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Abstract. A finite group G is called admissible over a field M if it is realizable

as the Galois group of an extension of M which is contained in a division

algebra with center M . We consider the extent to which admissibility over M
implies admissibility over a subfield K ⊂ M , comparing variations where the

division algebra, the extension field, or the Galois extension, are asserted to

be defined over K. We completely determine the logical implications between
the variants.
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1. Introduction

A group G is admissible over a number field M if it appears as the Galois
group of a field extension of M which is contained in a finite dimensional division
algebra with center M , that is, an M -central division algebra [19, Proposition 2.2].
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This notion was introduced in the 60’s in connection with (explicit) crossed product
constructions of division algebras: Indeed, G is M -admissible if and only if there
exists an M -central division algebra D which is a G-crossed product, that is, D has
a maximal subfield L which is Galois over M with group G, see [19].

One of the longstanding open problems of inverse Galois nature is to ascertain
which groups G are admissible over a given field M , cf. [2, §11.A]. This question
has been extensively studied over number fields [9, 11,22], and other fields [7, 15].

Notably, in these works, admissibility over M is related to admissibility over
subfields K of M . Namely, for appropriate fields K and M , it is shown that if G is
M -admissible, then there exists a G-crossed product division algebra D0 over K,
whose restriction to M is a (G-crossed product) division algebra D. In such a case,
we say that the crossed product D is defined over K.

It therefore makes sense to ask, for a given extension M/K and an M -admissible
group G, to which extent the M -admissibility of G can be realized over K. The
existence of a G-crossed product over M which is defined over K is the strongest
descent condition to require. Failing this strong condition, it is still possible that
some part of the structure exists over K. For example, it is possible that G is
both K- and M -admissible; that the division algebra D is defined over K (namely,
D = D0⊗KM for a suitable division algebra over K); that L is defined and is
Galois over K (namely, L = L0⊗KM where L0/K is a G-extension); or that L is
merely defined over K and becomes Galois after the extension.

This paper studies eight variations of M -admissibility of a group G with respect
to a fixed number field extension M/K. Furthermore, these variants are considered
when admissibility is assumed to be tame, that is, when the tamely ramified part
of each of the completions of the extension L/M splits D, see Section 3.1. These
variants are defined in Section 2.1, and their tame versions are analogously defined
in Section 3.2.

We first show that these eight tame variants are all equivalent for solvable
groups G, and that they all hold if G is a cyclic group, see Corollary 3.6 and
Proposition 3.7, respectively. However, when admissibility is not assumed to be
tame, we show that only the trivial implications between the variants hold, see
Theorem 2.2. In Section 4 we provide counterexamples to every implication which
is not proved in Section 2.2, with G being a p-group and M a number field. The
difference from tame admissibility is an essential ingredient in the construction of
counterexamples.

A ninth condition, where the maximal subfield L is required merely to be Galois
over K, comes from the study of noncrossed products over Henselian fields: If E is a
tame division algebra over a Henselian field F such that K is the residue field F and
M is the center of D := E, then E is a crossed product for some group if and only if
D contains a maximal subfield L ⊇M that is Galois over K, by a generalization of
Brussel’s criterion, see [8]. Moreover, the latter criterion shows that E is a crossed
product for a group that is built from the Galois group of L/K, indicating that the
condition is also applicable to the question of rigidity of division algebras, that is,
determining the existence of a division algebra over F which is a crossed product
with respect to G and no other group. The relation of the ninth condition to the
implication diagram for the eight variations is determined in Section 5.

Finally, we remark that other noncommutative variants of the inverse Galois
problem were recently considered in [1,4,5], where one considers automorphisms of
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the division algebras themselves. Also note that generic G-crossed products over K
give another approach to comparing the nine conditions for G as they admit every
G-crossed product over K and over M as a specialization, see [6].

2. Conditions on the field of definition and the main theorem

Let K be a field and G a finite group. We say that a field L is K-adequate if
it is a maximal subfield in some division algebra whose center is K. For a finite
dimensional K-central simple algebra A, denote by indK(A) the index of A, that
is,
√

dimK D where D is a division algebra1 such that A is a matrix algebra over D.
We repeatedly use the following well-known characterization of maximal subfields
of K-central simple algebras A: an extension field L ⊇ K embeds as a maximal
subfield of A if and only if it splits A and its degree [L : K] is the index indK(A)
of A. We say that L is a G-extension of K if L/K is a Galois extension with
Galois group Gal(L/K) ∼= G.

2.1. The eight variations. We present eight variations on admissibility over M
with respect to a subfield K ⊆M .

Let M/K be a finite field extension. One way to study the condition

(1) G is M -admissible

is by refining it to require that the crossed-product division algebra or its maximal
subfield are defined over K (we say that a field or an algebra over M is defined
over K if it is obtained by scalar extension from K to M).

Condition (1) requires the existence of an M -adequate G-extension L/M . Two
ways in which L can be related to K provide the following variants:

(2) there exists an M -adequate G-extension L/M for which L is defined over K;
or

(3) there exists an M -adequate G-extension L/M so that L = L0⊗M for some
field L0 for which Gal(L0/K) ∼= G.

For the algebra D to be defined over K, we may require that:

(4) there exists a K-division algebra D0 and a G-extension L/M for which L
is a maximal subfield of D = D0 ⊗M ; or

(5) there exists a K-division algebra D0 and a maximal subfield L0 which is a
G-extension of K so that L0 ∩M = K and L = L0M is a maximal subfield
of the division algebra D = D0 ⊗M .

If L = L0⊗KM , the interaction between L0 and Lmay involve the division algebras:

(6) there exists a K-adequate G-extension L0/K for which L0M is an M -
adequate G-extension; or

(7) there exists a K-adequate extension L0/K for which L0M is an M -adequate
G-extension.

Finally, we have the double condition

(8) G is both K-admissible and M -admissible.

We provide a diagrammatic description of each condition, for easy reference.
Inclusion is denoted by a vertical line, and diagonal lines show the extension of
scalars from K to M . A vertical line decorated by G represents a G-extension.

1Such a division algebra must exist by Wedderburn’s theorem.
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Note that the fact that the extension L0/K is Galois implies that L/M is Galois
as well, with the same Galois group (this influences cases (3), (5) and (6)).
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We say that a triple (K,M,G) satisfies Condition (m) if there are L0, L, D0

and D as required in this condition. In such case we also say (L0, L,D0, D) realizes
Condition (m), omitting L0 or D0 if they are not used.

Remark 2.1. Let M/K be a finite extension of fields and G a finite group. One
might also consider the condition

(5′) there exists a G-crossed product K-division algebra D0, for which D =
D0 ⊗M is also a G-crossed product division algebra.

In the spirit of previous diagrams, this condition is described by

D
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This is similar to (5), but in case (5′) we do not assume explicitly a relation between
the maximal subfields ofD0 and those ofD. However, (5′) is equivalent to Condition
(5). Indeed, suppose that (L0, L,D0, D) realizes (5′). Then D is of index |G| and D
is also split by L′ = ML0. Therefore [L′ :M ] = |G|, L0 ∩M = K and hence we can
take L′ to be the required maximal G-subfield of D. Thus, (L0, L

′, D0, D) realizes
(5). The converse implication is obvious, taking L = L0⊗KM ⊂D0⊗KM = D.
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2.2. The logical implications. The following theorem describes the relation be-
tween the eight variants:

Theorem 2.2. Of the eight conditions in Subsection 2.1, (m) implies (n) for all
finite extensions M/K and finite groups G, if and only if the diagram of (n) can be
obtained from the diagram of (m) by removal of lines and decorations.

More explicitly, the implications in Diagram 2.1 always hold, and every other
implication fails for some extension of number fields and some finite p-group:

(2.1) (5)
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Proof of positive part of Theorem 2.2.
(5) =⇒ (4)+(6): Fix K, M , and G. Clearly, if (L0, L,D0, D) realizes Condition

(5), then (L0, L,D0, D) also realizes (6), and (L,D0, D) realizes (4).
(6) =⇒ (3) + (8) + (7): If (L0, L,D0, D) realizes (6), then L0/K is a G-

extension and hence L = L0M/M is also a G-extension (since L0 ∩ M = K).
Thus, (L0, L,D0, D) realizes (7). It is clear that L0 is a field of definition of L
(and Gal(L0/K) = G) and therefore (L0, L,D) realizes (3). As L0 is a K-adequate
G-extension and L is an M -adequate G-extension, (L0, L,D0, D) realizes (8).

(3) =⇒ (2): If (L0, L,D) realizes Condition (3) then Gal(L0/K) ∼= G,
Gal(L/M) ∼= G (since L0∩M = K) and hence (L0, L,D0, D) realizes Condition (2).

(7) =⇒ (2): If (L0, L,D0, D) realizes Condition (7), clearly L0 is a field of
definition of L. Thus, hence (L0, L,D) realizes Condition (2).

Finally, when (K,M,G) satisfies either of the Conditions (2), (4), (8) we have
that G is M -admissible, and hence each of (2), (4), (8) implies (1). �

In Section 4 we provide counterexamples to all the implications which were not
proved here, thus showing that the diagram in Theorem 2.2 depicts the precise
logical interaction between the eight conditions.

3. Tame admissibility and cyclic groups

3.1. Background. Let K be a number field. For a prime v of K, we denote by Kv

the completion of K with respect to v. If L/K is a finite Galois extension, Lv
denotes the completion of L with respect to some prime of L dividing v. Further
identify Gal(Lv/Kv) with a subgroup of Gal(L/K) up to conjugacy. For t prime
to n, let σt,n be the automorphism of Q(µn)/Q defined by σt,n(ζ) = ζt for ζ ∈ µn.

The basic criterion for admissibility over number fields is due to Schacher [19]:

Theorem 3.1. Let K be a number field and G a finite group. Then G is K-
admissible if and only if there exists a Galois G-extension L/K such that, for every
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rational prime p dividing |G|, there is a pair of primes v1, v2 of K such that each
of the subgroups Gal(Lvi/Kvi) contains a p-Sylow subgroup of G.

We say that a finite extension L/K is tamely K-adequate if L is a maximal
subfield of a K-central division algebra D that is split by L tamely, that is, the
maximal tamely ramified subextension of Lv/Kv splits D⊗K Kv, for every place v
of K. Likewise, a finite group G is tamely K-admissible if there exists a tamely
K-adequate G-extension L/K.

It follows from [12] (see also [13, Corollary 2.1.7]) that tamely K-admissible
groups G have metacyclic p-Sylow subgroups that satisfy the following condition
for every prime divisor p of |G|:

Definition 3.2. We say that a metacyclic p-group G satisfies Liedahl’s condition
(first defined in [12]) with respect to K, if it has a presentation

(3.1) G =
〈
x, y | xm = yi, yn = 1, x−1yx = yt

〉
such that σt,n fixes K ∩Q(µn).

As a direct consequence of [10, Lemma 2.1] and Chebutarev’s density theorem,
we note that a metacyclic p-group satisfies Liedahl’s condition over K if and only
if it is realizable over infinitely many completions of K.

There are no known examples of groups whose Sylow subgroup satisfy Liedahl’s
condition but are not K-admissible. In particular, the following is shown in [12,
Theorem 30] for G a p-group, and in [14, Theorem 1.3] for G solvable.

Theorem 3.3. Let K be a number field and G a solvable group whose Sylow sub-
groups satisfy Liedahl’s condition over K. Then G is tamely K-admissible.

As a direct corollary of the theorem and [12, Theorem 28], one has:

Corollary 3.4. Let G be a solvable group such that the rational prime divisors
of |G| do not decompose in K. Then G is K-admissible if and only if its Sylow
subgroups are metacyclic and satisfy Liedhal’s condition.

Remark 3.5. In fact the proof of [14, Theorem 1.3] shows that there exists a G-
extension L0/Q and a Q-central division algebra D0 such that D0 is split by L0

tamely; L0 is a maximal subfield of D0; and D := D0 ⊗Q K is a division algebra.

3.2. Fields of definition for tame admissibility. Conditions (1)-(8) of Sec-
tion 2 can also be considered with respect to tame K-admissibility. Let G be a
solvable group and K,M number fields. For m = 1, . . . , 8, let (m∗) denote the
condition (m), where every adequate extension is assumed to be tamely adequate,
and an admissible group is assumed tamely admissible. More precisely for m = 4, 5
we consider

(4∗) there exists a K-division algebra D0 and a G-extension L/M for which
D = D0 ⊗K M is split by L tamely, and L is a maximal subfield of D,

and

(5∗) there exists a K-division algebra D0 and a maximal subfield L0 which is
a G-extension of K which splits D0 tamely and satisfies L0 ∩M = K, so
that L = L0M is a maximal subfield of D = D0 ⊗M (splitting it tamely).

As a consequence of Theorem 3.3 and Remark 3.5 we have:
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Corollary 3.6. Let G be a solvable group and M/K a finite extension of number
fields. Then the conditions (1∗)–(8∗) are all equivalent.

Proof. With the added conditions the implications given in (2.1) clearly holds. We
show that the implication (1∗) ⇒ (5∗) also holds and hence the conditions are all
equivalent.

Assume G is tamely M -admissible. By Theorem 3.3 and Remark 3.5, there
exists Q-central division algebra D0 and a G-extension N0/Q such that N0 is a
maximal subfield of D0 which splits D0 tamely and such that D = D0 ⊗Q M is a
division algebra. It follows that L0 := N0 ⊗Q K and L := N0 ⊗Q M are fields, and
hence are G-extensions of K and M which are maximal subfields of D0⊗K and D,
respectively. Since N0 splits D0 tamely, L splits D tamely, so that (5∗) holds. �

3.3. Cyclic extensions. We now show the conditions hold for cyclic groups. The
proof is based on the Albert–Brauer-Hasse-Noether (ABHN) theorem. To a K-
central division algebra D over a number field K, the ABHN theorem associates
invariants invv(D) ∈ Q/Z for every finite place v of K such that all but finitely
many invariants are zero. If D ⊗K Kv is split at the infinite places v, the sum
of all invariants at finite primes is zero. Conversely, given a sequence αv ∈ Q/Z,
where v runs over primes of K and all but finitely many αv’s are zero, there exists
a unique division algebra D with invv(D) = αv for every prime v such that D
is split at the infinite primes. Moreover, for a finite extension M/K, one has
invw(D ⊗Kv

Mw) = [Mw :Kv] · invv(D), for every prime w of M lying over v. In
particular, for D that splits at the infinite primes, indK(D ⊗K Kv) is the order of
invv(D) ∈ Q/Z, and indK(D) is the least common multiple of orders of invv(D),
where v runs over all finite primes of K.

Proposition 3.7. Let G be a cyclic group. Then Conditions (1)–(8) are satisfied
for every extension of number fields M/K.

Proof. It suffices to show that (5∗) is satisfied. By Chebutarev’s density theorem
(applied to the Galois closure of M/K) there are infinitely many primes v of K that
split completely in M . Let v1, v2 be two such primes that do not divide 2|G|. By
the weak version (prescribing degrees and not local extensions) of the Grunwald-
Wang Theorem (see [23, Corollary 2] or [3, Chapter 10]), there exists a G-extension
L0/K for which [(L0)vi :Kvi ] = |G|. By ABHN, there exists a K-central division
algebra D0 with invariants ±1/|G| at v1 and v2 which is split at any other prime.
By our choice of L0, it has full local degrees at v1, v2 and hence splits D0. Moreover,
[L0 :K] = |G| = ind(D0), so that L0 is K-adequate. As v1 and v2 split completely
in M , the compositum L := L0M has local degrees [Lvi :Mvi ] = |G| for i = 1, 2.
Moreover, ind(D0⊗Mwi

) = |G| so that D = D0⊗M is of index |G| and hence is a
division algebra. Moreover, since D has nontrivial invariants only over the primes
dividing v1 and v2, and since the latter are coprime to |G|, the field L splits D
tamely. Thus L is tamely M -adequate and (K,M,G) satisfies (5∗). �

We mention in this context the ‘linear disjointness’ (LD) of number fields, as
defined and established in [17, Prop. 2.7]: for every finite extension M/K in char-
acteristic 0, every central simple algebra over K contains a maximal separable
subfield P that is linearly disjoint from M over K. This notion can be bypassed
by appealing to the Chebutarev density, as above.
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4. Examples

In this section we give counterexamples to all the implications not claimed in
Theorem 2.2. In all the examples, K is a number field and G is a p-group. This
shows that Diagram 2.1 describes all the correct implications even for p-groups. We
repeatedly use the ABHN theorem, see §3.3.

Let us first show that neither one of the Conditions (4) or (8) imply any other
condition except (1). For this, by the implication Diagram 2.1, it suffices to show
that (4) 6⇒ (8), (8) 6⇒ (4), (4) 6⇒ (2) and that (8) 6⇒ (2). We will show that
(8) 6⇒ (4) by demonstrating that (6) 6⇒ (4). In fact an example for (6) 6⇒ (4) will
show that no other condition, except (5), implies Condition (4). To complete the
proof we should also prove (7) 6⇒ (8), (7) 6⇒ (3), (3) 6⇒ (8) and (3) 6⇒ (7).

The first example relies on:

Remark 4.1. If F1 and F2 are field extensions of F such that L = F1⊗FF2 is a
field, and F1/F and L/F1 are Galois, then L is Galois over F .

Example 4.2 ((4) 6⇒ (2), (8) 6⇒ (2)). Let p ≡ 1 (mod 4), G = (Z/pZ)3 and K =
Q(
√
−1,
√
p). Note that p splits in K. Denote the prime divisors of p in K by

v1, v2.

Let Kvi(p)
ab

be the maximal abelian pro-p extension of Kvi . By local class field

theory the Galois group Gal(Kvi(p)
ab
/Kvi) is isomorphic to the pro-p completion

of the multiplicative group K×vi which is Znp where n = [Kvi :Qp] + 1 = 3, see
[21, Chp. 14, §6].

Since Kv1 = Kv2 = Qp(
√
p) this shows that G is realizable over Kv1 ,Kv2 . By

the Grunwald-Wang Theorem there exists a (Z/p2Z)3-extension M̂/K such that

M̂vi is the maximal abelian extension of exponent p2 of Kvi , namely the unique

(Z/p2Z)3-extension of Kvi . Let M = M̂G, so that Gal(M/K) ∼= G.

Since M̂/M and M/K both have full local degrees at v1, v2, both are adequate
G-extensions as maximal subfields of division algebras with invariants ±1/|G| at v1
and v2 and 0 elsewhere. By choosing L = M̂ and L0 = M , we deduce that (K,M,G)
satisfies Condition (8). To show that (K,M,G) satisfies (4) it suffices to notice
that v1, v2 have unique prime divisors w1, w2 in M . Thus every division algebra
D whose invariants are zero outside {w1, w2} is defined over K by a K-central
division algebra D0 whose invariants are zero outside {v1, v2}, see the description
of invariants in finite extensions in §3.3. Take D with

invw1
(D) =

1

p3
, invw2

(D) = − 1

p3

and invw(D) = 0 for every other place w of M . Thus D is a G-crossed product

division algebra defined over K, and is split by M̂ , so that (K,M,G) satisfies (4).
Let us show (2) is not satisfied. Suppose on the contrary that there exists a

triple (L0, L,D) realizing (2). By Remark 4.1, L/K is Galois and

Gal(L/K) ∼= Gal(L/L0) n Gal(L/M) ∼= Gnφ G

via some homomorphism φ : G → Aut(G) = GL3(Fp). As G is a p-group, φ is a
homomorphism into some p-Sylow subgroup P of GL3(Fp). These are all conjugate,
so we can choose a basis {v1, v2, v3} of F3

p for which P is the Heisenberg group (in
other words the unipotent radical of the standard Borel subgroup), generated by
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the transformations:

φx(a, b, c) = (a+ b, b, c), φy(a, b, c) = (a, b+ c, c), φu(a, b, c) = (a+ c, b, c)

which correspond to the matrices

x =

 1 1 0
0 1 0
0 0 1

 , y =

 1 0 0
0 1 1
0 0 1

 , u =

 1 0 1
0 1 0
0 0 1

 .

Denoting [x, y] = x−1y−1xy, P has the presentation

P = 〈x, y, u | xp = yp = up = [x, u] = [y, u] = 1, [x, y] = u〉.

Every subgroup of the form F2
pnG is a maximal subgroup of GnG and thus the

Frattini subgroup Φ ofGnφG is contained in 1nG. The subgroupH := 〈v1, v2〉 ≤ G
is invariant under the action of P and hence under the action of G via φ. So,
G nφ H ≤ G nφ G is a maximal subgroup and Φ ≤ 1 n H. This shows that
dimFp G/Φ ≥ 4 and thus GnφG is not generated by less than 4 elements. Therefore
GnG is not realizable over Qp(

√
p), see [20, Chp. II,§5, Thm. 3].

On the other hand both L/M and M/K have full rank at wi and vi and hence
Gal(Lwi

/Kvi) = GnG which is a contradiction as GnG is not realizable over Kvi .
Thus, (K,M,G) does not satisfy Condition (2). �

Example 4.3 ((7) 6⇒ (8), (7) 6⇒ (3)). Let p ≡ 1 (mod 4), K = Q(
√
−1) and v1, v2

the two prime divisors of p in K. Let G = Fpp and P = Fp o (Z/pZ) so that
P = Go 〈x〉 where xp = 1.

The maximal p-extension Qp(p) has Galois group GQp
(p) := Gal(Qp(p)/Qp)

which is a free pro-p group on two generators [20, Chp. II,§5, Thm. 3]. As P is
generated by two elements it is realizable over Qp. Since P is a wreath product of
abelian groups it has a generic extension over K and hence by [18], there exists a
P -extension L/K for which Gal(Lvi/Kvi) = P for i = 1, 2. Let us choose M = LG

to be the G-fixed subfield of L and L0 := L〈x〉. Note that since vi has a unique
prime divisor in L0 for i = 1, 2, we write (L0)vi to denote the completion at that
prime divisor.

Then L/M is an M -adequate extension which is defined over K since L0 = L〈x〉

is a subfield for which:

Gal(L/K) ∼= Gal(L/L0) n Gal(L/M).

Moreover, since [(L0)vi :Kvi ] = pp for i = 1, 2, L0 is a maximal subfield of a
K-central division algebra D0 with invariants ±1/pp at v1 and v2 that is split
elsewhere. Thus L0 is K-adequate and (K,M,G) satisfies Condition (7).

Now sinceG is an abelian group of rank p > 2, G is not realizable overKv1 ,Kv2
∼=

Qp and hence notK-admissible. It follows that (K,M,G) does not satisfy Condition
(8). In order for (K,M,G) to satisfy Condition (3) there should be a G-extension
L0/K for which L0M is M -adequate. In particular, Gal((L0M)v1/Mv1) ∼= G and
hence Gal((L0)v1/Kv1) ∼= G which contradicts the fact that G is not realizable over
Kv1
∼= Qp. Thus (K,M,G) does not satisfy Condition (3) either. �

Example 4.4 ((3) 6⇒ (8), (3) 6⇒ (7)). Let p ≡ 1 (mod 4) and v be its unique prime
divisor in K = Q(

√
p). Let M = Q(

√
p, i) and G = (Z/pZ)3.

By the Grunwald-Wang Theorem, there exists a Galois G-extension L0/K for
which Gal((L0)v/Kv) = G. Thus L = L0M is a Galois G-extension of M such
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that Gal(Lvi/Mvi) = G for each of the two prime divisors v1, v2 of v in M . It
follows that L is M -adequate and (K,M,G) satisfies Condition (3). But as p has
a unique prime divisor in K and G is not metacyclic, G is not K-admissible and
hence (K,M,G) does not satisfy Condition (8).

Let us also show that (K,M,G) does not satisfy Condition (7). Assume, on the
contrary, that (L0, L,D0, D) realizes (7). Then, as there exists a division algebra
of exponent p3 split by L0 and whose sum of invariants is zero, there exist two
primes w1, w2 of K for which [(L0)wi :Kwi ] = p3. Without loss of generality we
assume w1 6= v (otherwise we interchange w1 and w2). Then Gal(Lw1

/Mw1
) ∼= G

since (L0)w1
∩Mw1

= Kw1
. This is a contradiction since tamely ramified extensions

(such as Lw1
/Mw1

) have metacyclic Galois groups. Thus (K,M,G) does not satisfy
Condition (7). �

Remark 4.5. Let us also show that (K,M,G) of the previous example does not
satisfy (4), so that this example also shows that (3) does not imply (4). Assume on
the contrary that there exists a tuple (L,D0, D) that realizes (4). Since D contains
L as a maximal subfield, Gal(Lvi/Mvi) = G and invvi(D) = mi

p3 where (mi, p) = 1,

for i = 1, 2. Note that G is realizable over Mv only for divisors v of p, so that
invu(D) = mu

p2 for suitable mu ∈ Z for every u 6= v1, v2. Now, since D is in the

image of the restriction, we have m1 = m2. The sum of M -invariants of D is an
integer and hence p |m1 +m2 = 2m1 which contradicts (mi, p) = 1.

Example 4.6 ((4) 6⇒ (8)). Choose an odd prime p, and a prime q ≡ 1 (mod p).
Let K = Q(

√
p), so that q splits (completely) in K. We define v to be the unique

prime of K lying over p, and choose w to be a prime divisor of q in K. Let M be
a Z/pZ-extension of K in which v splits and w is inert. Set G := (Z/pZ)3.

Consider the K-division algebra D0 whose invariants are:

invv(D0) =
1

p3
, invw(D0) = − 1

p3

and invu(D0) = 0 for every other place u ofK. NowD = D0⊗KM hasM -invariants
invvi(D) = 1

p3 for the prime divisors v1, v2, . . . , vp of v in M , invw′(D) = − 1
p2 for

the prime divisor w′ of w and invu(D) = 0 for every other place u of M . Note
that G is realizable over Mvi

∼= Kv and (Z/pZ)2 is realizable over Mw′ since q ≡ 1
(mod p). By the Grunwald-Wang Theorem, there exists a Galois G-extension L/M
for which:

Gal(Lvi/Mvi) = G for i = 1, . . . , p, and Gal(Lw′/Mw′) = (Z/pZ)2.

As the degree [L :M ] is equal to the index of D over M , and M splits D, it is a
maximal subfield of D. Thus (K,M,G) satisfies Condition (4). Since p has a unique
prime divisor in K and G is not metacyclic, we deduce that G is not K-admissible
by Corollary 3.4, and hence (K,M,G) does not satisfy Condition (8). �

Example 4.7 ((6) 6⇒ (4)). Let p ≥ 13 be a prime such that p ≡ 1 (mod 4). Let
K = Q(µp) and M = Q(µ4p2) = Q(i, µp2). Let G be the following metacyclic group
of order p3:

(4.1) G =
〈
x, y | xp = yp

2

= 1, x−1yx = yp+1
〉
.

Note that p splits in Q(i) and has exactly two prime divisors v1, v2 in M . Let u be
the unique prime divisor of p in K.
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Let us first show that (K,M,G) does not satisfy Condition (4). As M does not
satisfy Liedahl’s condition, G is not realizable over Mv for every v 6= v1, v2. Assume
on the contrary there exists an M -adequate G-extension L/M and an M -division
algebra D which is defined over K and has a maximal subfield L. Then necessarily:
invv1(D) = invv2(D) = a

p3 for some (a, p) = 1. But as the sum of invariants of D is

0 and G is not realizable over any other v, we have p | 2a contradicting that a and
p are coprime.

We next prove that (K,M,G) satisfies Condition (6). Let σp+1 ∈ Gal(Q(µp2)/Q)
be the automorphism that sends σp+1(ζ) = ζp+1 where ζ is a primitive root of
unity of order p2. Thus σp+1 fixes µp and hence σp+1 ∈ Gal(Q(µp2)/K). As G
satisfies Liedahl’s condition over K, G is realizable over infinitely many primes
of K as in §3.1, so choose one such prime w which is not a divisor of p. Since
[Ku :Qp] = p−1 ≥ 12, there exists a free pro-p extension of Ku of rank (p−1)/2 ≥ 6,
so that G is realizable over Ku by a G-extension Lp0/Ku for which Mu ∩ Lp0 = Ku.

By Theorems 6.4(b) and 2.5 of [16] (see also [13, Proposition 1.2.13]), there exists
a G-extension L0/K for which Gal((L0)w/Kw) = G and (L0)u = Lp0. Hence L0

is K-adequate. Let L = L0M . As Mu ∩ Lp0 = Ku, we have Gal(Lvi/Mvi) = G
for i = 1, 2. Thus L/M is an M -adequate G-extension and (K,M,G) satisfies
Condition (6). This concludes the proof of Example 4.7. �

5. Galois extensions of the subfield

Having established the connections between Conditions (1)–(8), we consider in
this section a final condition where the maximal subfield of the division algebra is
Galois over K:

(9) there exists an M -adequate G-extension L/M for which L is Galois over K;

Proposition 5.1. The implication (9)⇒(1) holds. On the other hand (9) does not
imply (m) for m = 2, . . . , 8, and (m) does not imply (9) for m = 1, . . . , 8.

Before providing a proof we make some remarks. Proposition 3.7 shows that
when G is cyclic, Conditions (1)–(8) are satisfied for every extension of number
fields M/K. This is not the case for (9):

Example 5.2. If M/K is not normal, (9) does not necessarily hold for a cyclic
group G: Let n ≥ 2 and M/K be an extension of degree n whose Galois closure M ′

has Galois group Gal(M ′/K) = Sn. Then every field L ⊇M , which is Galois over
K, must contain M ′ and hence there is no (adequate) Cn-extension L/M for which
L/K is Galois. �

Remark 5.3. Remark 4.1 shows that if M/K is Galois then (2) implies (9). In
particular (9) holds for G cyclic if M/K is Galois.

Proof of Proposition 5.1. Clearly when (K,M,G) satisfies (9), G is M -admissible
and hence (1) holds. Example 5.2 shows that (5) does not imply (9), and hence
no other condition among (1)–(8) implies (9). The examples presented in Section 4
show that (9) does not imply any of the Conditions (2), (8), (4). Indeed:

• (9) 6⇒ (2) follows from Example 4.2 where (K,M,G) does not satisfy (2),

but L = M̂ was constructed to be Galois over K and hence (9) holds.
• (9) 6⇒ (8) follows from Example 4.3 where (8) does not hold, but (7) does.

Since by Remark 5.3, (7) ⇒ (2) ⇒ (9) as M/K is Galois, (K,M,G) also
satisfies (9).
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• (9) 6⇒ (4): Consider Example 4.7. By Remark 5.3, as M/K is Galois,
(6)⇒ (9). Thus, (K,M,G) in this example also satisfies (9).

This completes the placement of (9) in Diagram 2.1 of Theorem 2.2. �
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[4] A. Behajina, Théorie inverse de Galois sur les corps des fractions rationnelles tordus. J. Pure

App. Algebra 225 (2021), 106549.
[5] A. Behajina, B. Deschamps, F. Legrand, Problèmes de plongement finis sur les corps non

commutatifs. To appear in Israel Journal of Mathematics.
[6] O. David, The center of the generic G-crossed product. J. Algebra 463 (2016), 103–133.

[7] D. Habater, J. Hartmann, D. Krashen, Patching subfields of division algebras. Trans. AMS.

363 (2011), 3335–3349.
[8] T. Hanke, D. Neftin, A. Wadsworth, Galois subfields of tame division algebras. Israel J.

Math. 211 (2016), 367–389.

[9] J. König, D. Neftin, The admissibility of M11 over number fields. J. Pure and Applied
Algebra 222 (2018), 2456–2464.

[10] J. König, D. Neftin, The local dimension of a finite group over a number field. Trans. Amer.

Math. Soc. 375 (2022), 4783–4808.
[11] J. König, F. Legrand, D. Neftin, On the local behaviour of specializations of function field

extensions. IMRN (2019), 2951–2980.

[12] S. Liedahl, Presentations of metacylic p-groups with applications to K-admissibility ques-
tions. J. Algebra 169 (1994), 965–983.

[13] D. Neftin, Admissibility of finite groups over number fields. Ph.D. Thesis, Technion 2011.
[14] D. Neftin, Tamely ramified subfields of division algebras. J. Algebra 378 (2013), 184–195.

[15] D. Neftin, E. Paran, Patching and admissibility over two-dimenisonal complete local do-

mains. Algebra and Number Theory 4 (2010), 743–762.
[16] J. Neukirch, Uber das Einbettungsproblem der algebraischen Zahlentheorie. Invent. Math.

21 (1973), 59–116.

[17] A.S. Rapinchuk and I.R. Rapinchuk, On division algebras having the samemaximal sub-
fields. Manuscripta Math. 132 (2010), 273–293.

[18] D. Saltman, Generic Galois extensions. Proc. Nat. Acad. Sci. U.S.A. 77 (1980), 1250–1251.

[19] M. Schacher, Subfields of division rings I. J. Algebra 9 (1968), 451–477.
[20] J.-P. Serre, Galois Cohomology. Springer, 1964 (English trans. 1996).

[21] J.-P. Serre, Local fields. Graduate Texts in Mathematics 67. Springer-Verlag, New York-
Berlin, 1979.

[22] J. Sonn, Q-admissibility of solvable groups. J. Algebra 84 (1983), 411–419.
[23] S. Wang, On Grunwald’s theorem. Ann. Math. (2) 51 (1950), 471–484.

Albanian J. Math. Vol. 17 (2023), no. 2, 81–92

http://albanian-j-math.com/vol-17.html

	1. Introduction
	2. Conditions on the field of definition and the main theorem
	2.1. The eight variations
	2.2. The logical implications

	3. Tame admissibility and cyclic groups
	3.1. Background
	3.2. Fields of definition for tame admissibility
	3.3. Cyclic extensions

	4. Examples
	5. Galois extensions of the subfield
	References

