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Abstract. The aim of this paper is twofold. First, we study the number of

partitions of a positive integer m into at most n parts in a given set A. We
prove that such a number is bounded by the n-th Fibonacci number F (n)

for any m and some family of sets A including sets of powers of an integer.

Then, in the second part of the paper, we provide new results in bounding
the cohomology of the simple algebraic group SL2 with coefficients in Weyl

modules.
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1. Introduction

Let A be a subset of Z+ and m in Z+. A restricted partition of m with parts in
A is a decomposition

m = α1 + α2 + · · ·+ αt(1)

where αis are not necessarily distinct elements in A and α1 ≤ α2 ≤ · · · ≤ αt. Each
αi is called a part of the partition, and t is the number of parts in the partition. For
example, let A2 = {2i : i ∈ N} the set of all powers of 2. Then 5 has 4 restricted
partitions in A2: 1 + 1 + 1 + 1 + 1, 1 + 1 + 1 + 2, 1 + 2 + 2, and 1 + 4. These are
called 2-ary partitions of 5. In this paper, we are interested in restricted partitions
of the form (1) where t is at most n for some given positive integer n. We call them
partitions of m into at most n parts from A and denote P (m,n,A) the number of
such partitions. Note that when A = Z+, i.e., there is no restriction for parts of
partitions, computing P (m,n,A) is a classical problem. Some first results on small
values of n date back to the 19th century by Herschel, Cayley, and Sylvester [WW].
Recently, some progress has been made by [K],[M], and [O]. In terms of an arbitrary
set A, not much is known for P (m,n,A). One may refer to [CW] and [A] for a
discussion on the number of some related partitions. In Section 2 we show that for
any set A satisfying a mild growth condition, P (m,n,A) is bounded from above
by the n-th Fibonacci number F (n) for all m,n ∈ Z+. This bound is universal in
the sense that it does not depend on the integer m. As a consequence, our result
deduces an upper bound for the number of q-ary partitions of m into at most n
parts for any positive integer q ≥ 2.

Our work on restricted partitions is motivated by studying the cohomology of
the simple algebraic group SL2 defined over an algebraically closed field k of prime
characteristic p. Note that, in general, the cohomology of algebraic groups is widely
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unknown and only a few cases have been computed explicitly, see [Jan] for a sum-
mary of this theory. Although the case of SL2 has been extensively studied, there
are still open problems. For example, determining a closed formula of the dimension
of the cohomology for a simple (or indecomposable) module remains unknown. In
fact, it is already a challenging task to find a sharp upper bound for this number.
For the last few years, the third author has been interested in bounding the dimen-
sion of Hn(SL2, V (m)), the SL2-cohomology for the Weyl module V (m) of highest
weight m ∈ N. This problem is of independent interest and has its own history
[EHP], [LNZ]. Together with Lux and Zhang, the third author was able to identify
dim Hn(SL2, V (m)) with the number of solutions to a system of linear equations,
hence attaining a rough upper bound, see [LNZ, Section 4] for details. In Section
3 we use results from Section 2 to show that for any m,n ∈ N

dim Hn(SL2, V (m)) ≤

{
F (n+ 1) if p ≥ 5,

F (2n) if p = 2, 3

which significantly improves the bounds in [LNZ, Cor. 4.3, Prop. 4.4, and Thm.
4.6].

It is worth noting that there is a desire of finding explicit universal bounds (only
depending on the degree n) for any simple algebraic group, see [1] et al. for a
survey on this open problem. Currently, we are not able to generalize our results
(for SL2) to arbitrary algebraic groups. However, we suspect that there might be
some connection between the dimension of cohomology of an algebraic group and
the number of restricted vector partitions1 (a generalization of restricted integer
partitions). Hence, it is reasonable to ask whether there exists a universal upper
bound for the latter. This would be an interesting problem for future research.

2. Restricted partitions of m into at most n parts

In this section, we study the number P (m,n,A) for various sets A. We aim
to bound this number using the Fibonacci numbers. For the sake of our calcula-
tions, we first identify these partitions with integer solutions of a certain system
of equations. In particular, we write A = {a1, a2, . . .} with 0 < a1 < a2 < · · · .
Let m ∈ Z+ and ar the largest number in A that is no more than m. Then each
restricted partition of the form (1) can be rewritten as

m = x1a1 + x2a2 + · · ·+ xrar

where xis are non-negative integers. Each xi is called the multiplicity of ai in the
partition. As multiplicities are allowed to be zeros, every partition of m is uniquely
determined by a sequence {xi} satisfying

m =

∞∑
i=1

xiai

where xi = 0 for large enough i (such that ai > m). Thus, the number of restricted
partitions of m is equal to the number of such sequences {xi}. Now, if we require

1A vector partition is a way of writing a vector with nonnegative integer entries as a sum of
other vectors (with nonnegative integer entries) where the order of summands does not matter.

Albanian J. Math. Vol. 17 (2023), no. 2, 93–103

http://albanian-j-math.com/vol-17.html


Benzel, Conner, Ngo, Pham 95

the number of parts in every partition of m to be at most n, then P (m,n,A) is in
fact equal to the number of sequences {xi} of non-negative integers such that

∞∑
i=1

xiai = m,

∞∑
i=1

xi ≤ n.

Solutions to the last system are essentially the same as tuples (x1, x2, . . . , xr) sat-
isfying {

x1a1 + x2a2 + · · ·+ xrar = m,

x1 + x2 + · · ·+ xr ≤ n
(2)

for sufficiently large r. From now on, we identify P (m,n,A) with the number of
solutions to the system (2).

We next recall the definition of Fibonacci sequence. Let

F (1) = 1, F (2) = 1, F (n) = F (n− 1) + F (n− 2),

for n ≥ 2. We also assume F (i) = 0 for all integers i ≤ 0. Our inductive proofs will
use the following special property of the Fibonacci sequence.

Lemma 2.1. For each positive integer n, we have
n∑

i=0

F (2i+ 1) = F (2n+ 2) and

n∑
i=0

F (2i) = F (2n+ 1)− 1.

Consequently, we always have

bn2 c∑
i=0

F (n− 2i) ≤ F (n+ 1).

Proof of the lemma is straightforward. We now prove the following

Theorem 2.2. Let A = {a1, a2, . . .} ⊆ Z+ where all ais are written in an increasing
order and satisfy

2as−1 + 4as−2 + 6as−3 + · · ·+ 2(s− 1)a1 < as(3)

for all s ≥ 2. Then P (m,n,A) ≤ F (n) for all positive integers m,n.

Proof. We prove by induction on n. Obviously, P (m, 1, A) = 0 or 1, so that it
is true for n = 1. Let’s take a look further to the case n = 2 2. We also have
P (m, 2, A) ≤ 1 because for each m and as, the largest number in A such that
as ≤ m, the condition (3) guarantees that as is not equal to 2ai nor ai + aj for
any 1 ≤ i, j ≤ s − 1. Assume that P (m, t,A) ≤ F (t) for any t < n with n ≥ 3.
Now fix m and again let as be the largest number in A such that as ≤ m. Since
2as−1 + 4as−2 + 6as−3 + · · · + 2(s − 1)a1 < as ≤ m, we must have either one (or
more) of the following

xs ≥ 1, xs−1 ≥ 3, xs−2 ≥ 5, . . . , x1 ≥ 2s− 1.

2Since F (1) = F (2) = 1, it is necessary to show the base case with n = 1, 2, for otherwise we
would have no idea whether P (m, 1, A) is bounded by F (1) or F (2). We will need to do the same
for other inductive proofs in this paper.
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Solutions of (2) combined with xs ≥ 1 are essentially solutions of{
x1a1 + x2a2 + · · ·+ xs−1as−1 + x′sas = m− as,
x1 + x2 + · · ·+ xs−1 + x′s ≤ n− 1

by setting xs = 1 + x′s. The number of such solutions is P (m − as, n − 1, A).
Similarly, numbers of solutions to (2) with other conditions are respectively P (m−
3as−1, n− 3, A), . . . , and P (m− (2s− 1)a1, n+ 1− 2s,A). Hence, we obtain

P (m,n,A) ≤P (m− as, n− 1, A) + P (m− 3as−1, n− 3, A)+

· · ·+ P (m− (2s− 1)a1, n+ 1− 2s,A).

Next, applying our inductive hypothesis and Lemma 2.1 we have

P (m,n,A) ≤ F (n− 1) + F (n− 3) + · · ·+ F (n+ 1− 2s) ≤ F (n),

hence completing our inductive proof. �

We present some examples of the set A in the above theorem.

Theorem 2.3. Let q be an integer greater than 3 and set Aq = {qi : i ∈ N}. Then
Aq satisfies the condition (3). Consequently,

P (m,n,Aq) ≤ F (n).

Proof. It suffices to show that for any s ≥ 1

2qs−1 + 4qs−2 + · · ·+ 2(s− 1)q + 2s < qs.

This can be proven by induction on s. Indeed, it is easy to see that it’s true for
s = 1. Now to show that

2qs + 4qs−1 + · · ·+ 2sq + 2(s+ 1) < qs+1,

note that

2qs+4qs−1 + · · ·+ 2sq + 2(s+ 1)

= 2qs + (2qs−1 + 4qs−2 + · · ·+ 2(s− 1)q + 2s) + (2qs−1 + 2qs−2 + · · ·+ 2q + 2)

< 2qs + qs + 2(qs−1 + qs−2 + · · ·+ q + 1) by induction

≤ 3qs + qs − 1 < 4qs ≤ qs+1 using q > 3 at multiple points.

This proves our induction proof. The remainder follows immediately from Theorem
2.2. �

Remark 2.4. The sets A2 and A3 do not satisfy (3). Moreover, the inequality in
the above theorem doesn’t hold for A2 as we have

4 = 1 · 22 = 2 · 2 = 2 · 1 + 1 · 2.
Hence, P (4, 3, A2) = 3 > F (3).

We next modify the condition on the set A in the Theorem 2.2 so that A2 and
A3 will satisfy it.

Theorem 2.5. Let A = {a1, a2, . . .} ⊆ Z+ where all ais are written in an increasing
order and satisfy

as−1 + 2as−2 + 3as−3 + 4as−4 + · · ·+ (s− 1)a1 < as+1(4)

for all s ≥ 2. Then P (m,n,A) ≤ F (2n− 1) for all positive integers m,n.
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Proof. It is straightforward to check that it is true for n = 1, 2. Assume that
P (m, t,A) ≤ F (2t − 1) for any t < n with n ≥ 3. Now fix m and let as+1 be the
largest number in A such that as+1 ≤ m. From the condition (4), we must have
either one (or more) of the following

xs+1 ≥ 1, xs ≥ 1, xs−1 ≥ 2, xs−2 ≥ 3, . . . , x1 ≥ s.
Now the argument goes very similar with that of Theorem 2.2. We then obtain

P (m,n,A) ≤ P (m−as+1, n−1, A)+P (m−as, n−1, A)+ · · ·+P (m−sa1, n−s,A).

Next, applying our inductive hypothesis and Lemma 2.1 we have

P (m,n,A) ≤ F (2n− 3) + F (2n− 3) + F (2n− 5) + · · ·+ F (2n− 2s− 1)

≤ F (2n− 3) + F (2n− 2) = F (2n− 1),

hence completing our inductive proof. �

Corollary 2.6. For m,n ∈ Z+, we have P (m,n,Aq) ≤ F (2n− 1) for q ≥ 2.

Proof. From the last theorem, it suffices to show that Aq satisfies the condition (4)
with q ≥ 2. Indeed, we claim that for any r ∈ N,

r+1∑
i=1

i · qr+1−i < qr+2.

Proceeding by induction on r, the base case r = 0 is obviously true. Assume
inductively that the inequality holds for some r. Now observe that

r+2∑
i=1

i · qr+2−i =

r+1∑
i=1

i · qr+1−i +

r+1∑
j=0

qr+1−j ≤
r+1∑
i=1

i · qr+1−i + qr+2 − 1.

By the inductive hypothesis, the last term is less than qr+2+qr+2−1 < qr+3; hence
completing our inductive proof. �

Remark 2.7. Since F (n) ≤ F (2n−1), Theorem 2.3 immediately implies Corollary
2.6 for q > 3. It can also be observed that condition (4) is weaker than (3), i.e., that
any set A satisfying condition (3) also satisfies condition (4). The weaker condition
allows one to consider a larger collection of sets A, particularly A2 and A3, but at
the expense of a bound on P (m,n,A) that is not as good as the original.

We end this section with an interpretation of our results in terms of q-ary parti-
tions, which are partitions of an integer into powers of q. It follows that P (m,n,Aq)
is the number of q-ary partitions of m into at most n parts. Hence, rephrasing the
above results, we obtain the following

Corollary 2.8. For m,n ∈ Z+, the number of q-ary partitions of m into at most
n parts is no more than F (n) if q ≥ 4 or F (2n− 1) if q = 2 or 3.

3. Cohomology of SL2

The goal in this section is to bound the dimension of cohomology for Weyl
modules over SL2 using results from the previous section. For general background
of rational cohomology of algebraic groups, the audience may refer to [Jan]. We only
introduce here necessary material for our calculations. We use the same notation
and conventions as in [LNZ]. In particular, let k be an algebraically closed field of
prime characteristic p > 0. We fix G = SL2 defined over k and a torus subgroup T
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of G. Then the set of dominant weights associated with T can be identified with N.
Weyl modules (over SL2) are indecomposable modules that are parametrized by
dominant weights. Explicitly, we denote V (m) the Weyl module of highest weight
m for each m ∈ N with V (0) = k the trivial module.

For G-modules M and N , ExtnG(M,N) is the n-th degree extension space of
M by N . When M = k, this space is called the n-th cohomology space of G
with coefficients in N and denoted Hn(G,N). The notation dim Hn(G,N) (or
dim ExtnG(M,N)) denotes the dimension of the cohomology (or extension) as a
vector space over k. We are interested in estimating an upper bound for these
quantities.

We recall from [LNZ, Theorem 4.2] that if p is an odd prime, then for any integers
m,n ≥ 0 the dimension dim Hn(SL2, V (m)) is equal to the number of solutions to
the system 

2

r∑
i=1

ai +

r∑
j=1

bj = n+ 1,

b1 +

r−1∑
i=1

(ai + bi+1)pi + arp
r =

m

2
+ 1,

(5)

where all ais are in N, bi is either 0 or 1.3 Here r is a sufficiently large integer
in term of m. Note that the system (5) has no solutions if m is odd. Therefore,
whenever considering the cohomology Hn(SL2, V (m)) we are only interested in the
case when m is even.

Let N(m,n) be the number of solutions to the system
2

r∑
i=1

ai +

r∑
j=1

bj = n,

b1 +

r−1∑
i=1

(ai + bi+1)pi + arp
r = m.

(6)

Then we can deduce that dim Hn(SL2, V (m)) = N
(m

2
+ 1, n+ 1

)
for m,n ∈ N.

We next prove the main result of this section, which strengthens [LNZ, Proposition
4.4] as we are now able to remove the condition n ≤ 2p− 3.

Theorem 3.1. Assume p ≥ 5. For all integers m,n ≥ 0, we have

dim Hn(SL2, V (m)) ≤ F (n+ 1).

Proof. From earlier set up, we need to prove that N
(
m
2 + 1, n+ 1

)
≤ F (n + 1)

for every integer n ≥ 0 and even integer m ≥ 0. This is then reduced to showing
that N(m,n) ≤ F (n) for all positive integers m,n (with m replacing m

2 + 1 and
n replacing n + 1). We again proceed by an inductive argument on n. By [LNZ,
Proposition 3.6], the last inequality holds for n ≤ 8. For any positive n ≥ 9, assume
that the inequality holds up to n − 1. Since b1 is either 0 or 1, we must have m
is congruent to either 0 or 1 modulo p, for otherwise, N(m,n) = 0 for all n. If
m ≡ 1 (mod p), then b1 = 1 and N(m,n) = N(m − 1, n − 1) ≤ F (n − 1) by the

3Note that there is an abuse of notation here. All the ais are now not elements of A as in the

previous part of the paper. Instead, these ais (and bis) are variables in this context.
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inductive hypothesis. Suppose that p divides m, so b1 must be zero. Let s be the
least integer such that ps ≤ m. Then the system (6) is reduced to

2

s∑
i=1

ai +

s+1∑
j=2

bj = n,

s∑
i=1

(ai + bi+1)pi = m.

(7)

Let S be the set of solutions to this system. Set

U = {(a, b) = (a1, . . . , as, b2 . . . , bs+1) : (a, b) satifies (7),

∃i0 so that ai0 ≥ 1, bi0+1 = 0} .

Then S is the union of the disjoint subsets U and V = S \ U . We now give an
upper bound to each set. For each solution (a, b) in U , we choose the largest such
i0 and make a replacement ai0 7→ ai0 − 1 and bi0+1 7→ 1. The resulting tuple is a
solution of 

2

s∑
i=1

ai +

s+1∑
j=2

bj = n− 1,

s∑
i=1

(ai + bi+1)pi = m.

This replacement is a one-to-one mapping from U to the set of solutions to the
system above. It follows from the inductive hypothesis that

|U | ≤ N(m,n− 1) ≤ F (n− 1).

Every solution (a, b) in V satisfies the condition that whenever ai > 0, bi+1 = 1.
Setting di = ai + bi+1 for all 1 ≤ i ≤ s, we can see that each solution (a, b) in V is
one-to-one corresponding 4 to a solution (d1, . . . , ds) to the system

s∑
i=1

di ≤ n,
s∑

i=1

dip
i = m,

(8)

where the inequality is obtained from rewriting the first equation of (7) to
s∑

i=1

di = n−
s∑

i=1

ai.

Consider the following cases.

• If

s∑
i=1

ai ≤ 2 then di ≤ ai + 1 ≤ 3 < p for all 1 ≤ i ≤ s (recall that p ≥ 5).

Hence, the sum

s∑
i=1

dip
i must be the p-adic expansion of m and so there is

at most one solution to the system (8) for the case when n−2 ≤
s∑

i=1

di ≤ n.

4The inverse is defined by setting bi+1 = 1 and ai = di − 1 if di > 0, otherwise, ai = bi+1 = 0.
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• If

s∑
i=1

ai ≥ 3 then

s∑
i=1

di = n−
s∑

i=1

ai ≤ n−3. By Theorem 2.3, the number

of solutions to (8), restricted to this case, is bounded by F (n− 3).

Summing up the two cases, we have |V | ≤ 1 + F (n− 3) ≤ F (n− 2). Therefore, we
obtain

N(m,n) = |S| = |U |+ |V | ≤ F (n− 1) + F (n− 2) = F (n),

which completes our inductive proof. �

We believe that the theorem also hold for p = 3. Unfortunately, our method does
not work with this small prime. A different approach might be needed to tackle
this case. Using the same idea as in the previous section, we can only prove the
following

Proposition 3.2. If p = 3, then we have for all integers m ≥ 0, n ≥ 1

dim Hn(SL2, V (m)) ≤ F (2n).

Proof. Same argument as in the proof of the last theorem, we reduce to showing
that N(m,n) ≤ F (2n − 2) for all integers m ≥ 1, n ≥ 2. Recall that N(m,n) is
the number of solutions to the system (7). Again, by [LNZ, Proposition 3.6], the
inequality holds for n ≤ 4. For n ≥ 5, we assume that the inequality holds up to
n− 1. For (7) to have solutions, we must have either one (or more) of the following
conditions

as + bs+1 ≥ 1, as−1 + bs ≥ 2, as−2 + bs−1 ≥ p+ 1, as−3 + bs−2 ≥ p+ 2,

as−4 + bs−3 ≥ p2 − p+ 1, as−5 + bs−4 ≥ p2 + 1, as−6 + bs−5 ≥ p3 + 1,

and as−i + bs−i+1 ≥ pb
i
2 c + 1 for all i ≥ 6. For otherwise, we would have

s∑
i=1

(ai + bi+1)pi ≤ 2(ps−1 + ps−2 + · · ·+ 1) ≤ ps − 1 < ps ≤ m.

Let Ni be the number of solutions to the system (7) restricted to each of these
conditions respectively. Then it is easy to see that N(m,n) is no more than the
sum of all these Nis. We next consider each Ni.

If as + bs+1 ≥ 1, then there are 2 cases:

• bs+1 = 0 and as ≥ 1. Then the system (7) can be rewritten to
2

s−1∑
i=1

ai +

s∑
j=2

bj = n− 2as,

s−1∑
i=1

(ai + bi+1)pi = m− asps.

Hence, by the inductive hypothesis the number of solutions in this case is

d m
ps e∑

as=1

N(m− asps, n− 2as) ≤
d m
ps e∑

as=1

F (2n− 4as − 2).
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• bs+1 = 1 and as ≥ 0. Then the system (7) can be rewritten to
2

s−1∑
i=1

ai +

s∑
j=2

bj = n− 1− 2as,

s−1∑
i=1

(ai + bi+1)pi = m− ps − asps.

Again, by the inductive hypothesis the number of solutions in this case is

d m
ps e∑

as=0

N(m− ps − asps, n− 1− 2as) ≤
d m
ps e∑

as=0

F (2n− 4as − 4).

Now summing up theses 2 cases and using Lemma 2.1, we have

N1 ≤
d m
ps e∑
i=2

F (2n− 2i) ≤ F (2n− 3).

If as−1 + bs ≥ 2 then as−1 ≥ 1. Now replacing as−1 by a′s−1 + 1 with a′s−1 ≥ 0
we have (7) rewritten to

2

s−2∑
i=1

ai + 2a′s−1 + 2as +

s+1∑
j=2

bj = n− 2,

s−2∑
i=1

(ai + bi+1)pi + (a′s−1 + bs)p
s−1 + (as + bs+1)ps = m− ps−1.

Hence, there are N2 = N(m− ps−1, n− 2) solutions in this case. Similar argument
can be applied to obtain

• N3 = N(m− ps−1, n− 2p)
• N4 = N(m− ps−2 − ps−3, n− 2p− 2) · · ·
• Ns = N(m− pb s2 c, n− 2pb

s
2 c).

Now using the inductive hypothesis and Lemma 2.1, we obtain

N(m,n) ≤ F (2n− 3) + F (2n− 6) + F (2n− 4p− 2) + · · ·+ F (2n− 4pb
s
2 c − 2)

≤ F (2n− 2),

completing our inductive proof. �

Remark 3.3. Theorem 3.1 does not hold for p = 2. Indeed, from [EHP, Corollary
3.2.2], the dimension of Hn(SL2, V (m)), for any m,n ∈ N, is equal to the number
of solutions (a1, . . . , ar) ∈ Nr of the system{

a1 + a2 + · · ·+ ar = n+ 1,

a12 + a222 + · · ·+ ar2r = m
2 + 1.

(9)

In the case when m = 286, n = 4, there are 6 solutions to the system (9) as follows

• 1 · 24 + 4 · 25 = 144
• 3 · 24 + 1 · 25 + 1 · 26 = 144
• 2 · 23 + 2 · 25 + 1 · 26 = 144
• 2 · 22 + 1 · 23 + 2 · 26 = 144
• 4 · 22 + 1 · 27 = 144
• 2 · 21 + 1 · 22 + 1 · 23 + 1 · 27 = 144.
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Hence, dim H4(SL2, V (286)) = 6 > F (5). Instead, we can have the same bound as
for the case p = 3 as follows.

Corollary 3.4. If p = 2, then for all integers m ≥ 0, n ≥ 1

dim Hn(SL2, V (m)) ≤ F (2n).

Proof. By Corollary 2.6, it’s straightforward to have

dim Hn(SL2, V (m)) ≤ P
(m

2
+ 1, n+ 1, A2

)
≤ F (2n+ 1).

In fact, Corollary 2.6 implies that

n∑
i=0

dim Hn(SL2, V (m)) ≤ F (2n+ 1).

It is possible to lower the bound for dim Hn(SL2, V (m)) to F (2n). Indeed, let
M(m

2 + 1, n + 1) be the number of solutions to the system (9). Similar inductive
argument as in the proof of Theorem 2.5 may be used to establish

M(m,n) ≤ F (2n− 2)

for all integers m ≥ 1, n ≥ 2, which is sufficient to show the corollary. �

Remark 3.5. Using exact same proof for [LNZ, Theorem 5.4] with Theorem 3.1
replacing [LNZ, Proposition 4.4] (following that the condition n ≤ 2p − 3 can be
removed), we can prove that for p ≥ 5

dim ExtnSL2
(V (m2), V (m1)) ≤ F (n+ 1) + (s− 1)F (n).

for m1,m2, n ∈ N, and s the least positive integer such that m2 < ps. This is not
a significant bound as it is not sharp even for the low degree n. For example, we
have

dim ExtnSL2
(V (m2), V (m1)) ≤ n

for n ≤ 3, see [LNZ, Section 5.1] for details. Finding a sharp bound, for large values
of n, of these extension spaces is still an open problem. We propose the following

Conjecture 3.6. For m1,m2 ∈ N, and p ≥ 3, we have

dim ExtnSL2
(V (m2), V (m1)) ≤ F (n+ 1).

Remark 3.7. The same arguments as in [LNZ, Section 6.2] can show, in the case
when p ≥ 5, that both dim Hn(SL2, L) and dim Hn(SL2(Fps), L′) are bounded by
(2n + 7)F (n), where L (resp. L′) is any simple module over SL2 (resp. the finite
group of Lie type SL2(Fps) for any s ≥ 1). Again, this is an improvement of results
in [LNZ, Section 6.2], but it is not a sharp upper bound even with small values of
n.
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