GENERALIZED WALL-SUN-SUN PRIMES AND MONOGENIC POWER-COMPOSITIONAL TRINOMIALS

LENNY JONES

Professor Emeritus,
Department of Mathematics, Shippensburg University, Shippensburg, Pennsylvania 17257, USA

Abstract. For positive integers a and b, we let $\left[U_{n}\right]$ be the Lucas sequence of the first kind defined by

$$
U_{0}=0, \quad U_{1}=1 \quad \text { and } \quad U_{n}=a U_{n-1}+b U_{n-2} \quad \text { for } n \geq 2
$$

and let $\pi(m):=\pi_{(a, b)}(m)$ be the period length of [U_{n}] modulo the integer $m \geq 2$, where $\operatorname{gcd}(b, m)=1$. We define an (a, b)-Wall-Sun-Sun prime to be a prime p such that $\pi\left(p^{2}\right)=\pi(p)$. When $(a, b)=(1,1)$, such a prime p is referred to simply as a Wall-Sun-Sun prime.

We say that a monic polynomial $f(x) \in \mathbb{Z}[x]$ of degree N is monogenic if $f(x)$ is irreducible over \mathbb{Q} and

$$
\left\{1, \theta, \theta^{2}, \ldots, \theta^{N-1}\right\}
$$

is a basis for the ring of integers of $\mathbb{Q}(\theta)$, where $f(\theta)=0$.
Let $f(x)=x^{2}-a x-b$, and let s be a positive integer. Then, with certain restrictions on a, b and s, we prove that the monogenicity of

$$
f\left(x^{s^{n}}\right)=x^{2 s^{n}}-a x^{s^{n}}-b
$$

is independent of the positive integer n and is determined solely by whether s has a prime divisor that is an (a, b)-Wall-Sun-Sun prime. This result improves and extends previous work of the author in the special case $b=1$.

MSC 2020: Primary 11R04, 11B39, Secondary 11R09, 12F05
Keywords: Wall-Sun-Sun prime, monogenic, power-compositional

[^0]
1. Introduction

Throughout this article, we let $(*)$ denote the set of conditions:

$$
(*)\left\{\begin{array}{l}
a \text { and } b \text { are positive integers } \\
a \not \equiv 0 \quad(\bmod 4) \\
b \text { is squarefree } \\
\mathcal{D} \text { is squarefree }
\end{array}\right.
$$

where

$$
\mathcal{D}:=\left\{\begin{array}{cc}
a^{2}+4 b & \text { if } a \equiv 1 \quad(\bmod 2) \\
(a / 2)^{2}+b & \text { if } a \equiv 0
\end{array}(\bmod 2) . ~ . ~\right.
$$

We also let $\left[U_{n}\right]$ be the Lucas sequence of the first kind defined by

$$
\begin{equation*}
U_{0}=0, \quad U_{1}=1 \quad \text { and } \quad U_{n}=a U_{n-1}+b U_{n-2} \quad \text { for } n \geq 2 . \tag{1.1}
\end{equation*}
$$

The sequence $\left[U_{n}\right]$ is well known to be periodic modulo any integer $m \geq 2$, where $\operatorname{gcd}(b, m)=1$, and we let $\pi(m):=\pi_{(a, b)}(m)$ denote the length of the period of [U_{n}] modulo m.

Definition 1.1. An (a, b)-Wall-Sun-Sun prime is a prime p with $\operatorname{gcd}(b, p)=1$, such that

$$
\begin{equation*}
\pi\left(p^{2}\right)=\pi(p) \tag{1.2}
\end{equation*}
$$

We provide some examples of (a, b)-Wall-Sun-Sun primes in Table 1.

(a, b)	$\left\{\left[p, \pi\left(p^{2}\right)\right]\right\}$
$(2,1)$	$\{[13,28],[31,30]\}$
$(3,26)$	$\{[71,126]\}$
$(10,41)$	$\{[29,120]\}$
$(11,43)$	$\{[2,3],[5,24]\}$
$(15,14)$	$\{[29,28]\}$
$(23,11)$	$\{[2,3],[3,3],[71,35]\}$
$(25,7)$	$\{[5,8]\}$
$(27,22)$	$\{[13,84]\}$

Table 1. (a, b)-Wall-Sun-Sun primes p and the corresponding period length $\pi\left(p^{2}\right)=\pi(p)$

When $(a, b)=(1,1)$, the sequence $\left[U_{n}\right]$ is the well-known Fibonacci sequence, and the (a, b)-Wall-Sun-Sun primes in this case are known simply as Wall-SunSun primes [4, 20]. However, at the time this article was written, no Wall-SunSun primes were known to exist. The existence of Wall-Sun-Sun primes was first investigated by D. D. Wall [17] in 1960, and subsequently studied by the Sun brothers [15], who showed that the first case of Fermat's Last Theorem is false for exponent p only if p is a Wall-Sun-Sun prime.

When $b=1$, primes satisfying (1.2) are also known simply as a-Wall-Sun-Sun primes [19,20]. We point out that the definition of an a-Wall-Sun-Sun prime given in $[19,20]$ is a prime p such that

$$
\begin{equation*}
U_{\pi(p)} \equiv 0 \quad\left(\bmod p^{2}\right) \tag{1.3}
\end{equation*}
$$

Albanian J. Math. Vol. 17 (2023), no. 2, 3-17

In the more general situation of (a, b)-Wall-Sun-Sun primes, it is easily seen that condition (1.2) implies condition (1.3). Although it can be shown that the converse is true when $b=1[5]$, the converse is false in general, as can be seen by the counterexample $(a, b)=(5,2)$ with $p=7$. In this particular example, we have $\pi(7)=48$ and $U_{48} \equiv 0(\bmod 49)$, but $\pi(49)=7 \pi(7)=336$. Since Wall was originally concerned with whether there exist any primes p such that (1.2) holds in the case of $(a, b)=(1,1)$, we have chosen to use condition (1.2), instead of condition (1.3), for our definition of the more general (a, b)-Wall-Sun-Sun prime.

Let $\Delta(f)$ and $\Delta(K)$ denote, respectively, the discriminants over \mathbb{Q} of $f(x) \in \mathbb{Z}[x]$ and a number field K. We define $f(x) \in \mathbb{Z}[x]$ to be monogenic if $f(x)$ is monic, irreducible over \mathbb{Q} and

$$
\Theta=\left\{1, \theta, \theta^{2}, \ldots, \theta^{\operatorname{deg}(f)-1}\right\}
$$

is a basis for the ring of integers \mathbb{Z}_{K} of $K=\mathbb{Q}(\theta)$, where $f(\theta)=0$. If Θ fails to be a basis for \mathbb{Z}_{K}, we say that $f(x)$ is non-monogenic. If $f(x)$ is irreducible over \mathbb{Q} with $f(\theta)=0$, then [3]

$$
\begin{equation*}
\Delta(f)=\left[\mathbb{Z}_{K}: \mathbb{Z}[\theta]\right]^{2} \Delta(K) \tag{1.4}
\end{equation*}
$$

Observe then, from (1.4), that $f(x)$ is monogenic if and only if $\Delta(f)=\Delta(K)$. Thus, if $\Delta(f)$ is squarefree, then $f(x)$ is monogenic from (1.4). However, the converse does not hold in general, and when $\Delta(f)$ is not squarefree, it can be quite difficult to determine whether $f(x)$ is monogenic.

In this article, we establish a connection between (a, b)-Wall-Sun-Sun primes and the monogenicity of certain power-compositional trinomials. More precisely, we prove
Theorem 1.2. Let $f(x)=x^{2}-a x-b \in \mathbb{Z}[x]$, where a and b satisfy (*). Let $s \geq 1$ be an integer such that $\operatorname{gcd}(b, s)=1, \delta_{p} \neq 1$ for each prime divisor $p \geq 3$ of s and $\delta_{3}=-1$ if $3 \mid s$, where δ_{p} is the Legendre symbol $\left(\frac{\mathcal{D}}{p}\right)$. For any integer $n \geq 1$, define $\mathcal{F}_{n}(x):=f\left(x^{s^{n}}\right)$. Then $\mathcal{F}_{n}(x)$ is monogenic if and only if no prime divisor of s is an (a, b)-Wall-Sun-Sun prime.

Theorem 1.2 improves and extends previous work of the author on the special case of $b=1$ [9], which was, in part, originally motivated by recent results of Bouazzaoui $[1,2]$. Bouazzaoui showed, under certain conditions on the prime $p \geq 3$, that

$$
\mathbb{Q}(\sqrt{d}) \text { is } p \text {-rational if and only if } \pi_{(a, b)}\left(p^{2}\right) \neq \pi_{(a, b)}(p)
$$

where $d>0$ is a fundamental discriminant [18], $a=\varepsilon+\bar{\varepsilon}$ and $b=-\mathcal{N}_{\mathbb{Q}(\sqrt{d}) / \mathbb{Q}}(\varepsilon)$, with ε equal to the fundamental unit of $\mathbb{Q}(\sqrt{d})$. We recall, for a prime $p \geq 3$, that a number field K is said to be p-rational if the Galois group of the maximal pro-p-extension of K which is unramified outside p is a free pro- p-group of rank $r_{2}+1$, where r_{2} is the number of pairs of complex embeddings of K.

2. Preliminaries

The formula for the discriminant of an arbitrary monic trinomial, due to Swan [16], is given in the following theorem.
Theorem 2.1. Let $f(x)=x^{N}+A x^{M}+B \in \mathbb{Z}[x]$, where $0<M<N$. Let $r=$ $\operatorname{gcd}(N, M), N_{1}=N / r$ and $M_{1}=M / r$. Then

$$
\Delta(f)=(-1)^{N(N-1) / 2} B^{M-1} D^{r}
$$

Albanian J. Math. Vol. 17 (2023), no. 2, 3-17
where

$$
\begin{equation*}
D:=N^{N_{1}} B^{N_{1}-M_{1}}-(-1)^{N_{1}} M^{M_{1}}(N-M)^{N_{1}-M_{1}} A^{N_{1}} . \tag{2.1}
\end{equation*}
$$

The next two theorems are due to Capelli [14].
Theorem 2.2. Let $f(x)$ and $h(x)$ be polynomials in $\mathbb{Q}[x]$ with $f(x)$ irreducible. Suppose that $f(\alpha)=0$. Then $f(h(x))$ is reducible over \mathbb{Q} if and only if $h(x)-\alpha$ is reducible over $\mathbb{Q}(\alpha)$.

Theorem 2.3. Let $c \in \mathbb{Z}$ with $c \geq 2$, and let $\alpha \in \mathbb{C}$ be algebraic. Then $x^{c}-\alpha$ is reducible over $\mathbb{Q}(\alpha)$ if and only if either there is a prime p dividing c such that $\alpha=\beta^{p}$ for some $\beta \in \mathbb{Q}(\alpha)$ or $4 \mid c$ and $\alpha=-4 \beta^{4}$ for some $\beta \in \mathbb{Q}(\alpha)$.

The next proposition follows from Proposition 1 in [21].
Proposition 2.4. Let $b=1$. Then $\alpha=\left(a+\sqrt{a^{2}+4}\right) / 2$ is the fundamental unit of $\mathbb{Q}(\sqrt{\mathcal{D}})$ with $\mathcal{N}(\alpha)=-1$, where $\mathcal{N}:=\mathcal{N}_{\mathbb{Q}}(\alpha) / \mathbb{Q}$ denotes the algebraic norm.

In the sequel, for an integer $m \geq 2$, we let $\operatorname{ord}_{m}(*)$ denote the order of $*$ modulo m, and we define $(a, b)_{m}:=(a(\bmod m), b(\bmod m))$. For brevity of notation, we also define

$$
\lambda:=\operatorname{ord}_{p}\left(b^{2}\right) \quad \text { and } \quad \delta_{p}:=\left(\frac{\mathcal{D}}{p}\right)
$$

where $\left(\frac{\mathcal{D}}{p}\right)$ is the Legendre symbol.
The following theorem is a compilation of results from various sources.
Theorem 2.5. Let $\left[U_{n}\right]$ be the Lucas sequence as defined in (1.1). Let p be a prime with $b \neq 0(\bmod p)$.
(1) $\pi(p)=2$ if and only if $(a, b)_{p}=(0,1)$.
(2) If $p=2$, then

$$
\begin{aligned}
& \pi(2)= \begin{cases}2 & \text { if }(a, b)_{4} \in\{(2,1),(2,3)\} \\
3 & \text { if }(a, b)_{4} \in\{(1,1),(1,3),(3,1),(3,3)\}\end{cases} \\
& \text { and } \pi(4)= \begin{cases}3 & \text { if }(a, b)_{4}=(3,3) \\
4 & \text { if }(a, b)_{4} \in\{(2,1),(2,3)\} \\
6 & \text { if }(a, b)_{4} \in\{(1,1),(1,3),(3,1)\} .\end{cases}
\end{aligned}
$$

(3) If $p \geq 3$, then $\pi\left(p^{2}\right) \in\{\pi(p), p \pi(p)\}$.
(4) If $\delta_{p}=-1$, then $2(p+1) \lambda \equiv 0(\bmod \pi(p))$.

Proof. Item (1) is obvious. Item (2) follows easily by direct calculation, recalling that $a \not \equiv 0(\bmod 4)$ from conditions $(*)$. Item (3) can be found in [12], while item (4) follows from a theorem in [6].

The following theorem, known as Dedekind's Index Criterion, or simply Dedekind's Criterion if the context is clear, is a standard tool used in determining the monogenicity of a polynomial.

Theorem 2.6 (Dedekind [3]). Let $K=\mathbb{Q}(\theta)$ be a number field, $T(x) \in \mathbb{Z}[x]$ the monic minimal polynomial of θ, and \mathbb{Z}_{K} the ring of integers of K. Let p be a prime number and let $\bar{*}$ denote reduction of $*$ modulo p (in $\mathbb{Z}, \mathbb{Z}[x]$ or $\mathbb{Z}[\theta]$). Let

$$
\bar{T}(x)=\prod_{i} \overline{\tau_{i}}(x)^{e_{i}}
$$

Albanian J. Math. Vol. 17 (2023), no. 2, 3-17
be the factorization of $T(x)$ modulo p in $\mathbb{F}_{p}[x]$, and set

$$
g(x)=\prod_{i} \tau_{i}(x)
$$

where the $\tau_{i}(x) \in \mathbb{Z}[x]$ are arbitrary monic lifts of the $\overline{\tau_{i}}(x)$. Let $h(x) \in \mathbb{Z}[x]$ be a monic lift of $\bar{T}(x) / \bar{g}(x)$ and set

$$
F(x)=\frac{g(x) h(x)-T(x)}{p} \in \mathbb{Z}[x] .
$$

Then

$$
\left[\mathbb{Z}_{K}: \mathbb{Z}[\theta]\right] \not \equiv 0 \quad(\bmod p) \Longleftrightarrow \operatorname{gcd}(\bar{F}, \bar{g}, \bar{h})=1 \text { in } \mathbb{F}_{p}[x]
$$

The next result is essentially an algorithmic adaptation of Theorem 2.6 specifically for trinomials.

Theorem 2.7. [8] Let $N \geq 2$ be an integer. Let $K=\mathbb{Q}(\theta)$ be an algebraic number field with $\theta \in \mathbb{Z}_{K}$, the ring of integers of K, having minimal polynomial $f(x)=$ $x^{N}+A x^{M}+B$ over \mathbb{Q}, with $\operatorname{gcd}(M, N)=r, N_{1}=N / r$ and $M_{1}=M / r$. Let D be as defined in (2.1). A prime factor p of $\Delta(f)$ does not divide $\left[\mathbb{Z}_{K}: \mathbb{Z}[\theta]\right]$ if and only if p satisfies one of the following items:
(1) when $p \mid A$ and $p \mid B$, then $p^{2}+B$;
(2) when $p \mid A$ and $p+B$, then
either $\quad p \mid A_{2}$ and $p+B_{1} \quad$ or $\quad p+A_{2}\left((-B)^{M_{1}} A_{2}^{N_{1}}-\left(-B_{1}\right)^{N_{1}}\right)$,
where $A_{2}=A / p$ and $B_{1}=\frac{B+(-B)^{p^{e}}}{p}$ with $p^{e} \| N$;
(3) when $p+A$ and $p \mid B$, then
either $\quad p \mid A_{1}$ and $p+B_{2} \quad$ or $\quad p+A_{1} B_{2}^{M-1}\left((-A)^{M_{1}} A_{1}^{N_{1}-M_{1}}-\left(-B_{2}\right)^{N_{1}-M_{1}}\right)$,
where $A_{1}=\frac{A+(-A)^{p^{j}}}{p}$ with $p^{j} \|(N-M)$, and $B_{2}=B / p$;
(4) when $p+A B$ and $p \mid M$ with $N=u p^{m}, M=v p^{m}, p+\operatorname{gcd}(u, v)$, then the polynomials

$$
\begin{aligned}
& G(x):=x^{N / p^{m}}+A x^{M / p^{m}}+B \quad \text { and } \\
& H(x):=\frac{A x^{M}+B+\left(-A x^{M / p^{m}}-B\right)^{p^{m}}}{p}
\end{aligned}
$$

are coprime modulo p;
(5) when $p+A B M$, then $p^{2}+D / r^{N_{1}}$.

Remark 2.8. We will find both Theorem 2.6 and Theorem 2.7 useful in our investigations.

The next theorem follows from Corollary (2.10) in [11].
Theorem 2.9. Let K and L be number fields with $K \subset L$. Then

$$
\Delta(K)^{[L: K]} \mid \Delta(L)
$$

Albanian J. Math. Vol. 17 (2023), no. 2, 3-17

3. The Proof of Theorem 1.2

Throughout this section we let

$$
f(x)=x^{2}-a x-b \in \mathbb{Z}[x] \quad \text { and } \quad \alpha=\frac{a+\sqrt{a^{2}+4 b}}{2}
$$

where a and b satisfy ($*$). We first prove some lemmas.
Lemma 3.1. Let s be a positive integer. Then $f\left(x^{s^{n}}\right)$ is irreducible over \mathbb{Q} for all integers $n \geq 1$.

Proof. Since $\mathcal{D}>1$ is squarefree, it follows that $f(x)$ is irreducible over \mathbb{Q}, and the trivial case of $s=1$ is true. So, suppose then that $s \geq 2$. Note that $f(\alpha)=0$. Let $h(x)=x^{s^{n}}$ and assume, by way of contradiction, that $f(h(x))$ is reducible. Then, by Theorems 2.2 and 2.3 , we have, for some $\beta \in \mathbb{Q}(\alpha)$, that either $\alpha=\beta^{p}$ for some prime p dividing s, or $\alpha=-4 \beta^{4}$ if $s^{n} \equiv 0(\bmod 4)$.

If $b \geq 2$, then, in either case, we arrive at a contradiction by taking norms, since $\mathcal{N}(\alpha)=-b$ is squarefree but neither $\mathcal{N}\left(\beta^{p}\right)=\mathcal{N}(\beta)^{p}$ nor $\mathcal{N}\left(-4 \beta^{4}\right)=16 \mathcal{N}(\beta)^{4}$ is squarefree. Suppose then that $b=1$. If $\alpha=-4 \beta^{4}$, then

$$
-1=\mathcal{N}(\alpha)=\mathcal{N}\left(-4 \beta^{4}\right) \equiv 0(\bmod 16),
$$

which is impossible. Hence, $\alpha=\beta^{p}$ for some prime divisor p of s. Then, we see by taking norms that

$$
\mathcal{N}(\beta)^{p}=\mathcal{N}(\alpha)=-1
$$

which implies that $p \geq 3$ and $\mathcal{N}(\beta)=-1$, since $\mathcal{N}(\beta) \in \mathbb{Z}$. Thus, β is a unit, and therefore $\beta= \pm \alpha^{j}$ for some $j \in \mathbb{Z}$, since α is the fundamental unit of $\mathbb{Q}(\sqrt{\mathcal{D}})$ by Proposition 2.4. Consequently,

$$
\alpha=\beta^{p}=(\pm 1)^{p} \alpha^{j p}
$$

which implies that $(\pm 1)^{p} \alpha^{j p-1}=1$, contradicting the fact that α has infinite order in the group of units of the ring of algebraic integers in the real quadratic field $\mathbb{Q}(\sqrt{\mathcal{D}})$.
Remark 3.2. Although here we are assuming that conditions (*) hold, so that $a \not \equiv 0(\bmod 4)$, the argument given in the proof of Lemma 3.1 for the case of $b=1$ is still valid when $a \equiv 0(\bmod 4)$ with the single exception of $a=4[21]$ since, in that case, $\alpha=2+\sqrt{5}$ is not the fundamental unit of $\mathbb{Q}(\sqrt{5})$. However, since $\varepsilon=(1+\sqrt{5}) / 2$ is the fundamental unit of $\mathbb{Q}(\sqrt{5})$, and $\alpha=\varepsilon^{3}$, Theorem 2.2 and Theorem 2.3 can be used to determine exactly when $f\left(x^{s^{n}}\right)=x^{2 s^{n}}-4 x^{s^{n}}-1$ is reducible and how $f\left(x^{s^{n}}\right)$ factors.

Lemma 3.3. The polynomial $f(x)$ is monogenic.
Proof. By Lemma 3.1, $f(x)$ is irreducible over \mathbb{Q}. Let p be a prime divisor of $\Delta(f)=a^{2}+4 b$. To examine the monogenicity of $f(x)$, we use Theorem 2.7 with $\theta=\alpha$.

Suppose first that $p \mid a$. Then $p \mid 4 b$. If $p \mid b$, then item 1 of Theorem 2.7 applies, and we see that $\left[\mathbb{Z}_{K}: \mathbb{Z}[\alpha]\right] \not \equiv 0(\bmod p)$ since b is squarefree. Now suppose that $p+b$, so that item 2 of Theorem 2.7 applies. Note that $p=2$ since $p \mid 4 b$. Hence, $2 \mid a$ and $\mathcal{D}=(a / 2)^{2}+b \equiv 1+b(\bmod 4)$ since $a \not \equiv 0(\bmod 4)$. Thus, since \mathcal{D} is squarefree and $2+b$, it follows that $b \equiv 1(\bmod 4)$ and therefore,

$$
B_{1}=\left(-b+b^{2}\right) / 2=b(b-1) / 2 \equiv 0 \quad(\bmod 2) .
$$

Albanian J. Math. Vol. 17 (2023), no. 2, 3-17

Also, $A_{2}=-a / 2 \equiv 1(\bmod 2)$, since $a \not \equiv 0(\bmod 4)$. Thus,

$$
b A_{2}^{2}-\left(-B_{1}\right)^{2} \equiv 1 \quad(\bmod 2)
$$

from which we conclude that $\left[\left[\mathbb{Z}_{K}: \mathbb{Z}[\alpha]\right] \not \equiv 0(\bmod 2)\right.$.
Next, suppose that $p+a$. Then $p+4 b$ since $p \mid\left(a^{2}+4 b\right)$, and so item 5 of Theorem 2.7 applies. Since \mathcal{D} is squarefree and $p \neq 2$, we deduce that $p^{2}+\left(a^{2}+4 b\right)$ and consequently, $\left[\mathbb{Z}_{K}: \mathbb{Z}[\alpha]\right] \not \equiv 0(\bmod p)$, which completes the proof.

Lemma 3.4. Let p be a prime, with $b \neq 0(\bmod p)$.
(1) The prime $p=2$ is an (a, b)-Wall-Sun-Sun prime if and only if $(a, b)_{4}=$ $(3,3)$.
(2) If $p \geq 3$ and $a \equiv 0(\bmod p)$, then p is an $(a, b)-$ Wall-Sun-Sun prime if and only if $\operatorname{ord}_{p^{2}}(b)=\operatorname{ord}_{p}(b)$ and $a \equiv 0\left(\bmod p^{2}\right)$.
(3) If $p \geq 5$ and $\delta_{p}=0$, then p is not an (a, b)-Wall-Sun-Sun prime.

Proof. We see that item 1 follows from item 2 of Theorem 2.5.
To establish item 2, we let $\left[U_{n}\right]_{m}$ denote the sequence (1.1) reduced modulo the integer $m \in\left\{p, p^{2}\right\}$. Since $a \equiv 0(\bmod p)$, we can write $a=p k$, for some positive integer k. Then,

$$
\left[U_{n}\right]_{p}=\left[0,1,0, b, 0, b^{2}, 0, b^{3}, 0, b^{4}, 0, b^{5}, \ldots\right]
$$

and

$$
\left[U_{n}\right]_{p^{2}}=\left[0,1, p k, b, 2 p k b, b^{2}, 3 p k b^{2}, b^{3}, \ldots, \operatorname{ord}_{p}(b) p k b^{\operatorname{ord}_{p}(b)-1}, b^{\operatorname{ord}_{p}(b)}, \ldots\right]
$$

Thus, it follows that p is an (a, b)-Wall-Sun-Sun prime if and only if

$$
\begin{aligned}
\pi\left(p^{2}\right)=\pi(p)=2 \operatorname{ord}_{p}(b) & \Longleftrightarrow \operatorname{ord}_{p^{2}}(b)=\operatorname{ord}_{p}(b) \text { and } \\
& \operatorname{ord}_{p}(b) p k b^{\operatorname{ord}_{p}(b)-1} \equiv 0 \quad\left(\bmod p^{2}\right) \\
& \Longleftrightarrow \operatorname{ord}_{p^{2}}(b)=\operatorname{ord}_{p}(b) \text { and } a \equiv 0 \quad\left(\bmod p^{2}\right)
\end{aligned}
$$

since $b \not \equiv 0(\bmod p)$ and $\operatorname{ord}_{p}(b) \leq p-1 \not \equiv 0(\bmod p)$.
The proof of item 3 can be found in [10].
Lemma 3.5. Let $\bar{\alpha}=\left(a-\sqrt{a^{2}+4 b}\right) / 2$, and let $p \geq 3$ be a prime such that $\delta_{p}=-1$. Then
(1) $\operatorname{ord}_{m}(\alpha)=\operatorname{ord}_{m}(\bar{\alpha})=\pi(m)$ for $m \in\left\{p, p^{2}\right\}$ and
(2) $\alpha^{p+1} \equiv-b(\bmod p)$.

Proof. Note that $b \not \equiv 0(\bmod p)$ since $\delta_{p}=-1$. It follows from [13] that the order, modulo an integer $m \geq 3$ with $\operatorname{gcd}(m, b)=1$, of the companion matrix \mathcal{C} for the characteristic polynomial of [U_{n}] is $\pi(m)$. The characteristic polynomial of [U_{n}] is $f(x)$, so that

$$
\mathcal{C}=\left[\begin{array}{ll}
0 & b \\
1 & a
\end{array}\right]
$$

Since the eigenvalues of \mathcal{C} are α and $\bar{\alpha}$, we conclude that

$$
\operatorname{ord}_{m}\left(\left[\begin{array}{cc}
\alpha & 0 \\
0 & \bar{\alpha}
\end{array}\right]\right)=\operatorname{ord}_{m}(\mathcal{C})=\pi(m), \quad \text { for } m \in\left\{p, p^{2}\right\}
$$

Albanian J. Math. Vol. 17 (2023), no. 2, 3-17

Let $z \geq 1$ be an integer, and suppose that $\alpha^{z}=c+d \sqrt{\mathcal{D}} \in \mathbb{Q}(\sqrt{\mathcal{D}})$. Then $\mathcal{N}\left(\alpha^{z}\right)=$ $c^{2}-\mathcal{D} d^{2}$. But $\mathcal{N}\left(\alpha^{z}\right)=\mathcal{N}(\alpha)^{z}=(-b)^{z}$, so that $c^{2}-\mathcal{D} d^{2}=(-b)^{z}$. Thus,

$$
\bar{\alpha}^{z}=(-b / \alpha)^{z}=(-b)^{z} /(c+d \sqrt{\mathcal{D}})=(-b)^{z}(c-d \sqrt{\mathcal{D}}) /\left(c^{2}-\mathcal{D} d^{2}\right)=c-d \sqrt{\mathcal{D}}
$$

Hence, since $\delta_{p}=-1$, it follows that

$$
\alpha^{z} \equiv 1 \quad(\bmod m) \quad \text { if and only if } \quad \bar{\alpha}^{z} \equiv 1 \quad(\bmod m)
$$

for $m \in\left\{p, p^{2}\right\}$, which establishes item 1 .
By Euler's criterion,

$$
\left(\sqrt{a^{2}+4 b}\right)^{p+1}=\left(a^{2}+4 b\right)^{(p-1) / 2}\left(a^{2}+4 b\right) \equiv \delta_{p}\left(a^{2}+4 b\right) \equiv-\left(a^{2}+4 b\right) \quad(\bmod p)
$$

which implies

$$
\left(\sqrt{a^{2}+4 b}\right)^{p} \equiv-\sqrt{a^{2}+4 b} \quad(\bmod p)
$$

Hence,

$$
\begin{aligned}
\alpha^{p+1} & =\left(\frac{a+\sqrt{a^{2}+4 b}}{2}\right)\left(\frac{a+\sqrt{a^{2}+4 b}}{2}\right)^{p} \\
& =\left(\frac{a+\sqrt{a^{2}+4 b}}{2}\right) \sum_{j=0}^{p}\binom{p}{j}\left(\frac{a}{2}\right)^{j}\left(\frac{\sqrt{a^{2}+4 b}}{2}\right)^{p-j} \\
& \equiv\left(\frac{a+\sqrt{a^{2}+4 b}}{2}\right)\left(\left(\frac{a}{2}\right)^{p}+\left(\frac{\sqrt{a^{2}+4 b}}{2}\right)^{p}\right)(\bmod p) \\
& \equiv\left(\frac{a+\sqrt{a^{2}+4 b}}{2}\right)\left(\frac{a-\sqrt{a^{2}+4 b}}{2}\right)(\bmod p) \\
& \equiv-b(\bmod p),
\end{aligned}
$$

which completes the proof of the lemma.
Lemma 3.6. Let $p \geq 3$ be a prime such that $\delta_{p}=-1$. Then the following conditions are equivalent:
(1) p is an (a, b)-Wall-Sun-Sun prime,
(2) $f\left(\alpha^{p^{m}}\right) \equiv 0\left(\bmod p^{2}\right)$ for all integers $m \geq 1$,
(3) $f\left(\alpha^{p^{m}}\right) \equiv 0\left(\bmod p^{2}\right)$ for some integer $m \geq 1$.

Proof. First, observe that 2 clearly implies 3.
We show next that 1 implies 2. Because p is an (a, b)-Wall-Sun-Sun prime, we define

$$
\pi:=\pi\left(p^{2}\right)=\pi(p)
$$

Since $\delta_{p}=-1$, we see from item 4 of Theorem 2.5 that

$$
2(p+1) \lambda \equiv 0 \quad(\bmod \pi)
$$

The squares modulo p form a subgroup, of order $(p-1) / 2$, of the multiplicative $\operatorname{group}(\mathbb{Z} / p \mathbb{Z})^{*}$. Thus, $(p-1) / 2 \equiv 0(\bmod \lambda)$, so that

$$
2(p+1)(p-1) / 2=p^{2}-1 \equiv 0 \quad(\bmod \pi)
$$

Consequently, $\alpha^{p^{2}-1} \equiv 1\left(\bmod p^{2}\right)$ by item 1 of Lemma 3.5, from which it follows that

$$
\alpha^{p^{2 k}} \equiv \alpha \quad\left(\bmod p^{2}\right) \quad \text { and } \quad \alpha^{p^{2 k+1}} \equiv \alpha^{p} \quad\left(\bmod p^{2}\right)
$$

Albanian J. Math. Vol. 17 (2023), no. 2, 3-17
for every integer $k \geq 1$. Hence,

$$
f\left(\alpha^{p^{m}}\right) \equiv\left\{\begin{array}{ccc}
\alpha^{2}-a \alpha-b & \left(\bmod p^{2}\right) & \text { if } m \equiv 0 \quad(\bmod 2) \\
\alpha^{2 p}-a \alpha^{p}-b & \left(\bmod p^{2}\right) & \text { if } m \equiv 1 \quad(\bmod 2)
\end{array}\right.
$$

Thus, $f\left(\alpha^{p^{m}}\right) \equiv 0\left(\bmod p^{2}\right)$ when $m \equiv 0(\bmod 2)$, since $\alpha^{2}-a \alpha-b=0$. Suppose then that $m \equiv 1(\bmod 2)$. Let $\bar{\alpha}=\left(a-\sqrt{a^{2}+4 b}\right) / 2$. Since p is an (a, b)-Wall-SunSun prime, and the fact that $\bar{\alpha}=-b / \alpha$, we deduce from the Binet-representation formula for U_{π} that

$$
\begin{equation*}
U_{\pi}=\frac{\alpha^{\pi}-\bar{\alpha}^{\pi}}{\alpha-\bar{\alpha}}=\frac{\alpha^{2 \pi}-(-b)^{\pi}}{\alpha^{\pi}(\alpha-\bar{\alpha})} \equiv 0 \quad\left(\bmod p^{2}\right) \tag{3.1}
\end{equation*}
$$

Hence, since $\alpha^{\pi} \equiv 1\left(\bmod p^{2}\right)$ from item 1 of Lemma 3.5, we conclude from (3.1) that $(-b)^{\pi} \equiv 1\left(\bmod p^{2}\right)$, which implies that

$$
\begin{equation*}
b^{2(p+1) \lambda} \equiv 1 \quad\left(\bmod p^{2}\right), \tag{3.2}
\end{equation*}
$$

by item 4 of Theorem 2.5. Thus, from (3.2), it follows that

$$
\begin{equation*}
b^{2(p+1) \lambda}-1 \equiv\left(b^{2 \lambda}-1\right) B \equiv 0 \quad\left(\bmod p^{2}\right) \tag{3.3}
\end{equation*}
$$

where

$$
B=\left(b^{2 \lambda}\right)^{p}+\left(b^{2 \lambda}\right)^{p-1}+\cdots+b^{2 \lambda}+1
$$

Since $b^{2 \lambda} \equiv\left(b^{2}\right)^{\lambda} \equiv 1(\bmod p)$, we see that $B \equiv p+1 \equiv 1(\bmod p)$. Therefore,

$$
\begin{equation*}
b^{2 \lambda}-1 \equiv 0 \quad\left(\bmod p^{2}\right) \tag{3.4}
\end{equation*}
$$

from (3.3). Also, since $\delta_{p}=-1$ and $\alpha^{\pi} \equiv 1\left(\bmod p^{2}\right)$, we have from item 4 of Theorem 2.5 that

$$
\begin{equation*}
\alpha^{2(p+1) \lambda}-1 \equiv 0 \quad\left(\bmod p^{2}\right) \tag{3.5}
\end{equation*}
$$

Combining (3.4) and (3.5) yields

$$
\begin{equation*}
\alpha^{2(p+1) \lambda}-b^{2 \lambda} \equiv\left(\alpha^{p+1}-b\right)\left(\alpha^{p+1}+b\right) C \equiv 0 \quad\left(\bmod p^{2}\right), \tag{3.6}
\end{equation*}
$$

where

$$
\begin{aligned}
C & =\left(\alpha^{2(p+1)}\right)^{\lambda-1}+\left(\alpha^{2(p+1)}\right)^{\lambda-2} b^{2}+\cdots+\alpha^{2(p+1)}\left(b^{2}\right)^{\lambda-2}+\left(b^{2}\right)^{\lambda-1} \\
& \equiv \lambda b^{2 \lambda+2} \quad(\bmod p)
\end{aligned}
$$

since $\alpha^{2(p+1)} \equiv b^{2}(\bmod p)$ from item 2 of Lemma 3.5. Thus, from (3.4) and the fact that $(p-1) / 2 \equiv 0(\bmod \lambda)$, we deduce that $C \equiv \lambda b^{2} \not \equiv 0(\bmod p)$. Note that $\alpha^{p+1}-b \not \equiv 0(\bmod p)$ since $\alpha^{p+1}+b \equiv 0(\bmod p)$ and $b \not \equiv 0(\bmod p)$. Therefore, it follows from (3.6) that $\alpha^{p+1} \equiv-b\left(\bmod p^{2}\right)$. Hence, $\alpha^{p} \equiv-b \alpha^{-1}\left(\bmod p^{2}\right)$, and consequently,

$$
\begin{aligned}
f\left(\alpha^{p^{m}}\right) & \equiv \alpha^{2 p}-a \alpha^{p}-b \quad\left(\bmod p^{2}\right) \\
& \equiv\left(-b \alpha^{-1}\right)^{2}-a\left(-b \alpha^{-1}\right)-b \quad\left(\bmod p^{2}\right) \\
& \equiv-b \alpha^{-2}\left(\alpha^{2}-a \alpha-b\right) \quad\left(\bmod p^{2}\right) \\
& \equiv 0 \quad\left(\bmod p^{2}\right)
\end{aligned}
$$

since $\alpha^{2}-a \alpha-b=0$, which completes the proof that 1 implies 2 .
Finally, to establish that 3 implies 1 , we first note that $\pi\left(p^{2}\right) \in\{\pi(p), p \pi(p)\}$ by item 3 of Theorem 2.5. Then, in either case, we have that $\alpha^{p \pi(p)} \equiv 1\left(\bmod p^{2}\right)$,

Albanian J. Math. Vol. 17 (2023), no. 2, 3-17
and we conclude from item 4 of Theorem 2.5 that $\alpha^{2 p(p+1) \lambda} \equiv 1\left(\bmod p^{2}\right)$. Since $(p-1) / 2 \equiv 0(\bmod \lambda)$, we deduce

$$
\alpha^{2 p(p+1)(p-1) / 2} \equiv \alpha^{p^{3}-p} \equiv 1 \quad\left(\bmod p^{2}\right)
$$

so that $\alpha^{p^{3}} \equiv \alpha^{p}\left(\bmod p^{2}\right)$. It then follows easily that

$$
\begin{equation*}
\alpha^{p^{2 k}} \equiv \alpha^{p^{2}} \quad\left(\bmod p^{2}\right) \quad \text { and } \quad \alpha^{p^{2 k+1}} \equiv \alpha^{p} \quad\left(\bmod p^{2}\right) \tag{3.7}
\end{equation*}
$$

for all integers $k \geq 1$. Hence, from (3.7), we have that

$$
f\left(\alpha^{p^{m}}\right) \equiv\left\{\begin{array}{ccc}
\alpha^{2 p^{2}}-a \alpha^{p^{2}}-b & \left(\bmod p^{2}\right) & \text { if } m \equiv 0 \tag{3.8}\\
\alpha^{2 p}-a \alpha^{p}-b & \left(\bmod p^{2}\right) & \text { if } m \equiv 1
\end{array}(\bmod 2),\right.
$$

Since $\delta_{p}=-1$, we have that $f(x)$ is irreducible modulo p. Consequently, the only zeros of $f(x)$ in $\left(\mathbb{Z} / p^{2} \mathbb{Z}\right)[\sqrt{5}]$ are α and $\bar{\alpha}=-b \alpha^{-1}$. Suppose that $f\left(\alpha^{p^{m}}\right) \equiv 0$ $\left(\bmod p^{2}\right)$ for some integer $m \equiv 1(\bmod 2)$. Then, we see from (3.8) that

$$
\text { either } \alpha^{p} \equiv \alpha \quad\left(\bmod p^{2}\right) \quad \text { or } \quad \alpha^{p} \equiv \bar{\alpha} \quad\left(\bmod p^{2}\right)
$$

If $\alpha^{p} \equiv \alpha\left(\bmod p^{2}\right)$, then, from item 2 of Lemma 3.5, we have that

$$
\frac{a^{2}+4 b+a \sqrt{a^{2}+4 b}}{2}=\alpha^{2}+b \equiv \alpha^{p+1}+b \equiv 0 \quad(\bmod p)
$$

which implies that $a^{2}+4 b \equiv 0(\bmod p)$, contradicting the fact that $\delta_{p}=-1$. Hence,

$$
\begin{equation*}
\alpha^{p} \equiv \bar{\alpha} \equiv-b \alpha^{-1} \quad\left(\bmod p^{2}\right) \quad \text { or equivalently, } \quad \alpha^{p+1} \equiv-b \quad\left(\bmod p^{2}\right) . \tag{3.9}
\end{equation*}
$$

Since $\alpha^{2 p}-a \alpha^{p}-b \equiv 0\left(\bmod p^{2}\right)$, then $\bar{\alpha}^{2 p}-a \bar{\alpha}^{p}-b \equiv 0\left(\bmod p^{2}\right)$ so that

$$
\text { either } \quad \bar{\alpha}^{p} \equiv \alpha \quad\left(\bmod p^{2}\right) \quad \text { or } \quad \bar{\alpha}^{p} \equiv \bar{\alpha} \quad\left(\bmod p^{2}\right)
$$

From (3.9), we have that

$$
\begin{equation*}
\bar{\alpha}^{p} \equiv(-b)^{p}\left(\alpha^{p}\right)^{-1} \equiv(-b)^{p}(\bar{\alpha})^{-1} \quad\left(\bmod p^{2}\right) . \tag{3.10}
\end{equation*}
$$

If $\bar{\alpha}^{p} \equiv \bar{\alpha}\left(\bmod p^{2}\right)$, then we see from (3.10) that $\bar{\alpha}^{2} \equiv(-b)^{p}\left(\bmod p^{2}\right)$, so that $\bar{\alpha}^{2}+b \equiv 0(\bmod p)$. That is,

$$
\left(\frac{a-\sqrt{a^{2}+4 b}}{2}\right)^{2}+b=\frac{a^{2}+4 b-a \sqrt{a^{2}+4 b}}{2} \equiv 0 \quad(\bmod p)
$$

which implies that $a^{2}+4 b \equiv 0(\bmod p)$, again contradicting the fact that $\delta_{p}=-1$. Therefore, $\bar{\alpha}^{p} \equiv \alpha\left(\bmod p^{2}\right)$, and we see from (3.9) and (3.10) that

$$
(-b)^{p} \equiv \alpha^{p+1} \equiv-b \quad\left(\bmod p^{2}\right) .
$$

Consequently,

$$
\begin{equation*}
(-b)^{p-1} \equiv 1 \quad\left(\bmod p^{2}\right) \tag{3.11}
\end{equation*}
$$

Combining (3.9) and (3.11) yields

$$
\begin{equation*}
\alpha^{p^{2}-1} \equiv\left(\alpha^{p+1}\right)^{p-1} \equiv(-b)^{p-1} \equiv 1 \quad\left(\bmod p^{2}\right) \tag{3.12}
\end{equation*}
$$

Recall that $\pi\left(p^{2}\right) \in\{\pi(p), p \pi(p)\}$ by item 3 of Theorem 2.5. If $\pi\left(p^{2}\right)=p \pi(p)$, then we have by item 1 of Lemma 3.5 and (3.12) that $p^{2}-1 \equiv 0(\bmod p)$, which is impossible. Thus, we must have $\pi\left(p^{2}\right)=\pi(p)$, which completes the proof that 3 implies 1 when $m \equiv 1(\bmod 2)$.

Albanian J. Math. Vol. 17 (2023), no. 2, 3-17

Suppose now that $f\left(\alpha^{p^{m}}\right) \equiv 0\left(\bmod p^{2}\right)$ for some integer $m \equiv 0(\bmod 2)$. Then, we see from (3.8) that

$$
\begin{equation*}
\text { either } \quad \alpha^{p^{2}} \equiv \alpha \quad\left(\bmod p^{2}\right) \quad \text { or } \quad \alpha^{p^{2}} \equiv \bar{\alpha} \equiv-b \alpha^{-1} \quad\left(\bmod p^{2}\right) . \tag{3.13}
\end{equation*}
$$

If $\alpha^{p^{2}} \equiv-b \alpha^{-1}\left(\bmod p^{2}\right)$, then $\alpha^{p^{2}+1} \equiv-b\left(\bmod p^{2}\right)$. Note that $p+b$ since $\delta_{p}=-1$. Hence, using item 2 of Lemma 3.5, we have that

$$
\begin{aligned}
\alpha^{p^{2}+1} \equiv-b \quad(\bmod p) & \Longrightarrow\left(-b \alpha^{-1}\right)^{p} \alpha \equiv-b \quad(\bmod p) \\
& \Longrightarrow(-b)^{p}\left(\alpha^{p}\right)^{-1} \alpha \equiv-b \quad(\bmod p) \\
& \Longrightarrow \alpha \equiv \alpha^{p} \quad(\bmod p) \\
& \Longrightarrow \alpha \equiv \bar{\alpha}, \quad(\bmod p)
\end{aligned}
$$

which yields the contradiction $a^{2}+4 b \equiv 0(\bmod p)$. Thus, $\alpha^{p^{2}} \equiv \alpha\left(\bmod p^{2}\right)$ from (3.13), which implies that $\alpha^{p^{2}-1} \equiv 1\left(\bmod p^{2}\right)$. Therefore, the conclusion of the proof in this case is identical to the conclusion of the case $m \equiv 1(\bmod 2)$ following (3.12).

Lemma 3.7. Let $s \geq 3$ and $n \geq 1$ be integers. Let $p \geq 3$ be a prime such that $p^{m} \| s^{n}$ with $m \geq 1$. Suppose that $\mathcal{F}_{n}(x):=f\left(x^{s^{n}}\right)$ and $K=\mathbb{Q}(\theta)$, with \mathbb{Z}_{K} the ring of integers of K, where $\mathcal{F}_{n}(\theta)=0$.
(1) If $\delta_{p} \neq 1$, then

$$
\left[\mathbb{Z}_{K}: \mathbb{Z}[\theta]\right] \equiv 0 \quad(\bmod p) \quad \text { if and only if } \quad \alpha^{2 p^{m}}-a \alpha^{p^{m}}-b \equiv 0 \quad\left(\bmod p^{2}\right)
$$

(2) Furthermore, if $\delta_{p}=0$, then $\left[\mathbb{Z}_{K}: \mathbb{Z}[\theta]\right] \not \equiv 0(\bmod p)$.

Proof. For item 1, we apply Theorem 2.6 to $T(x):=\mathcal{F}_{n}(x)$ using the prime p. Let

$$
\begin{equation*}
\tau(x)=x^{2 s^{n} / p^{m}}-a x^{s^{n} / p^{m}}-b=f\left(x^{s^{n} / p^{m}}\right) \tag{3.14}
\end{equation*}
$$

and $\bar{\tau}(x)=\prod_{i} \overline{\tau_{i}}(x)^{e_{i}}$, where the $\overline{\tau_{i}}(x)$ are irreducible in $\mathbb{F}_{p}[x]$. Then $\bar{T}(x)=$ $\prod_{i} \overline{\tau_{i}}(x)^{p^{m} e_{i}}$. Thus, we can let

$$
g(x)=\prod_{i} \tau_{i}(x) \quad \text { and } \quad h(x)=\prod_{i} \tau_{i}(x)^{p^{m} e_{i}-1}
$$

where the $\tau_{i}(x)$ are monic lifts of the $\overline{\tau_{i}}(x)$. Note also that

$$
g(x) h(x)=\prod_{i} \tau_{i}(x)^{p^{m} e_{i}}=\tau(x)+p w(x),
$$

for some $w(x) \in \mathbb{Z}[x]$. Then, in Theorem 2.6, we have that

$$
\begin{align*}
p F(x) & =g(x) h(x)-T(x) \\
& =(\tau(x)+p w(x))^{p^{m}}-T(x) \\
& =\sum_{j=1}^{p^{m}-1}\binom{p^{m}}{j} \tau(x)^{j}(p w(x))^{p^{m}-j}+(p w(x))^{p^{m}}+\tau(x)^{p^{m}}-T(x) \tag{3.15}\\
& \equiv \tau(x)^{p^{m}}-T(x) \quad\left(\bmod p^{2}\right) .
\end{align*}
$$

Suppose that $\tau(\gamma)=0$. Then, we see from (3.14) that

$$
\tau(\gamma)=f\left(\gamma^{s^{n} / p^{m}}\right)=0
$$

Albanian J. Math. Vol. 17 (2023), no. 2, 3-17

If $\delta_{p}=-1$, then $f(x)$ is irreducible modulo p, while if $\delta_{p}=0$, then $f(x) \equiv(x-\alpha)^{2}$ $(\bmod p)$, where $\alpha=2^{-1} a(\bmod p)$. In either case, without loss of generality, we can assume $\gamma^{s^{n} / p^{m}}=\alpha$ so that $\gamma^{s^{n}}=\alpha^{p^{m}}$. Hence, from (3.15), it follows that

$$
\begin{aligned}
p F(\gamma) & \equiv-T(\gamma) \quad\left(\bmod p^{2}\right) \\
& \equiv-\left(\gamma^{2 s^{n}}-a \gamma^{s^{n}}-b\right) \quad\left(\bmod p^{2}\right) \\
& \equiv-\left(\alpha^{2 p^{m}}-a \alpha^{p^{m}}-b\right) \quad\left(\bmod p^{2}\right)
\end{aligned}
$$

which completes the proof of item 1.
To establish item 2, we show that

$$
S(x):=x^{2 p^{m}}-a x^{p^{m}}-b
$$

has no zeros modulo p^{2} for any integer $m \geq 1$. Observe that

$$
S(x) \equiv f(x)^{p^{m}} \equiv(x-\alpha)^{2 p^{m}} \quad(\bmod p)
$$

where $\alpha=2^{-1} a(\bmod p)$. Since $S^{\prime}(\alpha) \equiv 0(\bmod p)$, we deduce from Hensel that either $S(x)$ has no zeros modulo p^{2}, or has the p zeros:

$$
\alpha, \quad \alpha+p, \quad \alpha+2 p, \quad \ldots, \quad \alpha+(p-1) p \quad \text { modulo } p^{2} .
$$

Suppose then, by way of contradiction, that

$$
\begin{equation*}
S(\alpha)=\alpha^{2 p^{m}}-a \alpha^{p^{m}}-b \equiv 0 \quad\left(\bmod p^{2}\right) \tag{3.16}
\end{equation*}
$$

Since $\delta_{p}=0$, then $\alpha^{2} \equiv 2^{-2} a^{2} \equiv-b(\bmod p)$, and therefore,

$$
\begin{equation*}
\alpha^{2 p^{m}} \equiv(-b)^{p^{m}} \quad\left(\bmod p^{2}\right) . \tag{3.17}
\end{equation*}
$$

Hence, from (3.16) and (3.17), we have that

$$
\begin{equation*}
a \alpha^{p^{m}} \equiv(-b)^{p^{m}}-b \quad\left(\bmod p^{2}\right) \tag{3.18}
\end{equation*}
$$

Then, squaring both sides of (3.18) and using (3.17) again gives

$$
\begin{equation*}
a^{2}(-b)^{p^{m}} \equiv\left((-b)^{p^{m}}-b\right)^{2} \quad\left(\bmod p^{2}\right) \tag{3.19}
\end{equation*}
$$

which in turn yields

$$
\begin{align*}
& \Longrightarrow a^{2}(-b)^{p^{m}-2} \equiv\left((-b)^{p^{m}-1}+1\right)^{2} \quad\left(\bmod p^{2}\right) \\
& \Longrightarrow a^{2}(-b)^{p^{m}-2}-4(-b)^{p^{m}-1} \equiv\left((-b)^{p^{m}-1}+1\right)^{2}-4(-b)^{p^{m}-1} \quad\left(\bmod p^{2}\right) \\
& \Longrightarrow\left(a^{2}+4 b\right)(-b)^{p^{m}-2} \equiv\left((-b)^{p^{m}-1}-1\right)^{2} \equiv 0 \quad\left(\bmod p^{2}\right) \tag{3.20}
\end{align*}
$$

since $(-b)^{p^{m}-1}-1 \equiv 0(\bmod p)$. Thus, since $p+b$, we conclude from (3.20) that

$$
a^{2}+4 b \equiv 0 \quad\left(\bmod p^{2}\right)
$$

which contradicts the fact that \mathcal{D} is squarefree, and completes the proof of the lemma.

Remark 3.8. In the context of Lemma 3.7, item 2 shows that a prime p with $\delta_{p}=0$ cannot "cause" $\mathcal{F}_{n}(x)$ to be non-monogenic.

Albanian J. Math. Vol. 17 (2023), no. 2, 3-17

Proof of Theorem 1.2. Note that $\mathcal{F}_{0}(x)=f(x)$. We have that $\mathcal{F}_{n}(x)$ is irreducible for all $n \geq 0$ by Lemma 3.1. By Theorem 2.1,

$$
\begin{equation*}
\Delta\left(\mathcal{F}_{n}\right)=(-b)^{s^{n}-1} s^{2 n s^{n}}\left(a^{2}+4 b\right)^{s^{n}} \tag{3.21}
\end{equation*}
$$

(\Rightarrow) We prove the contrapositive. Assume that s has a prime divisor p that is an (a, b)-Wall-Sun-Sun prime, and that $p^{m} \| s^{n}$, with $m \geq 1$.

Suppose first that $p=2$, and write $s^{n}=2^{m} v$, with $2+v$. Then $2+a$ since $(a, b)=(3,3)_{4}$ by item 1 of Lemma 3.4. Applying item 4 of Theorem 2.7 to $\mathcal{F}_{n}(x)$ we see that

$$
\begin{align*}
G(x) & =x^{2 s^{n} / 2^{m}}-a x^{s^{n} / 2^{m}}-b \\
& =x^{2 v}-a x^{v}-b \\
& \equiv x^{2 v}+x^{v}+1 \quad(\bmod 2) \quad \text { and } \\
H(x) & =\frac{-a x^{2^{m} v}-b+\left(a x^{v}+b\right)^{2^{m}}}{2} \\
& =\left(\frac{a^{2^{m}}-a}{2}\right) x^{2^{m} v}+\sum_{j=1}^{2^{m}-1} \frac{\binom{2^{m}}{j}}{2}\left(a x^{v}\right)^{j} b^{2^{m}-j}+\frac{b^{2^{m}}-b}{2} \tag{3.22}\\
& \equiv\left(x^{2 v}+x^{v}+1\right)^{2^{m-1}} \quad(\bmod 2),
\end{align*}
$$

since $a^{2^{m}}-a \equiv b^{2^{m}}-b \equiv 2(\bmod 4)$ and $[7]$

$$
\binom{2^{m}}{j} \equiv\left\{\begin{array}{lll}
0 & (\bmod 4) & \text { if } j \neq 2^{m-1} \tag{3.23}\\
2 & (\bmod 4) & \text { if } j=2^{m-1}
\end{array}\right.
$$

Thus, $G(x)$ and $H(x)$ are not coprime in $\mathbb{F}_{2}[x]$, and therefore, $\mathcal{F}_{n}(x)$ is not monogenic.

Suppose next that $p \geq 3$. Recall that if $p=3$, then $\delta_{3}=-1$ by hypothesis. If $p \geq 5$, then, since p is an (a, b)-Wall-Sun-Sun prime and $\delta_{p} \neq 1$, we conclude that $\delta_{p}=-1$, from item 3 of Lemma 3.4. Thus, $\mathcal{F}_{n}(x)$ is non-monogenic by Lemma 3.6 and item 1 of Lemma 3.7, which completes the proof in this direction.
(\Leftarrow) Note that when $s=1$, we have that $\mathcal{F}_{n}(x)=f(x)$ for all $n \geq 0$, and so $\mathcal{F}_{n}(x)$ is monogenic by Lemma 3.3. So, assume that $s \geq 2$, and suppose that no prime divisor of s is an (a, b)-Wall-Sun-Sun prime.

For $n \geq 0$, define

$$
\alpha_{n}:=\alpha^{1 / s^{n}} \quad \text { and } \quad K_{n}:=\mathbb{Q}\left(\alpha_{n}\right)
$$

Then $\alpha_{0}=\alpha$ and, since $\mathcal{F}_{0}(x)=f(x)$ is monogenic, we have that $\Delta\left(\mathcal{F}_{0}\right)=\Delta\left(K_{0}\right)$. Additionally, for all $n \geq 1$, we have that

$$
\mathcal{F}_{n}\left(\alpha_{n}\right)=0 \quad \text { and } \quad\left[K_{n}: K_{n-1}\right]=s,
$$

by Lemma 3.1. We assume that $\mathcal{F}_{n-1}(x)$ is monogenic, so that $\Delta\left(\mathcal{F}_{n-1}\right)=\Delta\left(K_{n-1}\right)$, and we proceed by induction on n to show that $\mathcal{F}_{n}(x)$ is monogenic. Let $\mathbb{Z}_{K_{n}}$ denote the ring of integers of K_{n}. Consequently, by Theorem 2.9, it follows that

$$
\Delta\left(\mathcal{F}_{n-1}\right)^{s} \text { divides } \Delta\left(K_{n}\right)=\frac{\Delta\left(\mathcal{F}_{n}\right)}{\left[\mathbb{Z}_{K_{n}}: \mathbb{Z}\left[\alpha_{n}\right]\right]^{2}}
$$

which implies that

$$
\left[\mathbb{Z}_{K_{n}}: \mathbb{Z}\left[\alpha_{n}\right]\right]^{2} \text { divides } \frac{\Delta\left(\mathcal{F}_{n}\right)}{\Delta\left(\mathcal{F}_{n-1}\right)^{s}}
$$

Albanian J. Math. Vol. 17 (2023), no. 2, 3-17

We see from (3.21) that

$$
\begin{aligned}
\left|\Delta\left(\mathcal{F}_{n-1}\right)^{s}\right| & =(-b)^{s^{n}-s} s^{2(n-1) s^{n}}\left(a^{2}+4 b\right)^{s^{n}} \quad \text { and } \\
\left|\Delta\left(\mathcal{F}_{n}\right)\right| & =(-b)^{s^{n}-1} s^{2 n s^{n}}\left(a^{2}+4 b\right)^{s^{n}}
\end{aligned}
$$

Hence,

$$
\left|\frac{\Delta\left(\mathcal{F}_{n}\right)}{\Delta\left(\mathcal{F}_{n-1}\right)^{s}}\right|=(-b)^{s-1} s^{2 s^{n}}
$$

Thus, it is enough to show that $\operatorname{gcd}\left(b s,\left[\mathbb{Z}_{K_{n}}: \mathbb{Z}\left[\alpha_{n}\right]\right]\right)=1$. Recall that $\operatorname{gcd}(b, s)=1$ by hypothesis.

Suppose first that p is a prime divisor of b. If $p \mid a$, then it follows that

$$
\begin{equation*}
\left[\mathbb{Z}_{K_{n}}: \mathbb{Z}\left[\alpha_{n}\right]\right] \not \equiv 0 \quad(\bmod p) \tag{3.24}
\end{equation*}
$$

by item 1 of Theorem 2.7 since b is squarefree. So, assume that $p+a$. In this case, we apply item 3 of Theorem 2.7 to $\mathcal{F}_{n}(x)$. Observe that $A_{1}=0$ since $p+s$, and $B_{2}=-b / p \not \equiv 0(\bmod p)$ since b is squarefree. Thus, the first condition of item 3 holds, and therefore once again we have (3.24).

Suppose next that p is a prime divisor of s with $s^{n}=p^{m} v$, where $m \geq 1$ and $p+v$. Note that $p+b$.

We first address the prime $p=2$. If $2 \mid a$, then we apply item 2 of Theorem 2.7 to $\mathcal{F}_{n}(x)$. Observe from conditions $(*)$ that in this case, $2 \| a$ and $b \equiv 1(\bmod 4)$ since respectively, $a \not \equiv 0(\bmod 4)$ and $\mathcal{D}=(a / 2)^{2}+b$ is squarefree. Thus,

$$
A_{2}=-\frac{a}{2} \not \equiv 0 \quad(\bmod 2) \quad \text { and } \quad B_{1}=\frac{-b+b^{2^{m+1}}}{2} \equiv 0 \quad(\bmod 2)
$$

from which we conclude that the second condition of item 2 of Theorem 2.7 holds. Therefore, in this case, we have (3.24). If $2+a$, we apply item 4 of Theorem 2.7 to $\mathcal{F}_{n}(x)$. Since 2 is not an (a, b)-Wall-Sun-Sun prime, we have that

$$
(a, b)_{4} \in\{(1,1),(1,3),(3,1)\}
$$

from item 2 of Theorem 2.5. Since

$$
c^{2^{m}}-c \equiv\left\{\begin{array}{lll}
0 & (\bmod 4) & \text { if } c \equiv 1 \quad(\bmod 4) \\
2 & (\bmod 4) & \text { if } c \equiv 3 \quad(\bmod 4)
\end{array}\right.
$$

for an integer c and and an integer $m \geq 1$, it follows from (3.22) and (3.23) that

$$
\begin{gathered}
\bar{G}(x)=x^{2 v}+x^{v}+1 \quad \text { and } \\
\bar{H}(x)= \begin{cases}x^{2^{m-1} v} & \text { if }(a, b)_{4}=(1,1) \\
\left(x^{v}+1\right)^{2^{m-1}} & \text { if }(a, b)_{4}=(1,3) \\
x^{2^{m-1} v}\left(x^{v}+1\right)^{2^{m-1}} & \text { if }(a, b)_{4}=(3,1) .\end{cases}
\end{gathered}
$$

Hence, for every zero ρ of $\bar{H}(x)$, we see that $\bar{G}(\rho)=1$. Thus, $G(x)$ and $H(x)$ are coprime modulo 2 , so that (3.24) holds with $p=2$.

Now suppose that $p \geq 3$. If $\delta_{p}=-1$, then (3.24) follows from Lemma 3.6 and item 1 of Lemma 3.7, since p is not an (a, b)-Wall-Sun-Sun prime. Recall that $\delta_{3}=-1$ by hypothesis. Then, finally, if $p \geq 5$ with $\delta_{p}=0$, it follows from item 2 of Lemma 3.7 that (3.24) holds, completing the proof of the theorem.

Albanian J. Math. Vol. 17 (2023), no. 2, 3-17

References

[1] Z. Bouazzaoui, Fibonacci numbers and real quadratic p-rational fields, Period. Math. Hungar. 81 (2020), no. 1, 123-133.
[2] Z. Bouazzaoui, On periods of Fibonacci sequences and real quadratic p-rational fields, Fibonacci Quart. 58 (2020), no. 5, 103-110.
[3] H. Cohen, A Course in Computational Algebraic Number Theory, Springer-Verlag, 2000.
[4] R. Crandall, K. Dilcher and C. Pomerance, A search for Wieferich and Wilson primes, Math. Comp. 66 (1997), no. 217, 433-449.
[5] A.-S. Elsenhans and J. Jahnel, The Fibonacci sequence modulo p^{2}-An investigation by computer for $p<1014$, arXiv: 1006.0824 v 1 .
[6] S. Gupta, P. Rockstroh and F. E. Su, Splitting fields and periods of Fibonacci sequences modulo primes, Math. Mag. 85 (2012), no. 2, 130-135.
[7] P. Haggard and J. Kiltinen, Binomial expansions modulo prime powers, Internat. J. Math. Math. Sci. 3 (1980), no. 2, 397-400.
[8] A. Jakhar, S. Khanduja and N. Sangwan, Characterization of primes dividing the index of a trinomial, Int. J. Number Theory 13 (2017), no. 10, 2505-2514.
[9] L. Jones, A Connection Between the Monogenicity of Certain Power-Compositional Trinomials and k-Wall-Sun-Sun Primes, http://arxiv.org/abs/2211.14834.
[10] J. Harrington and L. Jones, A note on generalized Wall-Sun-Sun primes, Bull. Aust. Math. Soc. (to appear).
[11] J. Neukirch, Algebraic Number Theory, Springer-Verlag, Berlin, 1999.
[12] M. Renault, The period, rank, and order of the (a, b)-Fibonacci sequence mod m, Math. Mag. 86 (2013), no. 5, 372-380.
[13] D. W. Robinson, A note on linear recurrent sequences modulo m, Amer. Math. Monthly 73 (1966), 619-621.
[14] A. Schinzel, Polynomials with Special Regard to Reducibility, Encyclopedia of Mathematics and its Applications, 77, Cambridge University Press, Cambridge, 2000.
[15] Zhi Hong Sun and Zhi Wei Sun, Fibonacci numbers and Fermat's last theorem, Acta Arith. 60 (1992), no. 4, 371-388.
[16] R. Swan, Factorization of polynomials over finite fields, Pacific J. Math. 12 (1962), 10991106.
[17] D. D. Wall, Fibonacci series modulo m, Amer. Math. Monthly 67 (1960), 525-532.
[18] Fundamental Discriminant https://en.wikipedia.org/wiki/Fundamental_discriminant
[19] Wieferich Prime https://en.wikipedia.org/wiki/Wieferich_prime
[20] Wall-Sun-Sun Prime https://en.wikipedia.org/wiki/Wall\�\�\�Sun\�\�\�Sun_prime
[21] H. Yokoi, On real quadratic fields containing units with norm -1, Nagoya Math. J. 33 (1968), 139-152.

Albanian J. Math. Vol. 17 (2023), no. 2, 3-17

[^0]: E-mail address: doctorlennyjones@gmail.com.

