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Abstract. We consider the question of when an unorientable surface without
boundary can be tiled by an (l,m, n) triangle. We desire that the automor-

phism group of the surface preserving the tiling be “substantial”. We use the

well known theory of quasiplatonic surfaces and symmetries of Riemann sur-
faces to propose a classification algorithm, entirely by finite group calculations.

A comprehensive analysis of symmetries of quasiplatonic surfaces in low genus,

by hand and by computer, is carried out, yielding triangulations of unoriented
surfaces as a byproduct.
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1. Introduction

Let M be a closed, unorientable surface (Klein surface) which can be tiled by
(l,m, n) triangles. We also desire that the group of automorphisms of M preserving
the tiling be “substantial”. We wish to determine all such surfaces, or at least a lot
of them. Our idea will be to analyse the surface S which is the double (orientation)
covering of M . We focus our attention on certain quasiplatonic surfaces (deferring
definitions to later sections):

• The surface S has a triangular tiling by congruent (l,m, n) triangles.
• There is a finite, triangular action group G, acting by conformal automor-

phisms of S, that acts transitively on the tiles with the same orientation.
• There is a fixed point free symmetry ψ of S that preserves the tiling on S

and normalizes the action of G.
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Triangulations of Unorientable Surfaces 106

The tiling on S and the existence of ψ are completely determined by a generating
triple (a, b, c) of G and the group structures of G and Aut(G). Working backwards,
we will seek orientable surfaces S and symmetries ψ, satisfying the given conditions,
and take M = S/ 〈ψ〉. Here is an overview of the paper. The basics of surfaces
with triangular tilings, the action group G, and the generating triples (a, b, c) are
discussed in Section 2. Symmetries of S and their properties are discussed in
Section 3. At the end of Section 3 we give the details of the program of finding
triangulations of unorientable surfaces from surfaces satisfying the bullets above.

In the next two sections, we give a rich set of examples that can be computed
by hand. In Section 4 we focus on the abelian and cyclic cases. In Section 5
we discuss in detail those triangular surfaces whose action group is a non-abelian
group of order pq, where p and q are primes. These groups are small groups,
amenable to hand calculation, but with more subtle properties than abelian groups.
These groups provide interesting examples and counterexamples, for instance these
surfaces have no Type I symmetries but do have Type II symmetries. In Section
6, for completeness, we discuss and give a few examples of surfaces with “extra”
symmetries. Finally, in Section 7, we use the ideas and results of the first three
sections to catalogue low genus, symmetric, quasiplatonic surfaces, which in turn
can be used to produce unorientable surfaces with triangulations. We completed a
computer search for symmetric, quasiplatonic surfaces with action group of order
less or equal to 250, and have summarized the results in various tables in Section 7.
The main take away is that there a numerous triangulated unorientable surfaces.
The Magma [17] code and detailed information the actions of each group are at
this website [5]. GAP [18] could also be used.

2. Triangular surfaces and group actions

2.1. Tilings by triangles. Let (l,m, n) be a triple of integers all greater than or

equal to 2. For each such triple there is a triangle ∆ in one of the geometries Ĉ,
the Riemann sphere, C, the complex plane, or H, the hyperbolic plane, satisfying
the following requirements.

• The triangle ∆ is an (l,m, n) triangle, i.e., it has interior angles π/l, π/m,
and π/n, in counterclockwise order.
• The triangle ∆ is unique up to conformal isometry. In the Euclidean case,
C, this helps us avoid the ambiguity of similar triangles. In the other two
geometries any two (l,m, n) triangles are automatically congruent.

Now pick a distinguished such triangle ∆0, which we shall call the master tile
(see Figure 1). Reflections in the sides of ∆0 produce three anti-conformal isometric
images of ∆0 (tiles), joined along the sides of ∆0. The first stage of this reflection
process is illustrated in Figure 1. If we repeat the reflection process with the new

triangles, and continue ad infinitum, we get a tiling T of Ĉ, C, or H by (l,m, n)
triangles, according to the Poincaré polygon theorem (for background, see [1]). In
Figure 2, a partial diagram of a (4, 4, 3) tiling of H is shown, using the unit disc
model.

Remark 2.1. The diagram in Figure 1 is actually the image in the surface S, but
is isometric to the corresponding diagram in the universal cover U . Seeking sim-
plification, the notation for the geometric objects: vertices, edges (sides), tiles, and
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Figure 2.5 The master tile, reßected images, and group generators

The conjugation action of q on the generators a, b of G induces an automorphism
θ satisfying:

θ(a) = qaq = qaq−1 = a−1, (2.3)
θ(b) = qbq = qbq−1 = b−1 (2.4)

The relation between the group order G and the genus σ of the surface is given by
the Riemann-Hurwitz equation:

2σ − 2
|G| = 1−

µ
1

l
+
1

m
+
1

n

¶
. (5)

It follows that the genus is given by:

σ = 1 +
|G|
2

µ
1−

µ
1

l
+
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m
+
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n

¶¶
, (6)

Figure 1. Mastertile and reflected tiles in S

4−4−3 tiling

Figure 2. (4,4,3) tiling
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angle measure can be the same in both U and S. However, the group information,
introduced below, A,B,C ∈ Aut(U) and a, b, c ∈ Aut(S) must be distinguished.

2.2. Algebra of tilings and triangular actions. As in Figure 1, let P,Q,R
denote the vertices of ∆0, picking a specific counterclockwise ordering. (The con-
structions we shall make are dependent on the choice of the triangle, see the later
paragraph on resolving ambiguity.) Let p, q, r denote the sides opposite to P,Q,R,
respecting the ordering. We also assume that the interior angles at R,P,Q have
radian measure π/l, π/m, and π/n, respecting order. Finally, we also let p, q and
r denote the reflections ψp, ψq, ψr in the sides p, q and r, respectively, and define
these elements in Aut(U):

(1) A = pq, B = qr, C = rp.

From the geometry we see that p, q, r have order 2, and A,B,C are counter-
clockwise rotations centred at R,P , and Q, respectively, and have orders l,m, n,
respectively. The full and orientation-preserving isometry groups preserving the
tiling T are called triangle groups and are denoted by T ∗l,m,n = 〈p, q, r〉 (orientation-

preserving or not) and Tl,m,n = 〈A,B,C〉 (orientation preserving only). It is well
known that these isometry groups, called triangle groups, have these presentations:

T ∗l,m,n =
〈
p, q, r : p2 = q2 = r2 = (pq)l = (qr)m = (rp)n = 1

〉
(2)

Tl,m,n =
〈
A,B,C : Al = Bm = Cn = ABC = 1

〉
(3)

Remark 2.2. Later, we shall use the following conjugation formulas:

pAp = A−1, pBp = AB−1A−1, pCp = C−1,

qAq = A−1, qBq = B−1, qCq = BC−1B−1,

rAr = CA−1C−1, rBr = B−1, rCr = C−1.

Here are the details for p :

pAp = ppqp = qp = A−1,

pBp = pqrp = pqrqqp = AB−1A−1,

pCp = prpp = rp = C−1.

Triangular group actions (quasiplatonic). A closed surface S may be uni-
formized by a fixed point free group of conformal isometries Π, acting upon its

universal covering space U , which is one of Ĉ, C, or H. We denote the universal
cover by

(4) πS : U → S.

If Π is a torsion-free subgroup of finite index in Tl,m,n, then the closed surface

(5) S = U/Π.

will inherit a tiling T = T /Π by (l,m, n) triangles. If Π is normal then the finite
group

(6) GS = Tl,m,n/Π,

acts naturally upon S as a group of conformal automorphisms that preserves the
tiling T . We consider GS as a subgroup of Aut(S), and call it the rotation group,
as it is generated by local rotations.
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In order to abstract the properties of GS to an arbitrary isomorphic group G we
call any monomorphism

(7) ε : G→ Aut(S),

with ε(G) = GS , a triangular G action on S. We call G the action group, and (S, ε)
an action pair. If there is no confusion we will identify g ∈ G with ε(g) ∈ GS . The
terms quasi-platonic surface and quasiplatonic action are also widely used. There
has been an extensive enumeration of quasiplatonic surfaces, see for example, [2],
[13], and [16]

The triple (l,m, n) is called the signature of the action. The size of the group
G, the genus σ, and the signature are related by the Riemann Hurwitz equation

(8)
2σ − 2

|G|
= 1− 1

l
− 1

m
− 1

n
,

at least when the genus is not equal to 1.
Let η : Tl,m,n → G be the map, with kernel Π,

(9) η : Tl,m,n → Tl,m,n/Π
ε−1

→ G,

called a surface-kernel epimorphism. Define

(10) a = η(A), b = η(B), c = η(C).

Then the triple (a, b, c) satisfies

G = 〈a, b, c〉(11)

al = bm = cn = abc = 1,(12)

and we call (a, b, c) an (l,m, n) generating triple. The elements a, b, c define rotations
of order l,m, n at R,P,Q in S (again see Figure 1).

Remark 2.3. Given any generating (l,m, n)-triple (a, b, c) in G there is an epi-
morphism η : Tl,m,n → G, defined as in (10) with torsion free kernel Π = ker(η).
Using the subgroup Π we may construct the surface S = U/Π, an (l,m, n) tiling
T , and G-action on S defined by (10) and the action of Tl,m,n/Π on U/Π. There-
fore, triangular surfaces with triangular G actions may be studied using generating
triples. By analogy, we shall also call (S, (a, b, c)) and action pair.

Resolving ambiguities. The construction of the objects Tl,m,n, Π, S, η, the G
action ε, and the signature (l,m, n) has some ambiguity arising from the choice
of the master tile. Suppose ∆′0 is a new, positively oriented (l,m, n) master tile.
As previously mentioned, there is a unique isometry ϕ of H which maps ∆0 to ∆′0,
preserving the ordering of the vertices and hence (l,m, n). All of the new constructs
will be denoted by a prime applied to the old construct. In particular, Tl,m,n =
〈A,B,C〉 and T ′l,m,n = 〈A′, B′, C ′〉, where A′ = ϕAϕ−1, etc. The relationship
between the new groups and surfaces and the old ones is summarized in these two
commuting diagrams:

Π ↪→ Tl,m,n
η
� G

↓ Adϕ ↓ Adϕ ↓ id

Π′ ↪→ T ′l,m,n
η′

� G

Albanian J. Math. Vol. 17 (2023), no. 2, 105 –142

http://albanian-j-math.com/vol-17.html


Triangulations of Unorientable Surfaces 110

H � H/Π = S
↓ ϕ ↓ ϕ ↓ ϕ
H � H/Π′ = S′

where

Adϕ : L→ ϕLϕ−1, ϕ(Πz) = Π′ϕ(z),

and we may compatibly define

η′ = η ◦Ad−1ϕ , ε′(g) = ϕε(g)ϕ−1.

As η′(A′) = η(A), etc., then the generating triples are the same.

Next suppose that relabel the vertices with a cyclic permutation,

(A′, B′, C ′) = (B,C,A), (a′, b′, c′) = (b, c, a), (l′,m′, n′) = (m,n, l).

Note that we still have A′B′C ′ = BCA = A−1(ABC)A = 1, and similarly a′b′c′ =
1. Then T ′l,m,n = Tl′,m′,n′ = Tl,m,n, Π′ = Π, and S′ = S. As maps, η′ = η and ε′ =
ε and GS′ = GS . Everything is the same at the surface level except for permuted
signatures and generating triples. The other cyclic permutation works in the same
way. The transposition (l′,m′, n′) = (m, l, n) corresponds to choosing, the lower
tile in Figure 1 and these replacements

(A′, B′, C ′) = (B,A,BCB−1), (a′, b′, c′) = (b, c, bcb−1), (l′,m′, n′) = (m, l, n).

Again we get the same surface and the same GS with permuted signature and
suitably modified generating triple.
Further remarks.

We finish this section with some further remarks that we use later in the paper.

Remark 2.4. If ω is an automorphism of G then ω ◦ η has the same kernel as η in
(10). Thus, the triples (a, b, c) and ω · (a, b, c) = (ω(a), ω(b), ω(c)) define the same
kernel and the same tiled surface with G-action twisted by ω. The corresponding
action monomorphisms are ε and ε ◦ ω−1, and we say that the actions are alge-
braically equivalent. So, we need only consider Aut(G) classes of generating triples,
to construct the different surfaces. Observe that Aut(G) acts freely on generating
triples. Though the number of triples for a given signature may be very large, the
actual number of Aut(G) classes of generating triples is typically small.

Remark 2.5. The group G may not be the full automorphism group of S. Indeed,
the full automorphism group is N/Π where N = Nor(Aut(U),Π). However, N is a
triangle group. See Singerman [19].

Remark 2.6. Let e be edge in the tiling T and ẽ an edge in T lying over e. The
reflection ψẽ ∈ T ∗l,m,n descends to a globally defined reflection ψe on S if and only
if Π C T ∗l,m,n. The reflection ψe is locally defined, by which we mean that the ψe
is defined at least for the two tiles that meet along the edge e. In the universal
cover, for any L ∈ Tl,m,n we have LψẽL

−1 = ψLẽ. On the surface, for any g ∈ G or
isometry φ we have

gψeg
−1 = ψge(13)

φψeφ
−1 = ψφe(14)

at least locally, and if ψe is globally defined then the equation holds globally.
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2.3. Geometry of S/G and U/Tl,m,n as Ĉ. To take advantage of the normalizing
condition ψGψ = G we will utilize a convenient model for S/G and the quotient
map

(15) πG : S → S/G.

By assumption S/G is a sphere and the quotient map πG has three branch points
on S/G, namely the images of the vertices of the triangles on S. For a model of

S/G, we use the Riemann sphere Ĉ with branch points at 0, 1, ∞. Our model of

S/G is easily visualized as the complex plane, i.e., Ĉ− {∞}, with 0, 1, ∞ lying on

the projective real line R̂. The points 0, 1, ∞ break up R̂ into three closed intervals

[∞, 0], [0, 1], [1,∞] ⊂ R̂ and R̂ breaks up Ĉ into H+ and H− the upper half plane

and lower half planes. This system really is a tiling T on Ĉ.
The quotient spaces S/G and U/Tl,m,n are isomorphic. Indeed, using the se-

quence (9) and the covering map (4) we have π(g · z) = η(g) · π(z) for all g ∈
Tl,m,n. It follows that the bijection S/G↔ U/Tl,m,n defined by the orbit equation
G · π(z) = π(Tl,m,n · z) is a biholomorphic map of quotient spaces. In Figure 1
a fundamental region for the G action is ∆0 ∪ q∆0. We may use the side pairing
transformations a, b in the surface S and A,B in the universal cover U to obtain
other models of the quotients S/G and U/Tl,m,n.

We may associate of vertices, sides, and triangles in the two different models as
follows

(1) vertices: R↔ 0, P ↔ 1, Q↔∞;
(2) sides: p, q · p ↔ [∞, 0], q ↔ [0, 1], r, q · r ↔ [1,∞], where q · p, q · r denote

the action of the reflection q upon the sides p and r, respectively; and
(3) triangles: ∆0 ↔ upper half plane H+ and q∆0 ↔ lower half plane H−.

We can summarize this by saying that we have tile preserving maps

πS : T →T , πG : T → T , πG ◦ πS : T → T .

Remark 2.7. The map πG : S → S/G is unramified over Ĉ −{0, 1,∞}, so πG :

π−1G (Ĉ−{0, 1,∞})→ Ĉ−{0, 1,∞} is a covering space and G acts simply transitively

on the fibres. The subspace R̂ −{0, 1,∞} consists of three disjoint open intervals
which lift by local homeomorphisms to the sides of tiles minus the end points. Thus
there are three G orbits of sides, which can be visualized by colouring the edges.

The set Ĉ − R̂ consists of two open sets, the upper and lower open half planes,
H+ and H−, in C. These open half planes lift to the interiors of tiles via local
homeomorphisms. This can be visualized by colouring half the tiles white (upper)
and the other half black (lower). The group G permutes, simple transitively, the
tiles of the same colour. Using continuity and compactness arguments one can
show that, for any closed tile ∆, πG maps ∆ homeomorphically onto a closed upper
or lower half plane. The map is conformal in the interior of the tile, and extends
conformally to a suitably small neighbourhod of interior points of the sides.

Remark 2.8. In Figure 1 the union ∆0∪ q∆0 is a hyperbolic kite symmetric about
the bisecting edge q where the two tiles are joined. We call ∆0 ∪ q∆0 (and its
translates) a q-kite. Similarly ∆0 ∪ p∆0 and ∆0 ∪ p∆0 (and their translates) are
called a p-kites and r-kites, respectively. The action of G is simply transitive on the
kites of the same type, indeed each kite is a fundamental region for the G action.

The kites can also be defined by lifting from Ĉ. To get the q-kites we cut out the
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intervals [∞, 0] and [1,∞] from Ĉ, what remains is a slit domain homeomorphic to
a disc. The portions of S lying over the slit domain are the interiors of the q-kites
and πG is a homeomorphism of the interior of a q-kite to the slit domain. Similar
remarks apply to p-kites and r-kites. You can visualize the kites in Figures 1 and
2, though the picture in Figure 1 is not exact.

Remark 2.9. By using a linear fractional transformation L of Ĉ we can move

the branch points from 0, 1, ∞ to any triple of points in Ĉ, for instance 0, 1,−1.
The above analysis may be carried out word for word except that one of the three

intervals has ∞ in its interior. If the three branch points are not all real, then R̂
needs to be replaced by the unique circle passing through all three of the branch
points.

3. Symmetries of surfaces

A symmetry ψ of a surface S an anti-conformal involution. Any such surface is
called a symmetric surface. The fixed point setMψ of ψ, called the mirror of ψ, is
a possibly empty, disjoint set of closed, simple, geodesic curves called ovals of the
symmetry. The quotient surface S/ 〈ψ〉 is a Klein surface, orientable if S\Mψ is
disconnected (separating symmetry), and is unorientable otherwise (non-separating
symmetry). Thus, if ψ is fixed point free, then S/ 〈ψ〉 is an (unorientable) Klein
surface without boundary. So, we shall search for fixed point free symmetries.

Here are some initial examples of symmetries.

Example 3.1. The prime example of a symmetry is given by a complex curve de-
fined over R. Suppose our surface S is given by f(x, y) = 0, suitably desingularized
and compactified, and such that the coefficients of f are real. Then f(x, y) = 0 if
and only if f(x, y) = 0 and the involution (x, y) ↔ (x, y) is a symmetry when re-
stricted to S. The fixed points of the symmetry are the real solutions of f(x, y) = 0,
namely a curve defined over R.

Example 3.2. If, in the preceding example there are no real solutions to f(x, y) = 0
then the symmetry is fixed point free. Such a curve, empty of points over R, is
called an imaginary curve. The complex curve typically has points but does not
meet R2 in C2, A simple example is the Fermat curve xn + yn = −1 with n even.
But, note that xn + yn = 1 always has solutions.

Example 3.3. Let e be any edge in the tiling T . Then the reflection ψe in e
preserves the tiling and hence the triangle groups Tl,m,n and T ∗l,m,n. If the subgroup
Π ⊂ Tl,m,n is normalized by ψe, then ψe descends to a reflection ψe in the image

edge e in T .

3.1. Geometry of symmetries. Assume now that the surface S has a triangular
action of G, determined by the generating triple (a, b, c). We are interested in
finding symmetries that normalize the action of G. In this case we say that the
action is a symmetric action. Questions that are typically asked for symmetric
actions are (see [11], [3], [6], [7], [21]):

(1) Are there any symmetries ψ of S normalizing the G action?
(2) If so, determine the conjugacy classes of symmetries.
(3) Is the mirror Mψ non-empty, and if so, how many ovals are in the mirror

of the symmetry?
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(4) Is ψ a separating symmetry?
(5) Is the map g → ψgψ an inner or outer automorphism?

Obviously, questions 1, 2, 3 (empty mirror case) are important to our quest. Though
less obvious, the answer to question 5 is also useful.

3.1.1. The normalizing condition. Since ψ is an isometry, then ψGψ consists of
conformal isometries, even if ψ does not normalize G. Thus ψGψ ≤ Aut(S) and so
G cannot be moved too far. Our observation implies that any symmetry of S auto-
matically normalizes Aut(S), providing us with plenty of examples of normalizing
symmetries, but not all. Now, Aut(S) is also a triangular group with signature
(l′,m′, n′), and the strict inclusion G < Aut(S) induces a strict inclusion

(16) Tl,m,n < Tl′,m′,n′ .

These inclusions have been classified and form a part of Singerman’s List [19]. We
have recorded the information we need from the list in Table 5, Section 6. Thus,
there are investigative tools for determining the pairs (G,ψ), ψGψ 6= G However,
there are there are plenty of pairs (G,ψ) where ψ is a normalizing symmetry andG is
not the full automorphism group, so our normalizing condition is not unreasonable.
For additional details on Singerman’s list see [12].

An analysis of non-normalizing symmetries has been carried out in [14], though
the exposition takes a different track, via NEC groups and dessins d’enfant. For
some examples of non-normalizing symmetries see Example 3.4 and further discus-
sion in Section 6.2.

We also have the possibility that the action of G on S is normalized by two
symmetries ψ1, ψ2 that ψ2 6= ψ1g for any g ∈ G. In this case there is a triangular
overgroup H BG, with normalizing symmetries, and a normal inclusion analogous
to (16). In Section 6 we will investigate some examples of these “extra symme-
tries” when G < Aut(G), both normalizing and non-normalizing. We focus our
main study on cases where there are no extra symmetries under consideration and
formalize this situation in the following definition.

Definition 3.1. For a family of symmetries {ψ ∈ Ψ}, normalizing the action of G
on a surface S, we say that the G action is tightly normalized by the symmetries in
Ψ, if for any two symmetries ψ1, ψ2 ∈ Ψ, we have ψ1ψ2 ∈ G. Otherwise, we say
that the G action is loosely normalized by the symmetries in Ψ.

The proof of the following is easy and is left to the reader, once the notion of
quotient symmetry ψ is introduced in Section 3.1.2.

Lemma 1. For a surface S, let ψ0 be a distinguished symmetry normalizing a
triangular G action. Then, the family of symmetries

Ψ =
{
ψ : ψGψ = G,ψ = ψ0

}
tightly normalizes the G action. The index of G in 〈ψ,G〉 is 2.

Example 3.4. The Klein quartic S is a symmetric surface of genus 3 whose full au-
tomorphism group is the Hurwitz group Aut(S) = PSL2(7) with signature (2, 3, 7).
In Figure 3 we show a partial tiling of the plane by (2, 3, 7) tiles. It turns out that
each of the edges of the tiling induces a symmetry of S as described in Example
3.3. The group Aut(S) has a subgroup G = Z3nZ7, but none of the symmetries of
S induced by reflections in edges normalize G. However, the subgroup Z7 has nor-
malizing symmetries induced by edges. In Figure 3 we can see how 24 of the small
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Figure 3. Portion of the (2,3,7) tiling

tiles can be arranged to create a (7, 7, 7) tile and, hence, an inclusion T7,7,7 ⊂ T2,3,7.
In turn, we get an induced inclusion Z7 ⊂ PSL2(7). Since edges of the (7, 7, 7) tile
contain edges of some (2, 3, 7) tiles, there are some symmetries of the surface that
normalize Z7. None of the interior (2, 3, 7) edges in (7, 7, 7) tile define normalizing
symmetries of Z7. On the other hand, we can see that the rotation of order 3 at the
center of the figure is an automorphism of both tilings and so normalizes both Z7

and PSL2(7) This is consistent with the fact that the normalizer of Z7 in PSL2(7)
is Z3 n Z7. If we could build a (3, 3, 7) triangle out of eight of the (2, 3, 7) tiles we
could demonstrate geometrically that Z3nZ7 has normalizing symmetries induced
by edges. However, the construction just cannot be done. Later, in Section 5 we
show algebraically that Z3nZ7 cannot have any symmetries arising from reflection
in edges of the (2, 3, 7) tiling. For more details see [10].

3.1.2. Type of a symmetry. Since ψ normalizes G, ψ maps G-orbits to G-orbits. So,
there an anti-conformal map ψ induced on the quotient S/G. By assumption S/G
is a sphere and the quotient map πG has three branch points in S/G, namely the
images of the vertices of the triangles on S. The corresponding orbits are singular
orbits, i.e., they have fewer than |G| points. Indeed, the number of points in these
singular orbits are |G| /o(a), |G| /o(b), and |G| /o(c). These are the only singular
orbits and ψ must permute these orbits among themselves. It follows that the
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quotient ψ must permute the three branch points, {0, 1,∞}, preserving branching
order.

The symmetry ψ has the form L(z) where L is a linear fractional transformation.
Since we are specifying the L-images of the three points {0, 1,∞}, the transforma-
tion L is unique. Since ψ has order 2, it fixes either 1 or 3 branch points. So we
may identify ψ and define the type of a symmetry depending on the number and
arrangement of the fixed points of ψ. Let us make this precise in the following
definition.

Definition 3.2. Let G have a triangular action on S and let ψ be a symmetry of

S normalizing the action of G. Let πG : S → Ĉ be the quotient map, branched over
{0, 1,∞} , and mapping the vertices of the master tile as follows R → 0, P → 1,
Q → ∞. Then, the type of ψ with respect to this quotient map is the induced
permutation of {0, 1,∞}.

Now, let us describes the possibilities in more detail and affix labels to the various
symmetry types.

(1) If ψ fixes all three branch points then we call ψ a symmetry of Type I. The
signature can be any allowable signature. The fixed oval of ψ is the real

projective line R̂ and ψ is complex conjugation z → z.
(2) If ψ fixes one branch point and switches the other two, then we call ψ

a symmetry of Type II. The branching orders of the switched pair must
be the same so that the signature is (l, l, n), (l, n, l), (n, l, l), or (l, l, l) with
l 6= n. Assume that ψ switches 0 and 1 and fixes ∞. Then ψ is reflection
in the line Re(z) = 1

2 with formula z → 1 − z. We call this a Type II.a
symmetry. See the table below for the other two switches.

All the possible type of symmetries are given in Table 1 below, showing the
allowed signatures, the formula for ψ, and the fixed point set (oval) of ψ. The last
column standard symmetries will be explained in the next Section 3.1.3.

Type Switch Signatures ψ(z) Oval of ψ Std Symm

I none (l,m, n) z R̂ ψp, ψq, ψr
II.a 0↔ 1 (l, l, n), (l, l, l) 1− z Re(z) = 1

2 ψs
II.b 0↔∞ (l, n, l), (l, l, l) 1

z zz = 1 ψt
II.c 1↔∞ (n, l, l), (l, l, l) z

z−1 (z − 1)(z − 1) = 1 ψu

Table 1. Geometry of ψ(z) and type of symmetries

Note that the three ovals meet at the points 1
2 ±

√
3
2 .

3.1.3. Standard or boundary symmetries. We shall define specific examples of Type
I and II symmetries, called standard symmetries, that can be locally defined using
the master tile. They are also called boundary symmetries since a part of the
boundary of master tile is preserved.

Example 3.5. If globally defined, the reflection in any side of the tiling T is a
symmetry of Type I (recall Remark 2.6). Any such reflection is G conjugate to one
of ψp, ψq, or ψr. We call ψp, ψq, or ψr the standard symmetries of Type I.

Example 3.6. If l = m then ∆0 ∪ q∆0 (see Figure 1) is a (hyperbolic) rhombus
with opposite angles of 2π

l and π
n . We call it the master q-rhombus, any translate
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of this master rhombus is called a q-rhombus. We call the line segment, s, from Q
to q ·Q a q-rhombic bisector. Since ∆0 ∪ q∆0 is always a kite, even if ∆0 is scalene,
we call q the q-kite bisector to distinguish it from the rhombic bisector. In the
isosceles case, the segments q and s are mutually perpendicular bisectors of each
other. The local reflection in s, ψs, takes ∆0 ∪ q∆0 to itself, fixing Q and q ·Q and
exchanging R and P . If globally defined, ψs is called the standard symmetry of Type
II.a. Observe that G acts simply transitively on the q-rhombi in T . The q-rhombic
bisectors, which are G transforms of s, define a conjugacy class of reflections. They
are all of Type II.a. In Figure 2 there are l = 4 q-rhombi in the central polygon.

In the case that l = n we denote the rhombic bisector of ∆0 ∪ p∆0 by t, and if
m = n we denote the rhombic bisector of ∆0 ∪ r∆0 by u. The reflections ψs, ψt, ψu
are the standard symmetries of Type II.a, Type II.b and Type II.c, respectively.

Remark 3.1. In the equilateral case ψs, ψt, ψu are all locally defined. Using
formula (14), and the geometry of the master tile, we obtain the following Type II
conjugation relations.

ψsψtψs = ψu, ψsψuψs = ψt,

ψtψsψt = ψu, ψtψuψt = ψs,(17)

ψuψsψu = ψt, ψuψtψu = ψs,

as well as these mixed-Type conjugation relations

ψsψpψs = ψr, ψsψqψs = ψq, ψsψrψs = ψp

ψtψpψt = ψp, ψtψqψt = ψr, ψtψrψt = ψq,(18)

ψuψpψu = ψq, ψuψqψu = ψp, ψuψrψu = ψr.

3.1.4. Symmetries with nonempty mirrors. The following lemma tells us when a
symmetry has fixed points.

Lemma 2. Let all notation and assumptions be as above. Then

(1) A surface S has a symmetry of Type I if and only if ψp, ψq, ψr, the local
reflections in the sides of the master tile, extend to globally defined symme-
tries, and hence reflections in all the sides of the tiles are globally defined.
A symmetry of Type I has fixed points if and only if it is conjugate by an
element of G to one of ψp, ψq, or ψr.

(2) A surface S has a symmetry of Type II.a if and only if the reflection, ψs,
in the rhombic bisector of the master rhombus ∆0∪ q∆0, is globally defined
and hence the reflections in all the rhombic bisectors of q-rhombi are glob-
ally defined. A symmetry of Type II.a has fixed points if and only if it is
conjugate, by an element of G, to the reflection ψs in the master rhombus
∆0 ∪ q∆0. Similar statements apply to symmetries of Type II.b and II.c,
for allowable signatures.

Proof. Type I symmetries. We first prove that ψ preserves the tiling T . To see
this, we note that since ψ is a Type I symmetry then ψ is complex conjugation

on Ĉ = S/G. So ψ switches the upper and lower open half planes, and fixes R̂.
According to the discussion in Remark 2.7, and lifting to S we see that for each tile,
∆, ψ∆ is a tile of the opposite color and ψ preserves the colouring of the sides of
the tile. Now q∆0 and ψ∆0 have the same colour and so there is a g ∈ G mapping
ψ∆0 → q∆0 and so gψ maps ∆0 → q∆0. Thus gψ maps the q-kite ∆0 ∪ q∆0 to
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itself and maps the edge q to itself. Using the fact gψ is an isometry or that gψ is

the identity on (0, 1) ⊂ Ĉ we see that gψ fixes q pointwise.

Next, we lift gψ to some covering isometry g̃ψ on U . Arguing as before, any

such g̃ψ preserves the tiling T and the system of q-kites. Let ˜∆0 ∪ q∆0 denote
some specific lift of the master q-kite. Since Tl,m,n acts transitively on the q-kites

there is an L ∈ Tl,m,n such that Lg̃ψ maps ˜∆0 ∪ q∆0 to itself. Finally, we let q̃

denote the kite bisector of ˜∆0 ∪ q∆0 and let ψq̃ be the reflection in q̃, which is

globally defined on U . Using a previous argument, Lg̃ψ fixes q̃ pointwise as does

ψq̃. Now ψq̃Lg̃ψ is a conformal automorphism and an isometry of U that fixes all

the points in an interval. It must therefore be the identity. So we have ψq̃ = Lg̃ψ

on all of U . According to the Lemma 3 below, g̃ψ normalizes Π and by assumption
L normalizes Π because of (9). Thus ψq̃ normalizes Π and ψq, the reflection in the
edge q in the surface, is globally defined on S. Since p = qa−1 and r = qb, p and r
are globally defined. According to Remark 2.6 the reflection in any edge is globally
defined and there are three G classes of them.

Now suppose that a Type I symmetry ψ has a non-empty mirror Mψ. Since ψ

has fixed points only on R̂ then Mψ is contained in a union of edges. For any of
the edges inMψ we have ψ = ψe. The conjugacy statement follows from the above
discussion.

Type II.a symmetries. The case for Type II.a is similar. First let us describe
the geometry of the tiling induced by ψ. As we noted previously ψ has the formula

z → 1− z and is the reflection in the line Re(z) = 1
2 . This line breaks up Ĉ into a

left and right half plane. As in the Type I case we colour the lifts of the left and
right half plane in two colours black and white. The lift of the finite portion of the
separating line is the interior of a rhombus bisector. Now there is a branch point
in each half plane and so each half rhombus is replicated l times to create a regular
polygon with l sides. The interior angles of this regular polygon have measure π

n and
so there are 2n polygons at a vertex. At a vertex the colours alternate between black
and white. The tiling on the universal covering space can be obtained by dividing
each (l, l, n) triangle into two (2, l, 2n) triangles using the rhombus bisector, The
(2, l, 2n) triangle can be aggregated into the regular polygons just described. The
edges of this new tiling are all the rhombus bisectors. The rest of the proof is
similar to the Type I case. �

Lemma 3. Let the group Π act on X, let π : X → X/Π = Y be the orbit space
map, and suppose we have a bijective map h : X → X.

(1) If h normalizes Π, then the map h : Y → Y , given by Πx → Πhx is
well-defined, and the diagram below commutes

(19)

X
h→ X

↓ π ↓ π
Y

h→ Y

.

(2) Now suppose that a map h exists so that the diagram 19 commutes, and the
following additional hypotheses hold.
• X is a Baire space, e.g., a completely metrizable topological space or

a locally compact Hausdorff space,
• Π is countable,
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• there is at least one point x0 ∈ X such that the stabilizer Πx0 =
{g ∈ Π : gx0 = x0} is trivial, and

• if an element of 〈h,Π〉 is the identity on an open set in X, then it
equals the identity on all of X.

Then h normalizes Π.

Proof. The first part of the Lemma is a standard fact about permutation groups.
For the second part, the commutation relation h ◦ π = π ◦ h implies that for any
x ∈ X, we have h(π(x)) = π(hx) = Πhx. For any g ∈ Π we have π(hgx) =
h(π(gx)) = h(π(x)) = π(hx) or Πhgx = Πhx. As this is true for all g ∈ Π, we get
Πhx = ΠhΠx or

(20) Πhx = hΠx

and hence

(21) h−1Πhx = Πx.

Now for the given x0 ∈ X, (21) must hold, so for each g ∈ Π there is a g′ ∈
Π such that h−1ghx0 = g′x0 or (g′)

−1
h−1ghx0 = x0. Now, it is possible that

(g′)
−1
h−1gh ∈ 〈h,Π〉 is not the identity but fixes x0. This could only happen if

h−1gh /∈ Π for if h−1gh ∈ Π then g
′

= h−1gh by the stabilizer condition Πx0 = 〈1〉.
To remedy this situation we need to find a better x0. For each pair g, g′ such that

(g′)
−1
h−1gh does not equal the identity, define the fixed point set

Φg,g′ =
{
x ∈ X : (g′)

−1
h−1gh = x

}
.

By the last bulleted assumption Φg,g′ is a closed set with empty interior. On the

complement X − Φg,g′ the element (g′)
−1
h−1gh has no fixed points. Consider the

set

X◦ =
⋂
g,g′

X − Φg,g′ ,

where intersection is taken over the pairs where (g′)
−1
h−1gh is not the identity.

The set X◦ is a countable intersection of dense open sets in a Baire space and hence
is dense in X. Now reselect the point x0 so that it lies in X◦ and go through the

argument again. It follows that for every choice of g the element (g′)
−1
h−1gh is

the identity and h−1gh ∈ Π. �

3.2. Algebra of symmetries. Assume that ψ is a symmetry and set G∗ = G∗ψ =

〈ψ,G〉, an isometry group of S, which we call the tiling group. The tiling group
contains G as a subgroup of index 2 if and only if G is normalized by ψ. In this
case, we write the automorphism of G induced by ψ as

(22) θ : g → ψgψ = ψ ◦ ε(g) ◦ ψ,
and call it the symmetry automorphism induced by ψ, writing θψ if we need to be
specific. Except in one case (see Remark 3.6 item 1), θ is an involution, so we also
call it the symmetry involution. With the same exception noted above, the group
G∗ψ is isomorphic to G∗θ = 〈θ〉nG, a subgroup of the holomorph of G. The elements
of G∗θ are of the form g or θg and have the commutation rule

(23) g · θ = θ · θgθ = θ · θ(g).

We call G∗θ the symmetry holomorph of the involution θ. There may be involutions
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θ ∈ Aut(G) for which there is no corresponding symmetry, though G∗θ certainly
exists.

The automorphisms of standard symmetries, called standard automorphisms or
standard involutions are easily computed in terms of a generating triple, from the
geometry of the master tile. Here is a table of formulas for standard symmetries.
We are not claiming that the symmetries and automorphisms exist, but if they do,
they must satisfy the given formulas. Moreover, the automorphisms are unique
since they are specified on a generating triple.

(24)

Type symmetry θ(a), θ(b), θ(c)
I ψp a−1, c−1b−1c, c−1

I ψq a−1, b−1, a−1c−1a
I ψr b−1a−1b, b−1, c−1

II.a ψs b−1, a−1, c−1

II.b ψt c−1, b−1, a−1

II.c ψu a−1, c−1, b−1

Table 2. Formulas for standard involutions

3.2.1. Companion Symmetries. In the specific case that ψ = ψq, the reflection in
the q edge of the master tile, G∗ = 〈q,G〉 and contains the reflections p = qa−1

and r = qb. More generally, assume that ψ is a symmetry normalizing G and that
ψ′ ∈ G∗ − G. As G has index 2 in G∗, then ψ′ = ψg for some g ∈ G and ψ′ is
anticonformal. If ψ′ is involutary then 1 = ψgψg = θ(g)g so that

(25) θ(g) = g−1.

This allows us to identify all the symmetries in G∗ once we know the associated
automorphism θ. Any two symmetries in G∗ have the same quotient symmetry so
they are of the same type. On the other hand if two symmetries ψ,ψ′ have the
same type, then ψψ′ is the identity and so ψ′ = ψg for some g ∈ G. We formalize
these observations in a definition.

Definition 3.3. Let G have a triangular action on S and suppose that ψ,ψ′ are two
symmetries normalizing the action of G. Then we say that ψ and ψ′ are companion
symmetries if they have the same type.

The following is easily proven, so we leave it to the reader.

Proposition 1. Let G have a triangular action on S and suppose that ψ,ψ′ are two
symmetries normalizing the action of G. Then ψ and ψ′ are companion symmetries
if and only if either of the following hold

(1)

〈ψ,G〉 = G∗ψ = G∗ψ′ = 〈ψ′, G〉

(2)

ψ′ = ψg for some g ∈ G such that ψgψ = g−1.

Since equation (25) is important we are going to define two important quantities
for an automorphism θ of G :
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(1) Inverted elements of θ :

IG(θ) =
{
g ∈ G : θ(g) = g−1

}
.

We call IG(θ) the set of inverted elements of θ. We also have the related
set.

(2) Centralizer of θ :

ZG(θ) = {g ∈ G : θ(g) = g} .

The centralizer ZG(θ) is a subgroup of G though IG(θ) typically is not. The fol-
lowing remark gives some properties of IG(θ) and related sets.

Remark 3.2. For θ ∈ Aut(G) and an integer e let

E(θ, e) = {g ∈ G : θ(g) = ge} ,
an analogy to eigenspaces. The set of inverted elements IG(θ) = E(θ,−1), and
ZG(θ) = E(θ, 1). Though E(θ, e) need not be a subgroup unless e = 1, or G is
abelian, it does have some interesting structure:

(1) If g ∈ E(θ, e) then eo(θ) = 1 mod o(g).
(2) If g ∈ E(θ, e) then gt ∈ E(θ, e) for all t, and 〈θ〉 n 〈g〉 forms group with

presentation 〈x, y : xm = yn = 1, yx = ye〉 with m = o(θ), n = o(g), and
em = 1 modn. If θ is involutary then 〈θ〉n 〈g〉 is dihedral.

(3) If g, h ∈ E(θ, e) and g and h commute then gh ∈ E(θ, e).
(4) For e = −1, θ(h)gh−1 ∈ E(θ,−1) for all g ∈ E(θ,−1) and h ∈ G.
(5) For g ∈ E(θ,−1), θ(g)gg−1 = g−1gg−1 = g−1.
(6) For g ∈ E(θ, e), h ∈ ZG(θ) we have hgh−1 ∈ E(θ, e).

We leave the proofs to the reader, we will only use E(θ, e) for e = ±1.

3.2.2. Conjugacy classes of symmetries. The group G acts by conjugation upon
symmetries normalizing G, and preserves the type of the symmetry. To see this let
ψ be a symmetry normalizing G and θ its automorphism. Any other symmetry,
normalizing G, with the same type as ψ, has the form ψg for a g ∈ G satisfying
θ(g) = g−1. Then, for h ∈ G, hψgh−1 certainly normalizes G, and

(26) hψgh−1 = ψψhψgh−1 = ψθ(h)gh−1.

From item 4 of Remark 3.2, θ(h)gh−1 ∈ IG(θ), so that ψg and hψgh−1 are com-
panions of ψ, and all three symmetries have the same type.

If only θ is known the formula on IG(θ) is

(27) g → θ(h)gh−1 = h · g

The map (h, g) → h · g is a left action on G and, as noted, g ∈ IG(θ) ⇒ h · g ∈
IG(θ). We call the action θ-twisted conjugation. We summarize the forgoing as a
proposition.

Proposition 2. Let G have a triangular action on S. Then conjugation by G
permutes the symmetries normalizing G of the same type among themselves. Let ψ
be such a symmetry and θ its automorphism. Then there is a bijection between the
G-conjugacy classes of the companions of ψ and the θ-twisted conjugacy classes on
IG(θ) induced by

(28) hψgh−1 → ψθ(h)gh−1.
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Example 3.7. We look for a local criterion to guaranteeing conjugacy among p, q
and r. From Remark 2.2 we see that pq = a, q = pa, and pap = a−1. If a has odd
order then u−2 = a has a solution in 〈a〉. Applying the formulas above we see that

upu−1 = ppupu−1 = pu−1u−1 = pa = q,

and so p and q are automatically conjugate. Similar remarks apply to b and c. Thus,
for instance, for Hurwitz actions with signature (2, 3, 7), q and r are conjugate and
r and p are conjugate and hence so are p and q. So, there is only one class of Type
I symmetries with fixed points.

Remark 3.3. We shall see later in Theorems 2 and 3, that the conjugacy classes
of symmetries on S are in 1-1 correspondence with the G orbits in IG(θ) under
the action given in (27). In the Type I case, the element 1 = Id(G) determines
the standard symmetry ψq determined by the master q-kite. Hence the orbit G · 1
corresponds to symmetries defined by q-kites. Likewise G ·(a−1) and G ·b determine
the symmetries defined by p-kites and r-kites. Thus a Type I symmetry ψ = ψqg
has fixed points if and only if

g ∈ G · 1 ∪G · (a−1) ∪G · b.
In the Type II.a case ψ has fixed points if and only if ψ = ψsg is conjugate to ψs,
i.e., and only if

g ∈ G · 1.

3.2.3. Symms(G) and inner automorphisms. We may analyse potential symme-
tries and their conjugacy relations without actually knowing if there are symme-
tries normalizing the G-action! We construct the following subset of the holomorph
Aut(G) nG.

(29) Symms(G) =
{

(θ, g) ∈ Aut(G)×G : θ2 = 1, θ(g) = g−1
}
.

For a fixed θ, the set
{

(θ, g) : θ(g) = g−1
}

is called the θ-slice of Symms(G). The
set Symms(G) captures all normalizing symmetries on surfaces with G action, by
means of the map ψg → (θ, g). Note that Aut(G) acts upon Symms(G) via the
formula ω · (θ, g) = (ωθω−1, ω(g)).

To be perfectly clear, we define the holomorph of G to be group of self maps of
G generated by Aut(G) and the left translations Lg : x → gx. The multiplication
is determined by:

(ω1, g1) · (ω2, g2) = ω1 ◦ Lg1 ◦ ω2 ◦ Lg2
= ω1 ◦ ω2 ◦ ω−12 ◦ Lg1 ◦ ω2 ◦ Lg2
= ω1 ◦ ω2 ◦ Lω−1

2 (g1)
◦ Lg2

=
(
ω1 · ω2, ω

−1
2 (g1) · g2

)
.

Inner automorphisms. We now state and prove a proposition on inner symme-
try automorphisms which extends a proposition in [6] on Hurwitz groups whose
symmetry automorphism is inner.

Proposition 3. Suppose that G has trivial center and is not isomorphic to a di-
hedral group. Also suppose that G has a triangular action on a surface S that has
a symmetry normalizing the G action. Suppose that the symmetry automorphism
θ = Adv is inner, but not trivial. Then v ∈ IG(θ) and corresponds to a fixed point
free symmetry.
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Proof. Since Adv2 = Ad2v = θ2 = 1 then v2 lies in the center of G and so is trivial,
forcing v = v−1. Now θ(v) = v(v)v−1 = v = v−1, and so v ∈ IG(θ). The G-orbit of
v under the θ-twisted conjugation is:

G · v =
{
θ(h)vh−1 : h ∈ G

}
=
{
vhv−1vh−1 : h ∈ G

}
= {v}.

By Remark 3.3, the companion symmetry corresponding to v will have fixed points
if an only if v ∈ G ·1∪G ·a−1∪G · b in the case of a Type I symmetry and v ∈ G ·1
in the case of a Type II symmetry. If v ∈ G · 1 then v = 1 contradicting that θ is
not trivial. If v ∈ G · a−1 then a−1 = v and G = 〈v, b〉. But, as vbv = b−1, G is
dihedral, another contradiction. The case v = b is similar. �

3.3. Existence criteria for normalizing symmetries. In this subsection we
recall a theorem of Singerman [20] on the existence of symmetries derived from the
group structure of G. First a remark on permuting the signature and generating
triple.

Remark 3.4. Note that

(1) The triple (b, c, a) is an (m,n, l) generating triple for a G action and like-
wise for the pair (c, a, b) and (n, l,m). The permutations are achieved by
relabelling the vertices of the master tile in an orientation preserving way.
The constructed surfaces are the same.

(2) Also (b, a, a−1ca) is an (m, l, n) triple, (c, b, b−1ab) is an (n,m, l) triple, and
(a, c, c−1bc) is an (n, l,m) triple for the same G action. These permutations
are found by using one of three reflected neighbours of the master tile for
a new master tile. The constructed surfaces are the same.

We will use these observations to shorten the statements of some theorems and to
shorten the Magma search.

Here is the theorem of Singerman [20] written in the context of our paper.

Theorem 1. Suppose that G has an (l,m, n) action on a surface S, defined by
a generating triple (a, b, c) and the epimorphism (10). Then S has a symmetry
normalizing the G action if and only if for some permutation of (l,m, n) and (a, b, c)
as in Remark 3.4, at least one of the following occurs.

(1) There is an automorphism θ1 of G that satisfies

(30) θ1(a) = a−1, θ1(b) = b−1.

In this case, there is a Type I standard symmetry ψ1 on S, that induces θ1
by conjugation: θ1(g) = ψ1gψ1. Moreover, the reflections in the edges p, q,
and r are globally defined on S, in particular, ψ1 = ψq. A symmetry ψ on
S is a symmetry of Type I on S if and only if ψ = ψ1g for some g ∈ G
such that θ1(g) = g−1.

(2) We have m = l and there is an automorphism θ2 of G that satisfies

(31) θ2(a) = b−1, θ2(b) = a−1.

In this case, there is a Type II.a symmetry ψ2 that induces θ2 by conjuga-
tion: θ2(g) = ψ2gψ2. The symmetry ψ2 = ψs, where s is the bisector of the
master rhombus. There are similar statements for symmetries of Type II.b
and II.c
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Remark 3.5. Here is a proof sketch for Type I symmetries, the proof for Type II
symmetries is similar. Using covering space methods and the fundamental group

π1(Ĉ− {0, 1,∞}), we may lift the quotient symmetry ψ on Ĉ to a symmetry ψ̃ of
H such that

ψ̃Aψ̃ = A−1 and ψ̃Bψ̃ = B−1.

By hypothesis we have

η(ψ̃Aψ̃) = a−1 = θ ◦ η(A)

η(ψ̃Bψ̃) = b−1 = θ ◦ η(B)

and so θ ◦ η = η ◦ Adψ̃. The kernels of η, θ ◦ η, and η ◦ Adψ̃ all equal Π, and so ψ̃

normalizes Π. Thus ψ̃ descends to a symmetry ψ on S which covers ψ.

Remark 3.6. Let all notation be as above. We note the following for future use.

(1) The standard automorphisms θ1, θ2 satisfy θ21 = Id, θ22 = Id. They are
involutary, i.e., exact order 2, except in the case of the signature (2, 2, n)
for a dihedral action on the sphere. So, except in this case, we will call
θ1, θ2 standard involutions.

(2) An involution θ ∈ Aut(G) that satisfies θ(a) = b−1 automatically satisfies
θ(b) = a−1.

(3) If ω ∈ Aut(G) and we choose (a′, b′, c′) = (ω(a), ω(b), ω(c)) for our gen-
erating triple we get the same surface S, as noted in Remarks 2.3 and
2.4. The automorphisms in theorem θ1 and θ2 are then replaced by θ′1 =
ωθ1ω

−1 and θ′2 = ωθ2ω
−1. They are the standard automorphisms with

respect to (a′, b′, c′). If θ′1 = θ1 or θ′2 = θ2 then ω ∈ Cent(Aut(G), θ1),
ω ∈ Cent(Aut(G), θ2), respectively.

(4) If ψ, the symmetry on the quotient, lifts to a symmetry ψ on S then we get
the same set of symmetry lifts of ψ on the common surface S determined
for (a, b, c) and (a′, b′, c′).

Remark 3.7. By items 1, 3, and 4 of the previous Remark we may find all sym-
metries of all triangular actions of G by selecting a representative θ from each
conjugacy class of involutions in Aut(G) and then finding all generating triples
that satisfy the symmetry equations (30) and (31). We may further have to select
Aut(G) representatives of the generating triples found. We can skip θ = Id since
this only give us dihedral actions on the sphere.

Lemma 4. Let the hypotheses be as in Theorem 1, suppose that ψ is a symmetry
of Type I, and that the automorphism θ = θ1 is given as in (30). Then there is a
g ∈ G satisfying ψ = ψqg, with θ(g) = g−1. The mirror Mψ is non-empty if and
only if one of the following equations has a solution for one of u, v, w ∈ G.

θ(u)a−1u−1 = g(32)

θ(v)v−1 = g(33)

θ(w)bw−1 = g(34)

Again, let the hypotheses be as in Theorem 1, but now assume that ψ is a sym-
metry of Type II.a, and that the automorphism θ = θ2 is given as in (31). Then
there is a g ∈ G satisfying ψ = ψsg, with θ(g) = g−1. The mirrorMψ is non-empty
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if and only if the following equation has a solution for x ∈ G,

(35) θ(x)x−1 = g.

We can get a stronger result on symmetries for odd order groups, which gener-
alizes our observations about Fermat curves.

Proposition 4. Let ψ be a symmetry normalizing the triangular action of an odd
order group G. Then ψ must have fixed points.

Proof. The symmetry ψ belongs to the tightly normalizing family of symmetries{
ψ′ : ψ′ = ψ

}
. This family has a representative ψ0 with fixed points and symmetry

involution θ0. Because the family is tight, ψ = ψ0g for some g ∈ IG(θ0). For h = ge,

hψh−1 = ψ0θ0(ge)gg−e = ψ0g
1−2e.

Since G has odd order there is an e such that 1 = 2e mod o(g). For this e, ψ =
h−1ψ0h and so ψ has fixed points. �

3.4. Unorientable surfaces with (l,m, n) tilings. As discussed in the introduc-
tion, it is well known that every unorientable surface, without boundary, has the
form M = S/〈ψ〉 where S is an orientable surface and ψ is a fixed point free sym-
metry. Since ψ is an isometry then, M inherits a constant curvature geometry,
which will be hyperbolic in the cases of interest. As we will see in Sections 4 and 5
and the tables in Section 7, there are quite a few fixed point free symmetries.

Every symmetry normalizing the G action has a factorization ψe ◦ ε(g) where ψe
is a reflection in a segment e, which is either an edge of a tile or rhombus bisector.
Both of the factors preserve the tiling on S so ψ must also preserve the tiling. Thus
the tiling on S descends to a tiling on S/〈ψ〉.

Now let us find the isometries of M . Each element h ∈ ZG(ψ) = ZG(θ) of the
centralizer defines a quotient isometry h of M , so we know a piece of the isometry
group of M . Computing ZG(θ) is a step in the process of finding symmetries, so
that it won’t be an extra calculation. We can push this a bit further by looking
at the full centralizer Zfull = {h ∈ Aut(S) : hψ = ψh} which could be bigger. By

standard covering space arguments, if h is the identity then h is the identity. Thus
Zfull embeds as a subgroup of the isometry group of M .

To get the full isometry group of M we work as follows. Any isometry on M lifts
to an isometry on S, that commutes with ψ. This group is 〈ψ,Zfull〉 = 〈ψ〉×Zfull.
Since ψ acts trivially on M then Zfull is the full isometry group of M .

4. Symmetries for abelian action groups

4.1. Abelian group examples.

Example 4.1. Abelian Groups. If ψ is a symmetry of Type I, then the automor-
phism θ induced by q must be the inversion map g → g−1. It follows that every
element ψ = ψqg, g ∈ G is a symmetry of Type I since (25) holds for all g ∈ G.

Now, let us look at Fermat curves where we have explicit equations for the
surfaces.

Example 4.2. We examine the Fermat curve with equation xn + yn = 1. The
group G = Z2

n (additive) acts on S by

(36) (u, v) · (x, y) =
(

exp
(

2πi
u

n

)
x, exp

(
2πi

v

n

)
y
)
.
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The finite fixed points of the action are the n points (0, ζ), ζn = 1 with stabilizer
〈a〉, a = (1, 0) and the n points (ζ, 0), ζn = 1 with stablizer 〈b〉, b = (0, 1). At infin-
ity, the points are the projective limits of xn + yn = 0, i.e., the lines y = ϑx where
ϑn = −1, there are n of these. The element c = (−1,−1) multiplies the x and y
coordinates by the same number and so the lines and their projective limits are sta-
bilized by 〈c〉. A generating triple for the action is (a, b, c), the signature is (n, n, n),

and the genus of S is (n−1)(n−3)
2 . Now define the symmetry ψ : (x, y)→ (x, y). By

direct calculation, the induced automorphism of G is θ : (u, v)→ (−u,−v), so ψ is
of Type I.

Example 4.3. The same example as above, except that the symmetry is ψ :
(x, y)→ (y, x) and θ (u, v)→ (−v,−u), and we have a Type II symmetry.

Example 4.4. Now pick a variant of the Fermat curve given by xn + yn = −1.
For even n the real curve is empty. However, the two variants of the curve are
isomorphic over C since the transformation (x, y)→ (λx, λy) transforms the curve
xn + yn = 1 to xn + yn = λn.

Example 4.5. Since the Fermat curve has both Type I and Type II symmetries
then G < Aut(S). Indeed, G is a normal subgroup and Aut(S)/G ∼ Σ3. The

transformations (x, y) → (y, x) and (x, y) →
(
ϑx
y ,

1
y

)
, ϑn = −1, generate the

action of Σ3.

4.2. Cyclic groups. Suppose that G is cyclic and has a generating triple (a, b, c)
with signature (l,m, n). Then, according to Harvey [15] this happens if and only if
|G| = lcm(l,m, n) = lcm(m,n) = lcm(l, n) = lcm(l,m) and the highest power of 2
dividing |G| divides exactly two of l,m, n.

A cyclic triangular surface always has an affine defining equation of the form

(37) yt = xt1(x− 1)t2(x+ 1)t3 ,

where

t = |G| , 1 ≤ t1, t2, t3 < t,(38)

t1 + t2 + t3 = 0 mod t,(39)

gcd(t1, t2, t3, t) = 1, gcd(t1, t) = l, gcd(t2, t) = m, gcd(t3, t) = n.(40)

With this model the group action is generated by (x, y) → (x, exp
(
2πi
t

)
y). The

quotient map S → Ĉ is defined by (x, y) → x, after the affine curve is projec-
tively completed and suitably desingularized. With this model, the quotient map is
branched over 0, 1 and −1 but not over infinity. However the action and exponents
are easier to analyze in the finite plane (See Remark 2.9).

The defining equation (37) has real coefficients and so there is a symmetry in-
duced by complex conjugation per Example 3.1. The action of this symmetry on
G is g → g−1 so it is a Type I symmetry.

Example 4.6. Type I symmetries For cyclic groups there are always symmetries
of Type I which must have the form ψ = ψqg, g ∈ G. According to Lemma 4 ψ will
have fixed points if and only if we can find one of u, v, w satisfying

u−1a−1u−1 = θ(u)a−1u−1 = g

u−2 = ag
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v−1v−1 = θ(v)v−1 = g

v−2 = g

w−1a−1w−1 = θ(w)bw−1 = g

w−2 = b−1g

If G has odd order then all three equations have solutions. The map sq : G → G,
g → g−2 is an isomorphism if G has odd order, otherwise it maps onto a subgroup
G2 of index 2. By the conditions on l,m, n exactly 2 of a, b, c lie in G − G2, and
hence at least one of a, b−1 lies in G−G2. By considering images in G/G2 it follows
that least one of ag, g, b−1g lies in G2, It follows then that ψ is a reflection in some
edge of the tiling and hence must have fixed points. This means that ψ is conjugate
to at least one of ψp, ψq, or ψr.

We know that the surface has a defining equation (37) with real coefficients so
complex conjugation is a symmetry. If t is odd then (37) has a solution for every
value of x. If t is even, then at least one of t1, t2, t3 is odd, so the righthand side
of (37) changes sign at least once, and set of real points is non-empty.

In the next two examples we determine Type II symmetries.

Example 4.7. Type II symmetries, G = Z12. Now suppose that l = m. Us-
ing Harvey’s observations we see that |G| = l, and n divides l. The genus of S is
1
2

(
l − l

n

)
. We will start off with a detailed calculation of a small but illustrative ex-

ample, and then take up the general case in Example 4.8 following. So assume that
G = Z12 and consider the signatures (12, 12, 6), (12, 12, 3) and (12, 12, 2). There
are no triples with (12, 12, 12) and (12, 12, 4) signatures. The elements a and b lie
in {1, 5, 7, 11}, but we must throw out those triples with a = b−1 resulting in 12
generating triples. The automorphism group of G is Z∗12 = {1, 5, 7, 11}, acting by
multiplication. Thus there are three classes, one for each signature.

For the remainder of the example we will use the additive notation for G. Below
we have a table of signatures, generating triples, allowable symmetries of Type
II, and the enabling automorphisms. The notation mα indicates the operation of
multiplication by α, mα : z → αz. The automorphism θ2 is the automorphism of
Type II.a in Theorem 1. The last two columns are explained below.

Signature (a, b, c) Genus of S Type II? θ2 Gα−1 Gannα+1

(12, 12, 6) (1, 1, 10) 5 yes m11 2Z12 Z12

(12, 12, 3) (1, 7, 4) 4 yes m5 4Z12 2Z12

(12, 12, 2) (1, 5, 6) 3 yes m7 6Z12 3Z12

Table 3: Type II symmetries for Z12

Let us analyze Symms(G). The operations of the holomorph of G may be
realized as affine linear maps z → αz+β where α ∈ Z∗12 and β ∈ Z12. For elements
of Symms(G) we must have:

(41) α2 = 1, (α+ 1)β = 0.

A conjugation operation by an x ∈ G has the form z → α(z − x) + β + x =
αz + β − (α − 1)x. Since we wish to transform z → αz + β to z → αz we need to
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solve

(42) (α− 1)x = β, given (α+ 1)β = 0

In the last two columns we record the two subgroups

(43) Gα−1 = {(α− 1)x : x ∈ G}

(44) Gannα+1 = {β ∈ G : (α+ 1)β = 0}

In all cases Gα−1 ⊂ Gannα+1. It is not hard to show that the conjugacy classes of
Type II symmetries correspond to the cosets Gannα+1/Gα−1. There are two cosets,
and so there is one class of companion symmetries, one with ovals and the other
without ovals. Note that the three different values of α correspond to symmetries
on surfaces of different genera.

Now onto the general cyclic case.

Example 4.8. Type II symmetries - general case. We can extend the analysis
to the general case G = Zt as follows. As noted in the previous example, the
signatures are of the form (l, l, n) where l = t = |G| and n divides l. The numbers
a, b are generators and so lie in Z∗t and there φ(t) choices for each. The number
c = (ab)−1 cannot be trivial so the selection b = a−1 is not allowed. This leaves
us with φ(t)(φ(t)− 1) triples. Since Aut(G) = Z∗t acts without fixed points on the
generating triples, and |Aut(G)| = φ(t), there are φ(t)− 1 classes.

As in the last example we switch to additive notation for G and affine linear
maps z → αz + β to represent holomorph operations. The maps must satisfy (41).
Now suppose that α ∈ Z∗t − {1}, satisfies α2 = 1 and consider the generating
triple (1,−α, α − 1). The effect of mα is (1,−α, α − 1) → (α,−α2, α(α − 1)) =
(α,−1, 1 − α). This satisfies the equations (31) for a Type II.a symmetry. Note
that every generating triple is Aut(G)-equivalent to one of the form (1,−α, α− 1),
where α ∈ Z∗t − {1}. Thus we have captured all of the possible Type II symmetry
automorphisms and generating triples.

The elements α ∈ Z∗t satisfying α2 = 1 form an elementary abelian 2-group.
Thus the number of surfaces with Type II.a symmetry is 2k − 1 for some k. Since
|Z∗t | = φ(t) is even, then there is at least non-trivial involution, 2k − 1 > 0, and at
least one surface has a Type II.a symmetry.

To analyze companion symmetries, we proceed as in the previous example, and
define the subgroupsGannα+1 andGα−1. We have (α+1)(α−1)x = (α2−1)x = 0, since
α is an involution, and so Gα−1 ⊆ Gannα+1. The group Gannα+1/Gα−1 is a subquotient
of a cyclic group and so is also cyclic, we shall show that its order ie 2 or 1. If
β ∈ Gannα+1 then

2β = (α+ 1)β − (α− 1)β = −(α− 1)β ∈ Gα−1.

It follows that 2 annihilates the cyclic group Gannα+1/Gα−1, so its order must be 1 or
2.

If G is odd then Gannα+1/Gα−1 has odd order, and so must be trivial since it is
annihilated by the invertible element 2. It follows that in the odd case for a given
involution α there is a single conjugacy class of Type II.a symmetries and they all
have fixed points.

The even case is more complex. Let us show how to directly compute |Gannα+1/Gα−1|.
We need the following for γ ∈ Zt:
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• |Gγ | = t
gcd(t,γ) , and

• |Gannγ | = gcd(t, γ).

We then get:

(45)
∣∣Gannα+1/Gα−1

∣∣ =
gcd(α+ 1, t) gcd(α− 1, t)

t
.

The number of standard and fixed point free Type I symmetries for various cyclic
groups are given in Table 4 below.

The example above is worth stating as a Proposition, whose proof is already
given.

Proposition 5. Let G ' Zt be a cyclic group, and identify its holomorph with Z∗tn
Zt the group of affine linear transformations

Z∗t n Zt ∼ {(α, β) ∈ Z∗t n Zt : z → αz + β} .

Suppose that α, β satisfy α2 = 1, α 6= 1, αβ = −β. Then:

• The triple (1,−α, α− 1) is a generating triple for a triangular G action on
a surface S.
• The signature of the action is (l, l, n) where l = |G|, n = gcd(t, α− 1) and
S has genus 1

2

(
l + l

n

)
.

• The automorphism mα : z → αz is a standard Type II.a automorphism for
the generating triple (1,−α, α− 1).
• For t > 2, the number of involutions is 2k − 1 for some integer k > 0.
• The number of G-conjugacy classes of Type II.a symmetries equals

∣∣Gannα+1/Gα−1
∣∣

given in (45) and must equal 1 or 2.
• If

∣∣Gannα+1/Gα−1
∣∣ = 1 then there is exactly one class of Type II.a symmetries,

which must have ovals.
• If

∣∣Gannα+1/Gα−1
∣∣ = 2 then there are two classes of Type II.a symmetries,

one with ovals and the other without ovals.
• If t is odd then

∣∣Gannα+1/Gα−1
∣∣ = 1

• If t is even then
∣∣Gannα+1/Gα−1

∣∣ = 1 or 2. Both numbers are possible.
• There are no other Type II.a symmetries.

In Table 4, the column #SS is the number of standard symmetries which also
is the number of involutions. The column #FPF is the number of fixed point free
symmetries, and the column “total” is the sum of the preceding two columns. Un-
doubtedly, the general case can be analysed in term of the prime power factorization
of t. For instance, it appears that the integer k is the number of different primes
in the factorization. Though an interesting topic, this problem is beyond the scope
of this paper.
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|G| #SS #FPF total
4 = 22 1 1 2
8 = 23 3 1 4
16 = 24 3 1 4
6 = 2 · 3 1 1 2
12 = 22 · 3 3 3 6
24 = 23 · 3 7 3 10
48 = 24 · 3 7 3 10
30 = 2 · 3 · 5 3 3 6
60 = 22 · 3 · 5 7 7 14
120 = 23 · 3 · 5 15 7 22
240 = 24 · 3 · 5 15 7 22

Table 4. Type II.a symmetries for cyclic groups

5. Non-abelian groups of order pq

We give a detailed analysis of triangular actions and symmetries of non-abelian
groups of order pq. We study these examples since they are uncomplicated examples
of non-abelian group actions. The groups were extensively studied by Wolfart
and Streit in [22] in the context of dessins d’enfant. In [8] they were studied as
automorphism groups of surfaces S whose quotient is a torus with one branch point.
The criterion for these groups to have such an action is identical to the criterion
which prevents these groups from having Type 1 symmetries. Though these groups
have no Type I symmetries the do have Type II symmetries.

5.1. Definition and properties of pq groups. Let p < q be two primes such
that p divides q − 1. Most of our results are intended for p > 2. It is well known
that there is exactly one isomorphism class of non-abelian groups of order pq, all
isomorphic to Zp n Zq. We shall call such groups (non-abelian) pq groups. A pq
group G has a presentation

(46) G = 〈x, y : xp = yq = 1, yx = yr〉 ,

where 1 < r < q and rp = 1 mod q. The non-trivial elements comprise (p − 1)q
elements of order p and q−1 elements of order q. The subgroup 〈y〉 is a characteristic
subgroup.

The order of the automorphism group Aut(G) is q(q − 1), consisting of the
products UuVv, 0 ≤ u < q, 1 ≤ v < q, where Uu : x → xy

u

= xyu−ru, y → y and
Vv : x → x, y → yv. This is easily established once it is shown that Aut(G) acts
trivially on G = G/ 〈y〉, according to Lemma 5 following.

Lemma 5. Let G be a non-abelian pq group as given in (46). Then, Aut(G) acts
trivially on G = G/ 〈y〉.

Proof. Suppose ω ∈ Aut(G) satisfies ω(x) = xtyk, ω(y) = ys where t and s have
multiplicative inverses mod p and q respectively and t 6= 1 mod p. Then as
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ω(yx) = ω(yr) we must have;

y−kx−tysxtyk = yrs,

(x−tyxt)s = (yr)s,

yr
t

= yr.

Thus rt = r mod q and since r 6= 0, then rt−1 = 1 mod q. If t > 1 then, 1 =
gcd(t − 1, p) = u(t − 1) + vp for some integers u and v, and r = ru(t−1)+vp =(
r(t−1)

)u
(rp)

v
= 1 mod q. But, r 6= 1 mod q, a contradiction. �

5.2. Triangular actions and signatures of pq groups. We now determine all
the triangular actions of G. If (a, b, c) is a generating triple for G then the quotient
triple (a, b, c) for G must have or two or three elements of order p. This implies the
(l,m, n) must be some permutation of (p, p, p) or (p, p, q).

Example 5.1. Actions with signature (p, p, q). A general (p, p, q) triple has the
form (xu1yv1 , xu2yv2 , yv3), where ui 6= 0 mod p and v3 6= 0 mod q. By considering
the quotient triple (a, b, c) we see that u2 = −u1 mod p. Noting that

(47) yvxu = xuyr
uv,

we have:

1 = abc = xu1yv1x−u1yv2yv3(48)

= xu1x−u1yv1r
−u1

yv2yv3

= yv1r
−u1

yv2yv3 .(49)

Thus, r−u1v1 + v2 + v3 = 0 mod q. There are p− 1 selections for u1, and once u1
is chosen, v2 and v3 may be chosen in q(q − 1) ways. Then, v1 = −ru1(v2 + v3)
is uniquely determined, and the total number of generating triple classes is (p −
1)q(q − 1)/q(q − 1) = (p− 1).

Example 5.2. Actions with signature (p, p, p). A general (p, p, p) triple has the
form (xu1yv1 , xu2yv2 , xu3yv3), where ui 6= 0 mod p. A calculation similar to (48)
shows that

1 = abc = xu1yv1xu2yv2xu3yv3(50)

= xu1yv1xu2+u3yr
u3v2yv3

= xu1+u1+u3yr
(u2+u3)v1yr

u3v2yv3

Thus

(51) u1 + u2 + u3 = 0 mod p,

and

(52) r(u2+u3)v1 + ru3v2 + v3 = 0 mod q.

There are (p−1)2 selections for u1, u2 except that we have to remove the selections
where u2 = −u1 mod p which are p− 1 in number. We end up with (p− 1)(p− 2)
solutions for (u1, u2, u3). We may freely pick v1 and v2, but then v3 is fixed. Thus
we have a total of (p − 1)(p − 2)q2 triples, though not all triples generate G. If
(a, b, c) fails to generate G then it generates one of the q Sylow p subgroups of
G. By a previous calculation, each of the Sylow subgroups has (p − 1)(p − 2)
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generating triples with signature (p, p, p) and so we must subtract (p − 1)(p − 2)q
from (p− 1)(p− 2)q2 to get (p− 1)(p− 2)q(q − 1) generating triples. This give us
(p− 1)(p− 2) Aut(G) classes of triples.

5.3. Involutions in Aut(G). For our work on symmetries we need to determine
the involutions in Aut(G). We state the result as a Lemma.

Lemma 6. Let G be a non-abelian pq group as given in (46). Then the involutions
θ ∈ Aut(G) have the form

(53) θ(x) = xyt, θ(y) = y−1,

where 0 ≤ t < q. There are q such involutions, and they form a single conjugacy
class in Aut(G). The centralizer of the involution, of order q − 1, is the group
{Vv, 1 ≤ v < q}, where Vv : x→ x, y → yv.

Proof. Let θ ∈ Aut(G) be an involution. By Lemma 5 we must have θ(x) = xyt,
for some t satisfying 0 ≤ t < q. Since 〈y〉 is characteristic in G, then θ(y) = ye, for
some e satisfying 1 ≤ e < q. We obtain

x = θ2(x) = θ(xyt) = xytyet = xyt(1+e)

y = θ2(y) = θ(ye) = ye
2

.

From the first equation, t(1 + e) = 0 mod q, so one of t = 0 mod q or e = −1 mod q
must hold. By the second equation e2 = 1 mod q and thus e = ±1 mod q. If
e = 1, then t = 0 and we get the identity. Otherwise e = −1 mod q. The proposed
automorphisms preserve the relations in G :

θ(x)p =
(
xyt
)p

= 1,

θ(y)q =
(
y−1

)q
= 1,

θ(x−1yx) = y−tx−1y−1xyt = y−ty−ryt = y−r = θ(yr)

Since t can be arbitrary, we have q involutions. To prove the statement on the
involutions forming a conjugacy class we use conjugation by yv : g → y−vgyv,
namely we consider the automorphism g → yvθ(y−vgyv)y−v. We compute

yvθ(y−vxyv)y−v = yvyvxyty−vy−v = xy2rv+t−2v

yvθ(y−vyyv)y−v = y−1

As we cycle v through 0 ≤ v < q the new exponent t + 2(r − 1)v cycles through
the same range. The centralizer statement is easily proven by direct computation.
The centralizer size comes from this calculation:

q(q − 1) = |Aut(G)| =
∣∣∣θAut(G)

∣∣∣ |Cent(θ,Aut(G))| ,

valid for any θ ∈ Aut(G). The posited centralizer has the right size and is easily
verified to lie in the centralizer by direct computation. �

5.4. Symmetries for pq groups. We first note that there are no Type I symme-
tries for pq groups, p > 2. Indeed, if there are Type I symmetries then the symmetry
automorphism must be the map g → g−1 on G/ 〈y〉. But this contradicts Lemma
5 unless p = 2.

So now we search for Type II.a symmetries. By Remark 3.7 and Lemma 6 we
need only consider the involution θ : x→ x, y → y−1. Using previous calculations,
a general generating triple has the form (a, b, c) = (xu1yv1 , xu2yv2 , xu3yv3) with
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the restrictions given in (51) and (52). The θ transform of (a, b, c) is θ · (a, b, c) =
(xu1y−v1 , xu2y−v2 , xu3y−v3). Thus, we must have:

xu1y−v1 = θ(a) = b−1 = yv2x−u2 = x−u2yv2r
−u1

.

It follows that u2 = −u1, u3 = 0, and v1 = −ru2v2, and that the signature is
(p, p, q). Putting the first two restrictions into (52) we get

ru2v1 + v2 + v3 = 0 mod q,

(1− r2u2)v2 + v3 = 0 mod q.

v2 = −(1− r2u2)−1v3

As long as r2u2 6= 1 mod q and v3 6= 0 mod q we will have a θ compatible generating
triple. Since r has order p mod q then we only need u2 6= 0 mod p. There are
(p− 1)(q − 1) such solutions

(a, b, c) = (x−u2yw1 , xu2yw2 , yv3)

where w2 = −(1− r2u2)−1v3, w1 = ru2(1− r2u2)−1v3. Applying the centralizer of θ
to the collection of (a, b, c), we see that each class can be identified by u2 and we can
say that v3 = 1. Thus every (p, p, q) action has at least one Type II.a symmetry.

6. Extra symmetries when G 6= Aut(S)

Throughout most of this paper we analyzed tightly normalizing families of sym-
metries, normalizing a triangular action. We now consider two different cases of
extra symmetries. We shall just give examples and not perform a comprehensive
analysis. As discussed previously, we will need a portion of Singerman’s list, in
a format suitable for the context of this paper, see Table 4 below. In the table,
the Case column indicates a normal inclusion with and N (first three) and non-
normal inclusion by NN (last 11). The column labeled divisible will be discussed
later. There are restrictions on d, e to yield hyperbolic surfaces, they are given in
Singerman’s paper [19].

Case (l,m, n) (l′,m′, n′) index divisible
N1 (d, d, d) (2, 3, 2d) 6 yes
N2 (d, d, d) (3, 3, d) 3 no
N3 (d, d, e) (2, d, 2e) 2 yes
NN1 (7, 7, 7) (2, 3, 7) 24 yes
NN2 (4, 8, 8) (2, 3, 8) 12 yes
NN3 (9, 9, 9) (2, 3, 9) 12 no
NN4 (3, 8, 8) (2, 3, 8) 10 no
NN5 (2, 7, 7) (2, 3, 7) 9 no
NN6 (3, 3, 7) (2, 3, 7) 8 no
NN7 (4, 4, 5) (2, 4, 5) 6 no
NN8 (d, 4d, 4d) (2, 3, 4d) 6 yes
NN9 (d, 2d, 2d) (2, 4, 2d) 4 yes
NN10 (3, d, 3d) (2, 3, 3d) 4 yes
NN11 (2, d, 2d) (2, 3, 2d) 3 yes

Table 5 - Triangle group inclusions
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6.1. Actions with multiple types of normalizing symmetries. Suppose that
the action of G on S is normalized by two or more symmetries ψ1, . . . , ψk such
that ψiψj 6∈ G for i 6= j. (We will only need k = 2, 3.) Then, ψiψj is a conformal
automorphism of S normalizing G. It is easily shown that

〈G,ψ1, . . . , ψk〉 ∩Aut(S) = 〈G,ψ1ψ2, ψ2ψ3, . . . , ψk−1ψk〉 ,

and a normal inclusion of triangle groups, analogous to (16), is determined by

G C 〈G,ψ1ψ2, ψ2ψ3, . . . , ψk−1ψk〉 = H.

According to Singerman’s list in [19], the possible normal inclusions of triangle
groups are the first three cases in Table 5, namely:

Tl,l,n C T2,l,2n (index 2),

Tl,l,l C T3,3,l (index 3),(54)

Tl,l,l C T2,3,2l (index 6).

Example 6.1. As an example of the first case of inclusions we shall take ψ1 = ψs
and ψ2 = ψq. The geometry is described in Example 3.6. Since ψs, ψq are reflections
in perpendicular line segments, they commute, and hence x = ψsψq is a half turn
with a fixed point at q ∩ s. So H = 〈G, x〉, and we may write

H = 〈x〉nG, where xax = b, xbx = a, xcx = bcb−1.

using the known action of ψs and ψq. The rhombic bisector, s, splits the master tile
into two (2, l, 2n) triangles, one of which has bounding symmetries (ψs, ψq, ψr). By
the standard construction of a generating triple from a tile, we see that (x, b, (xb)−1)
is a generating triple for H.

The remaining examples have two different Type II boundary symmetries and
so the triangles must be equilateral.

Example 6.2. In the second case in (54) we choose ψ1 = ψs and ψ2 = ψt, boundary
symmetries of Type II.a and II.b. From (17) we see that the Type II.c symmetry
ψu also normalizes G. Now, ψs, ψt are reflections in line segments meeting at an
acute angle of π/3, and hence x = ψtψs is a counter-clockwise rotation of order 3
with fixed point at C0 = t ∩ s, the center of the master tile. So H = 〈G, x〉, with
semi-direct product structure:

H = 〈x〉nG, where xax−1 = b, xbx−1 = c, xcx−1 = a.

The conjugation action follows from the equations (18).
The union of the rhombus bisectors creates a tiling U on S, dual to T , which

is invariant under the group H∗ = 〈ψs, ψt, ψu〉 . A fundamental region for this
reflection group is the triangle bounded by these segments, that may be drawn in
Figure 1:

• the segment from vertex P ∈∆0 to the center C0, this segment is a portion
of the bisector t;
• the segment from C0 and qC0, the center of q∆0, this segment is a portion

of the bisector s; and
• the segment from qC0 to the vertex P , this segment is a portion of the

bisector ψq(t).
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The reflections in the sides of this (3, 3, l) triangle, in the order given are ψt,
ψs, and ψqψtψq. Using the relations (18), the resulting generating triple may be
computed: (x, x−1b−1, b),

Example 6.3. For the third inclusion in (54) let us select three symmetries: ψ1 =
ψq and ψ2 = ψs, ψ3 = ψu, boundary symmetries of Types I and II.a and II.c From
(17) and (18) we see that all six boundary symmetries are globally defined, and all
normalize G. From previous discussion x = ψqψs is a half turn with fixed point
= q ∩ s, and y = ψsψu is a counter-clockwise rotation of order 3 with fixed point
at C0 = s ∩ u. So H = 〈G, x, y〉, with these relations:

xax = b, xbx = a, xcx = bcb−1,(55)

yay−1 = b, yby−1 = c, ycy−1 = a.(56)

The union of the edges of the two tilings T and U , creates V, a tiling by (2, 3, l)
triangles which is invariant under the group H∗ = 〈ψq, ψs, ψu〉 . A fundamental
region for this reflection group is the triangle bounded by these segments:

• the segment from vertex R ∈∆0 to the midpoint of q,
• the segment from the midpoint of q to C0, and
• the segment from C0 back to R.

The reflections in the sides of this (2, 3, l) triangle, in the order given are ψq,
ψs, and ψu, and the resulting generating triple is (x, y, y−1x−1), using the relations
(18). The triple does generate H since

(xy)2 = (ψqψu)(ψqψu) = ψq(ψuψqψu) = ψqψp = a−1

and the action of x and y on G given in (55) and (56). Note that the tiling V refines
both of T and U

Example 6.4. Let us give a concrete example of the previous general example
using G = Zn×Zn, considered as an additive group, and with automorphism group
GL2(Zn). For our generating triple we pick a = (1, 0), b = (0, 1), c = (−1,−1). We
need to find matrices θq, θs, θu that act upon (a, b, c) as required by Table 2 (24).The
three matrices are:

θq =

[
−1 0
0 −1

]
, θs =

[
0 −1
−1 0

]
, θu =

[
−1 1
0 1

]
.

Of course this example is none other than the Fermat curve reduced to group
computations.

6.2. Actions with non-normalizing symmetries. Suppose that ψ is a symme-
try of S that does not normalize the G action. Then G < H = Aut(S) and the
signature of H must come from the third column of Table 4. Except in the case
of N2 and N3 with d = 2e, if the parameters d, e are chosen so that the signature
of G is hyperbolic, then the triangle for H must be scalene. Thus, with these two
possible exceptions ψ, must be Type I.

In Example 3.4 we produced a pair G < H corresponding to case NN1 where
some symmetries S normalized the G action and some did not. We also examined
a tiling of the plane by (2, 3, 7) triangles that tiled a (7, 7, 7) triangle. In this case
we say that the (7, 7, 7) tiling is divisible. All such divisible pairs of triangles were
found in [10], including pictures of the tile divisions. The fourth column of Table
5 indicates which pairs have divisible tilings (Type I only!). An analysis of each
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divisible tiling pair, similar to Example 3.4 could be carried out. Though the topic
is of interest a full analysis of all the cases is beyond the scope of this paper.

7. Search for orientable and unorientable surfaces with (l,m, n)
tilings

7.1. Symmetry search. We are going to answer questions 1, 2 and 3 (empty
mirrors) at the beginning of Section 3.1 for low genus surfaces. As a byproduct,
this will allow us to find unorientable surfaces with (l,m, n) tilings. Specifically,
when we classify the symmetries of surfaces with (l,m, n) actions of a small group
G, the fixed point free symmetries yield unorientable surfaces with (l,m, n) tilings.
So we will solve these problems: classify surfaces with small (l,m, n) action groups,
that have normalizing symmetries, classify the normalizing symmetries of these
surfaces, and build a collection of unorientable surfaces with (l,m, n) tilings.

In our search, instead of taking the genus σ to be a crude top level classifier, we
will use the order |G| of the action group G. Indeed, from the Riemann Hurwitz
equation we obtain

(57) σ = 1 +
|G|
2

(
1− 1

l
− 1

m
− 1

n

)
and

(58) |G| = 2σ − 2(
1− 1

l −
1
m −

1
n

) .
For hyperbolic surfaces we have 1

42 ≤
(
1− 1

l −
1
m −

1
n

)
< 1, the lower bound

achieved for (l,m, n) = (2, 3, 7) (Hurwitz bound) and the upper bound comes from
taking the limit as l,m, n → ∞. We get the bounds below for hyperbolic sur-
faces with triangular action group, showing that σ and |G| are comparable crude
classifiers:

1 +
|G|
84
≤ σ < 1 +

|G|
2
,

2(σ − 1) < |G| < 84(σ − 1).

In our “G first” approach to classification, we will adopt the following hierarchy
of classification, which will dictate the steps of our algorithms. We will make
substantial use of the Symms(G) construct.

(1) |G|,
(2) G itself,
(3) conjugacy classes of involutions in Aut(G),
(4) two separate processes for Type I and Type II symmetries,
(5) generating triples corresponding to an involution,
(6) analysis of companions including signature, surface genus, and fixpoint-free

status.

We are going to rephrase our previous work to set up our “G first” approach to
classification. We split our statement into two theorems one for Type I symmetries
and another for Type II symmetries.

Theorem 2. Let G be a finite group and let θ be an involution in Aut(G).
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(1) The involution θ is a symmetry automorphism of some Type I symmetry ψ
on a surface S of genus σ if and only if there is a generating triple (a, b, c)
in G with signature (l,m, n) satisfying

(59) θ(a) = a−1, θ(b) = b−1.

(2) The surface S may be constructed as in Remark 2.3. The signature of the
action is (l,m, n) = (o(a), o(b), o(c)) and the genus of S is given by is given
by (57).

(3) A second generating triple (a′, b′, c′) satisfying the analogous condition to
(59) defines an algebraically equivalent action of G on the same surface S
if and only if (a′, b′, c′) = ω · (a, b, c) for some ω ∈ Cent(Aut(G), θ).

(4) As in Remark 3.2, let IG(θ) =
{
g ∈ G : θ(g) = g−1

}
. Then generating

triples satisfying (59) are{
(a, b, c) : a, b ∈ IG(θ), c = (ab)

−1 6= 1, G = 〈a, b〉
}
.

(5) The G action on S is tightly normalized by the family of Type I symmetries
of S normalizing the G action.

(6) Let ψ0 be a Type I symmetry inducing θ. Every Type I symmetry ψ of S,
normalizing the action of G lies in 〈ψ0, G〉 and has a factorization of the
form ψ = ψ0g where g ∈ IG(θ). Furthermore, if g ∈ IG(θ) then ψ0g is a
Type I symmetry.

(7) For every h ∈ G, and g ∈ IG(θ) we have θ(h)gh−1 ∈ IG(θ). The map
(h, g)→ h · g = θ(h)gh−1 is a left action of G upon itself that maps IG(θ)
to itself. The G conjugacy classes of Type I symmetries are in 1-1 corre-
spondence to the orbits of this action upon IG(θ).

The next Theorem applies to Type II symmetries.

Theorem 3. Let G be a finite group and let θ be an involution in Aut(G).

(1) The involution θ is a symmetry automorphism of some Type II symmetry ψ
on a surface S of genus σ if and only if there is a generating triple (a, b, c)
in G with signature (l,m, n) satisfying

θ(a) = b−1, θ(b) = a−1 and l = m,(60)

θ(a) = c−1, θ(c) = a−1 and l = n,(61)

θ(b) = c−1, θ(c) = b−1 and m = n.(62)

(2) Same as previous theorem.
(3) Same as previous theorem.
(4) If the signature is (l, l, n) with l 6= n, then the generating triples satisfying

(60) are{
(a, θ(a−1), c) : a 6= 1, c = θ(a)a−1 6= 1, G = 〈a, θ(a)〉

}
.

There are similar constructions for the cases (61) and (62).
(5) In the isosceles, non-equilateral case, the G action on S is tightly normalized

by the family of Type II symmetries of S normalizing the G action.
(6) Same as the previous theorem, replacing Type I with Type II.
(7) Same as the previous theorem.
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7.2. Magma search for (l,m, n) tilings of orientable and unorientable sur-
faces. Here are the steps of our search. We describe the steps in more detail after
listing the steps.

(1) Pick G and find Aut(G).
(2) Find conjugacy classes [θ] of involutions θ in Aut(G). We also include the

case [θ] = Id as this picks up dihedral actions on the sphere.
(3) For each class [θ] of involutions pick a representative θ and then compute

the inverted elements IG(θ) =
{
g ∈ G : θ(g) = g−1

}
and the centralizer

ZG(θ).
(4) Compute Xθ, the family of θ-compatible generating triples.

(a) For Type I symmetries use elements of a, b ∈ IG(θ), set c = (ab)−1,
and test that a, b, c 6= 1 and G = 〈a, b〉.

(b) For Type II symmetries use elements from G. Pick a ∈ G−〈1〉, define
b = θ(a−1), c = (ab)−1, and test that c 6= 1 and G = 〈a, b〉.

(5) Compute the orbits of ZG(θ) on Xθ in both cases above.
(6) For each representative (a, b, c) of an orbit found in the step above, compute

the signature (l,m, n) = (o(a), o(b), o(c)) and the genus of S, using formula
(57). In the Type I case, only record those triples for which (l,m, n) is
properly ordered.

(7) Compute the orbits of G on IG(θ) under the action h · g = θ(h)gh−1.

Notes on the steps

(1) For a comprehensive search, each group G should be selected from the
SmallGroup database. The automorphism group Aut(G) can be automat-
ically found by Magma. It is easier to perform computations for Aut(G)
using a Magma supplied faithful permutation representation ρ : Aut(G)→
Σw, for some suitable symmetric group.

(2) Use the permutation representation above to quickly find conjugacy classes
of involutions, using standard Magma commands.

(3) See Remark 7.1 below for selecting a unique representative from a set X ⊆
G. The subgroup ZG(θ) can be stored efficiently as a Magma group, but
the inverted elements IG(θ) are just a set, which is typically small.

(4) For each triple (a, b, c) constructed, θ is the standard Type I or Type II.a
automorphism for the given triple. Moreover, all generating triples whose
action has a normalizing symmetry are captured in this is way. For, if
(a′, b′, c′) defines an action with a normalizing symmetry then there is a
standard involution θ′ satisfying a “primed” version of (59) or (60). There is
an ω ∈ Aut(G) such that θ = ωθ′ω−1 equals a unique chosen representative
θ from our list, and θ is a standard automorphism with respect to (a, b, c) =
ω · (a′, b′, c′). The two generating triples define the same surface. By the
discussion on resolving ambiguities, we lose nothing by retaining only those
triples with properly ordered signatures.

The triples (a, b, c) and (a′, b′, c′) are called θ-related if a relation such
as the above holds for symmetries of the same type.

(5) If two triples (a, b, c) and (a′, b′, c′) are constructed for the same θ and type,
and (a, b, c) = ω · (a′, b′, c′) then ω ∈ ZG(θ). So, by choosing a unique triple
(a, b, c) in the ZG(θ) orbit of generating triples with standard involution θ,
we are choosing a unique triple in Aut(G) · (a′, b′, c′).
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(6) As noted in the preceding point we have captured each action pair (S, (a, b, c))
with ordered signature exactly once, up to algebraic equivalence. We com-
pute signature and genus for completeness. Again, use Remark 7.1 below
for selecting a unique representative generating triple from a set of triples
X ⊆ G3.

(7) Even though our calculations give a unique representative for each Aut(G)
action class there is still some redundancy in the isosceles and equilateral
cases. Namely, two algebraically inequivalent actions may yield conformally
equivalent surfaces. See Example 7.1. Most of the redundancy has been
eliminated by ordering the signature in the Type I cases and imposing l = m
in the Type II cases. To eliminate all redundancy, we would need to allow
for permuting vertices with the same order. Since the goal to catalogue each
symmetry at least once, eliminating isosceles and equilateral redundancies
is more trouble than it is worth.

(8) We have not recorded any action class for which there are no symmetries.
Our direct construction method from Symms(G) leaves these actions out.
We did not attempt to account for the lost actions.

(9) We refer to Remark 3.3 for determining the conjugacy classes of companion
symmetries via the θ-twisted conjugation by G on IG(θ).

Remark 7.1. Let X be a subset of the Cartesian product Gd. For a finite group
G, Magma provides a numbering map f : G → I = {1, . . . , |G|} which depends
on the specific representation of G and its generating set. Extend f : Gd →
Id by f(g1, . . . , gd) = (f(g1), . . . , f(gd)). We can order the elements of Gd by
lexicographically ordering their f values. A unique element of X can be chosen to
be the minimum under this ordering. We will only consider sets X ⊆ G and sets
of generating triples X ⊂ G3.

Example 7.1. As given in Table 2 in Section 3.2 the local q-action and r-action
on (l,m, n) triples are

θq(a, b, c) = (a−1, b−1, bc−1b−1),

θr(a, b, c) = (b−1a−1b, b−1, c−1).

Now suppose that θq = ωθrω
−1, then (ω(b), ω(c), ω(a)) is a generating (m,n, l)

triple (see Remark 3.4). We have

θq(ω(b), ω(c), ω(a)) = ωθr(b, c, a)

= ω · (b−1, c−1, b−1ab)
= (ω(b)−1, ω(c)−1, ω(b−1ab))

It follows that (ω(b), ω(c), ω(a)) is an (m,n, l) triple that satisfies the θ = θq com-
patibility relations. Thus the triples (a, b, c) and (ω(b), ω(c), ω(a)) will both be
found in the Type I triple search. If the triangle is not equilateral then at most one
of the triples will be recorded. If the triangle is equilateral then several triples may
be recorded even though they both yield conformally equivalent surfaces.

7.3. Search results. All our search results may be found at the website [5]. We
present our Magma search results in aggregated form in Tables 5 and 6. The search
was performed in 5 tranches of about 50 groups each to break up the computation
and to show growth with group size. The range of group orders is recorded in the
first column of both tables.
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Each group has its own separate, appropriately named log file – yes almost 7000
files. Each file gives some detail of all the steps of the computation. Included in
the log files are: all the basic group data; for each conjugacy class of involutions
and each type, an accounting of the search for θ compatible generating triples;
the signature and surface genus for each class of triples found; and an analysis
of the θ slice of Symms(G). The analysis of the Symms(G) slices is the part of
the calculation that allows us to find fixed point free symmetries. Throughout the
calculations of each tranche, counters for data given in the tables are updated and
a summary file is posted on the website for each tranche. There are more details
in these files.

The Magma code also has a provision for analyzing a single group with more
detail given, such as the formula for θ and the actual generating vector represen-
tatives. There is no restriction on the size of the group but the calculation tends
to bog down for a group of size of 10, 000 or greater. The largest group in the
log files is Alt(9) with group order 181, 440 and about 2000 classes of actions with
typical surface genus size in the range 20, 000 to 60, 000 range. The computation
did however complete in a respectable amount of time. The larger groups show
behaviours not found in smaller groups.

Many groups have no quasiplatonic actions or symmetries. The rank of the
abelianization Gab of G must satisfy rk Gab < 3. Also |Aut(G)| ≤ |G|2, since
Aut(G) acts freely on the generating vectors. These conditions are tested before
computing and, if found, no computation is done and “none” is appended to the
title of the log file.

In Table 5 the “# groups” column is the number of groups tested, not the
number of groups with symmetries. The “Type I” and “Type II” columns are the
number of actions that have a θ compatible triple that satisfies equation (59) or
(60), respectively. No attempt was made to account for actions satisfying both
equations.

|G| # groups Type I Type II max genus
2-50 256 1126 318 24
51-100 791 3613 714 49
101-150 2843 6359 947 74
151-200 2183 9156 1321 99
201-250 895 10803 1229 124
total 6959 31057 4529

Table 5. Surfaces (actions) with symmetries

In Table 6, the number of G conjugacy classes of symmetries is recorded. The
columns headed by “#SS” are standard symmetry classes (with ovals) and the
columns headed “#FPF” are fixed point free symmetry classes (no ovals).
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SS symms FPF symms
|G| Type I Type II Type I Type II
2-50 1918 318 159 172
51-100 6358 714 656 399
101-150 11429 947 1295 570
151-200 16529 1321 1948 800
201-250 18523 1229 1662 762
total 54748 4529 6720 2703

Table 6. Classes of symmetries

7.4. Some observations and questions. We conclude our paper with some ob-
servations and comments gleaned from an initial examination of the log files.

(1) For completeness, the search picks up symmetric actions on genus 0 and
genus 1 surfaces. They are a small percentage of the total number of sym-
metric actions

(2) The number of elements in Ig(θ) tends to be small except for Type I sym-
metries for abelian groups. Likewise, the number of G orbits on Ig(θ) tends
to be small, even in the abelian case. If there are fixed point free symme-
tries there is typically only one class. For Alt(9) there are symmetries with
two different classes of fixed point free symmetries.

(3) Typically, for a given symmetry automorphism, the number of fixed point
free symmetry classes is the same no matter what the generating vector
is. However for Alt(8) and Alt(9) there are symmetry automorphisms for
which the number of fixed point free symmetry classes are different for
different generating vectors. For example, there are two (4, 4, 6) actions of
Alt(8) on surfaces of genus 3361, where one action has no fixed point free
symmetries and the other has one class of fixed point free symmetries. We
made no attempt to find a minimal case.

(4) The search flags whether a symmetry automorphism is inner or not. If an
automorphism is inner then, except in dihedral case, there will be a fixed
point free symmetry. See Proposition 3. However there are plenty of cases
where the outer automorphisms have fixed point free symmetries.

(5) The isometry groups of the unoriented surfaces tend to be much smaller
than action groups of the orientation covering surface. For instance PSL(2, 8)
has an involution θ for which all of the 46 classes of actions have fixed point
free symmetries. The subgroup ZG(θ) ↪→ Aut(M) for all of these surfaces
has size 24 even though the action group size is 504. The index of ZG(θ)
in G is 21. Again we have not taken into account redundant actions and
“extra” automorphisms.

(6) Hurwitz surfaces have a (2, 3, 7) action group, which must be the entire
automorphism group of the surface and is the maximal size for a symmetry
group. These surfaces must have an invariant (2, 3, 7) tiling whether or not
the surface is symmetric. Because the isometry group of an unorientable
surface is much smaller than the corresponding action group, then using
maximal group size to define Hurwitz unorientable surfaces does not wok
well. So, we could call an unorientable surface a Hurwitz surface if it has
a (2, 3, 7) tiling? There is extensive work on Hurwitz PSL(2, q) groups,
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see [6] for example. The smallest PSL(2, q) action group with signature
(2, 3, 7) and with a fixed point free symmetry is PSL(2, 8) with a Type
I symmetry on a surface of genus 7, the next is PSL(2, 13) acting on a
surface of genus 14.

(7) In all the orientable cases a q-kite is a fundamental region for the G action.
In fact the union of a black and a white triangle is a fundamental region.
Therefore, there are 2 |G| triangles which are identified in two colour pairs
to form |G| triangles on the quotient. Therefore, in the unorientable case
we need

|G|
|ZG(θ)|

monochrome triangles for form a fundamental region. An interesting ques-
tion is to draw such a fundamental region in the plane. In the PSL(2, 8)
Hurwitz case 504/24 = 21 such triangles are needed.
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