) which inverts the action of the Laplacian on the space orthogonal to the
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constant functions. The Green’s function G(z,w) has a singularity near z = w
whose order depends on the dimension of X. If X is a Riemann surface, then the
singularity is, in local coordinates, equal to log ∣z −w∣2. In general, the singularity

is comparable to ∣z −w∣−(n−2); see pages 94 and 109 of [Fo76]. For any function f
on X, we will say that f has a Green’s function type singularity at P if for some
constant cP , one has that

f(z) − cPG(z,P ) is bounded for z near P .

In the case when X is a hyperbolic 3-manifold, functions with Green’s function
type singularities are discussed beginning on page 6424 of [HIvPT19].

Theorem 2. Let f and g be bounded functions on X which are harmonic except
at a finite set of points which we denote by Df = {Pj} for f and Dg = {Qi} for g.
Assume that Df and Dg are disjoint sets and that at each point in Df , respectively
Dg, the function f , resp. g, has a Green’s function type singularity. Further,
assume that f and g are in L1 ∩L2(X). If

(16) ∑
Pj∈Df

cPj(f) = ∑
Qi∈Dg

cQi(g) = 0,

then

∑
Qi∈Dg

cQi(g)f(Qi) = ∑
Pj∈Df

cPj(f)g(Pj).

Proof. With the assumptions as above, any bounded harmonic function is constant.
Hence, there are constants Af and Ag such that

f(z) = ∑
Pj∈Df

cPj(f)G(z,Pj) +Af and g(z) = ∑
Qi∈Dg

cQi(g)G(z,Qi) +Ag.

Actually, since the L1−norm of G equals zero, it is straightforward to conclude that

Af =
1

volµ(X)
∫

X

f(z)µ(z)

and similarly for Ag. Therefore, in view of (16), and the symmetry of the Green’s
functions in the two variables we get

∑
Qi∈Dg

cQi(g)f(Qi) = ∑
Qi∈Dg

cQi(g) ∑
Pj∈Df

cPj(f)G(Qi, Pj) = ∑
Pj∈Df

cPj(f)g(Pj).

�

Theorem 2 applies to the class A of functions considered in [HIvPT19] in the
case when X is a certain finite volume quotient of hyperbolic three space.

Let us now state a generalization of Weil reciprocity which, in effect, is an inte-
grated form of (15).

Theorem 3. Let X be a compact, smooth projective Kähler variety. In a slight
abuse of notation, let µ denote the volume form on whatever subvariety of X is
under consideration. Let F and G be modular forms on X whose divisors are DF

and DG, respectively. Assume that the forms are scaled to have L1-log norm equal
to zero, meaning

∫

X

log ∥F ∥µ(z)µ(z) = ∫
X

log ∥G∥µ(z)µ(z) = 0.
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Then

(17) ∫

DG

log ∥F ∥µ(z)µ(z) = ∫
DF

log ∥G∥µ(w)µ(w).

Proof. In the notation of [CJS20], Theorem 4 there is an absolute nonzero constant
c0 and a constant cF such that

∫

DF

G(z,w)µ(w) = c0 log ∥F ∥µ(z) + cF .

The scaling of F is such that

cFvolµ(X) = ∫
DF

∫

X

G(z,w)µ(z)µ(w)−c0 ∫
X

log ∥F ∥µ(z)µ(z) = −c0 ∫
X

log ∥F ∥µ(z)µ(z) = 0.

Similarly,

∫

DG

G(z,w)µ(w) = c0 log ∥G∥µ(z),

from which the assertion follows. �

The following theorem is a generalization of Theorem 3

Theorem 4. Let X be a compact, smooth projective Kähler variety. In a slight
abuse of notation, let µ denote the volume form on whatever subvariety of X is
under consideration. Let F and G be modular forms on X whose divisors are DF

and DG, respectively. Let ∥ log ∥F ∥µ∥1 and ∥ log ∥G∥µ∥1 denote the L1-log norms of
F and G respectively. Then (17) is equivalent to the statement that

volµ(DG)∥ log ∥F ∥µ∥1 = volµ(DF )∥ log ∥G∥µ∥1.

Proof. From the proof of Theorem 3 we have the following identity
(18)

c0 log ∥F ∥µ(z) = ∫
DF

G(z,w)µ(w) − cF = ∫

DF

G(z,w)µ(w) +
c0

volµ(X)
∥ log ∥F ∥µ∥1,

and, similarly for G, the identity
(19)

c0 log ∥G∥µ(z) = ∫
DG

G(z,w)µ(w) − cG = ∫

DG

G(z,w)µ(w) +
c0

volµ(X)
∥ log ∥G∥µ∥1.

The statement follows after integrating (18) over DG and (19) over DF (with the
volume form µ). �

5. Concluding remarks

As an example, let X be an abelian variety with principal polarization Θ. Let
f be the meromorphic function on X associated to the divisor ∑nj(Θ + Pj) for a
finite set of distinct points {Pj} on X and integers {nj} such that ∑njPj is zero in
the group law on X. Similarly, let g be the meromorphic function associated to the
divisor ∑mi(Θ +Qi). Then Theorem 3 is the beginning of the reciprocity law due
to Lang; see [La58] and, more specifically, page 80 of [LR15] (see also [Mi04] for
further applicatons). As in the proofs of (1) and (3) on needs to “drop the absolute
values” and use that, in the appropriate manner, the degrees of f and g are zero.
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As another example, let X be a compact quotient of the complex 2-ball. In
[KM81], the authors consider subspaces which are smooth algebraic curves and are
totally geodesic. Let’s assume such a subspace is also the divisor of an automorphic
form on X (which is quite possibly true). Then the results from [CJS20] provide
another means to undertake the analysis from [KM81]. Furthermore, the reciprocity
law in Theorem 3 amounts to comparing the integrals of log-norm of modular forms
on distinct Riemann surfaces which are the divisors in question. As a result, the
evaluation can be viewed as a type of Rohrlich-Jensen formula; see [CJS22]. In
doing so, one can further reduce the integration in Theorem 3 to comparing point
evaluations of modular forms, as in (1). The details of this investigation will be
developed elsewhere.

Finally, let us note that the role of the analysis in [CJS20] is to prove that the
Green’s function G(z,w), and its integral transformations, can be viewed as a type
of Kronecker limit formula. This interpretation is not needed in the generalizations
of Weil reciprocity per se, but it may be useful in applications.
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[MP08] Muñoz Porras, J., and Pablos Romo, F.: Generalized reciprocity laws, Trans. Amer. Math.

Soc. 360 (2008), 3473 – 3492.

[Pr91] Previato, E.: Another algebraic proof of Weil’s reciprocity, Atti Accad. Naz. Lincei Cl. Sci.
Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 2 (1991), 167–171.

[Se79] Serre, J.-P.: Local fields, Translated from the French by Marvin Jay Greenberg. Graduate
Texts in Mathematics, 67, Springer-Verlag, New York-Berlin, 1979.

[Si86] Silverman, J.: The arithmetic of elliptic curves, Graduate Texts in Mathematics, 106,

Springer-Verlag, New York, 1986. xii+400 pp.
[Ta68] Tate, J.: Residues of differentials on curves, Ann. Sci. Acole Norm. Sup. 1 (1968), 149 –

159.
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