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Abstract. Let k be a number field, Ok its ring of integers, and f(x, y) ∈
Ok[x, y] an integral binary form of degree d ≥ 3. Minimality of f(x, y) is
equivalent to residual semistability. In this paper, we give a method to explic-

itly determine a binary form, k-equivalent to f , which is residually semistable.

for any prime p ∈ Ok.
In the last part of the paper we compare the GIT height from [Zha96] with

weighted height in [BGS20] and show that for strictly semistable forms their

logarithmic weighted height sk > 0, for d ≤ 10. Moreover, we show that binary
forms with logarithmic weighted height sk(ξ(f)) = 0 exist for any degree d ≥ 3.

MSC 2020: Primary: 20F70, 14H10; Secondary: 14Q05, 14H37
Keywords: Stability, binary forms, weighted heights

1. Introduction

Let k be a number field, Ok its ring of integers, and f ∈ k[x, y] a degree d ≥ 2
binary form. The equivalence classes of binary forms f(x, y), over some algebraic
closure of k, are determined by the set of generators of the ring of invariants Rd of
degree d binary forms. It is well known that Rd is finitely generated. Let ξ0, . . . , ξn
be such generators. They are homogenous polynomial of degree deg ξi = qi. We
denote by ξ(f) = (ξ0(f), . . . , ξn(f)) the values of such invariants evaluated at the
form f(x, y). The equivalence class of f is determined by the weighted moduli point
ξ(f) = [ξ0(f) : · · · : ξn(f)] in the weighted projective space Pnw,k with weights

w = (q0, . . . , qn); see [BGS20] for details.
A binary form has a root of multiplicity greater than d

2 if and only if ξ(f) = 0
(cf. Lem. 1). Using Hilbert-Mumford numerical criterion (cf. Prop. 3) one proves
that f(x, y) is semistable (resp. stable) if and only if it has no root of multiplicity
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≥ d
2 (resp. > d

2 ). Hence, for a prime p ∈ Ok, a binary form is semistable over the
residue field Ok/pOk if and only if p - ξi, for all i = 0, . . . , n. The main focus of
this paper is to find, for any given f ∈ Ok[x, y], a semistable model over Ok/pOk
for all primes p ∈ Ok, when such model exists.

For a fixed prime p ∈ Ok, f(x, y) is semistable over Ok/pOk if and only if
p - gcd (ξ0(f), . . . , ξn(f)). By taking a minimal model of f(x, y) as described in
[Sha22] we can assume that the weighted greatest common divisor wgcd (ξ(f)) =
1; see [BGS20]. This is equivalent to assume that f(x, y) can be unstable only

for primes p dividing gcd(ξ(f))
wgcd (ξ(f)) . For each such prime p ∈ Ok we find a matrix

Ap =

[
a b
c d

]
∈ GL2(k) such that fAp(x, y) = f(ax+ by, cx+dy) is semistable over

Ok/pOk. Taking the matrix M =
∏
Ap for p dividing gcd(ξ(f))

wgcd (ξ(f)) gives a binary

form fM (x, y) ∈ Ok[x, y] which is semistable over all residue fields Ok/pOk. It
turns out that this is equivalent with the reduction Type A introduced in [Sha22].

Shaska and his co-authors introduced a natural height in Pnw,k called the weighted

moduli height ; see [MS19b], [BGS20], and [SS22]. In the second part of this paper
we determine stability in terms of this weighted height in the moduli space Pnw,k. We
give necessary and sufficient conditions in terms of weighted height and weighted
greatest common divisors for a binary form to be semistable over a residue field
Ok/pOk.

If f(x, y) is unstable than ξ(f) = 0. When f(x, y) is strictly semistable it has
a root of multiplicity d

2 . Such forms do not exist when d is odd and there is only
one such form (up to equivalence) for d even. We compute the weighted moduli
height Sk(ξ(f)) for degree d = 4, 6, 8, 10. Moreover, we show that Sk(ξ(f)) ≥ 1 for
all semistable forms.

In [Zha96] Zhang defined the invariant height (also known as GIT height) and
considered the question of determining the semistability (resp. stability) in terms
of such height. Such question was considered in more detail for binary forms in
[Rab13] and [RS15], where the authors show that such height is bounded from
below for semistable points and give some lower bounds for cubic binary forms. It
is unclear how the invariant height in [Zha96] relates to the weighted moduli height
in [BGS20]. The comparison between the invariant height and weighted heights
seems to raise many questions, which we intend to explore in [CS22].

This paper is organized as follows. In Section 2 we give a brief review of the
basics in invariant theory and weighted projective spaces. We display generating
invariants for the ring of invariants Rd for d ≥ 3 and d ≤ 10.

In Section 3 are covered some of the classical results of semistability of binary
forms including the Hilbert-Mumford criteria. While this material is part of the
classical Geometric Invariant Theory, it provides an outline here to prove the fact
that a degree d binary form is semistable (resp. stable) if and only if it has a
root of multiplicity ≤ d

2 (resp. < d
2 ). Moreover, we consider binary forms over a

number field k. For every prime p ∈ Ok we give a condition for a binary form to
be semistable over Ok/pOk in terms of the coordinates of the point in the weighted
moduli point and provide a method how to determine an equivalent form to the
given form which is semistable over Ok/pOk.

In Section 5 we define the weighted height and consider the weighted height of
semistable points and strictly semistable points. From Lem. 5 for d odd that are
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no strictly semistable binary forms and for d even there is exactly one such binary
form (up to equivalence). We display the corresponding points in the weighted
moduli space for such binary forms and their corresponding weighted height for
d = 4, 6, 8, 10; see Table 1.

It would also be interesting to estimate the number of stable binary forms with
integer coefficients such that their weighted moduli height is less than the weighted
moduli height of the strictly semistable binary form of the same even degree d.
Equivalently this would estimate the number of binary forms (up to k-equivalence)
with weighted height less than the strictly semistable form, such that the field of
moduli is also a field of definition. Some of these problems are intended to be
discussed in [CS22].

There have been many papers studying stability and heights, see [Bos96] and
many others comparing different heights and finding relations between them. [dJS22],
[dJ10], [dJ18]. Discussing in detail how the invariant height compares to the
weighted moduli height is the focus of [CS22]. It would be interesting to discover
how the weighted height relates to Neron-Tate height or Faltings height.

Notation: We fix the following notation for the remainder of this paper.

k a number field,
Ok the ring of integers of k,
ν an absolute value of k,
Mk the set of all absolute values of k,
M0
k the set of non-Archimedean absolute values of k,

M∞k the set of Archimedean absolute values of k,
kν completion of k at ν,
nν local degree [kν : Qν ]
p ∈ Ok a prime in Ok
Ok/pOk residue field at p
Pnk projective space over a field k
Pnw,k weighted projective space with weights w = (q0, . . . , qn)

After the first version of this paper was posted we came across a more complete
treatment of weighted heights in [SS22] and we decided to adapt the notation of
[SS22] instead of [BGS20]. The following notation is borrowed from [SS22].

Pnk Pnw,k
greatest common divisor of x gcd(x) wgcd (x)
multiplicative height over k Hk Sk

logarithmic height over k hk sk

absolute multiplicative height H S
absolute logarithmic height h s

2. Preliminaries

Let k be a field, k[x, y] be the polynomial ring in two variables and Vd denote
the (d+ 1)-dimensional subspace of k[x, y] consisting of homogeneous polynomials

(1) f(x, y) = adx
d + ad−1x

d−1y + · · ·+ a0y
d
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of degree d. Elements in Vd are called binary forms of degree d. GL2(k) acts as
a natural group of automorphisms on k[x, y]. Denote by f → fM this action. It
is well known that SL2(k) leaves a bilinear form (unique up to scalar multiples) on
Vd invariant; see [Sha22] for details.

Consider a0, a1, . . . , ad as transcendentals over k (coordinate functions on Vd).
Then the coordinate ring of Vd can be identified with k[a0, . . . , ad]. We define an
action of GL2(k) on k[a0, . . . , ad] via

GL2(k)× k[a0, . . . , ad]→ k[a0, . . . , ad]

(M,F )→ FM := F (fM ), for all f ∈ Vd.

Thus for F ∈ k[a0, . . . , ad] and M ∈ GL2(k), define FM ∈ k[a0, . . . , ad] as

FM (f) := F (fM ),

for all f ∈ Vd. Then FMN = (FM )N . The homogeneous degree in a0, . . . , ad is
called the degree of F , and the homogeneous degree in x, y is called the order
of F . An invariant is usually referred to an SL2(k)-invariant on Vd. Hilbert’s
theorem says that the ring of invariants Rd of binary forms of degree d is finitely
generated. Thus, Rd is finitely generated, and Rd is a graded ring.

Let {ξ0, . . . , ξn} be a minimal generating set for Rd. Since ξi ∈ k[a0, . . . , ad] are
homogenous polynomials we denote deg ξi = qi and assume that

q0 ≤ q1 ≤ · · · ≤ qn.

The tuple of degrees (q0, . . . , qn) are often called weights.

If f, g ∈ Vd, M ∈ GL2(k), λ = (detM)
d
2 , then f = gM if and only if

(2) (ξ0(f), . . . ξi(f), . . . , ξn(f)) = (λq0 ξ0(g), . . . , λqi ξi(g), . . . , λqn ξn(g)) ,

see [Sha22, Prop. 1] for the proof.

Lemma 1. If k = Q we can choose ξ0, . . . , ξn with integer coefficients and primitive
polynomials in Z[a0, . . . , ad] (i.e. the greatest common divisor of coefficients of each
ξ is 1).

Proof. Without loss of generality we can assume that each f ∈ Q[x, y] has integer
coefficients since binary forms are defined up to multiplication by a constant. Then
for ξ = [ξ0, . . . , ξn] each coordinate ξi(f) ∈ Q[a0, . . . , ad]. Then multiplying the
tuple ξ = [ξ0 : · · · : ξn] by the least common multiple of all the denominators, say λ,
we get a representative [λqoξ0 : · · · : λqiξi, · · · , λqnξn] of ξ with integer coefficients.
We can redefine each ξi by taking its primitive part. �

2.1. Weighted greatest common divisors. Let x = (x0, . . . xn) ∈ Zn+1 be a
tuple of integers, not all equal to zero. Their greatest common divisor, denoted by
gcd(x0, . . . , xn), is defined as the largest integer d such that d|xi, for all i = 0, . . . , n.
Let q0, . . . , qn be positive integers. A set of weights is called the ordered tuple
w = (q0, . . . , qn). Denote by r = gcd(q0, . . . , qn) the greatest common divisor of
q0, . . . , qn. A weighted integer tuple is a tuple x = (x0, . . . , xn) ∈ Zn+1 such that
to each coordinate xi is assigned the weight qi. We multiply weighted tuples by
scalars λ ∈ Q via

λ ? (x0, . . . , xn) = (λq0x0, . . . , λ
qnxn)
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For an ordered tuple of integers x = (x0, . . . , xn) ∈ Zn+1, whose coordinates are
not all zero, the weighted greatest common divisor with respect to the set
of weights w is the largest integer d such that

dqi | xi, for all i = 0, . . . , n.

We will call a point p ∈ Pnw(Q) normalized if wgcd (p) = 1. The absolute
weighted greatest common divisor of an integer tuple x = (x0, . . . , xn) with
respect to the set of weights w = (q0, . . . , qn) is the largest real number d such that

dqi ∈ Z and dqi | xi, for all i = 0, . . . n.

2.2. Weighted projective space. Let ξ0, . . . , ξn be the generators of Rd with de-
grees q0, . . . , qn respectively. Since all ξ0, . . . , ξi, . . . , ξn are homogenous polynomials
then Rd is a graded ring and Proj Rd as a weighted projective space.

Let w := (q0, . . . , qn) ∈ Zn+1 be a fixed tuple of positive integers called weights.
Consider the action of k? = k \ {0} on An+1(k) as follows

λ ? (x0, . . . , xn) = (λq0x0, . . . , λ
qnxn)

for λ ∈ k∗. The quotient of this action is called a weighted projective space and
denoted by Pn(q0,...,qn),k. It is the projective variety Proj (k[x0, . . . , xn]) associated

to the graded ring k[x0, . . . , xn] where the variable xi has degree qi for i = 0, . . . , n.
We denote greatest common divisor of q0, . . . , qn by gcd(q0, . . . , qn). The space Pnw,k
is called well-formed if

gcd(q0, . . . , q̂i, . . . , qn) = 1, for each i = 0, . . . , n.

While most of the papers on weighted projective spaces are on well-formed spaces,
we do not assume that here. We will denote a point p ∈ Pnw,k by p = [x0 : x1 : · · · :
xn]. Summarizing the previous section we have:

Remark 1. Let ξ0, ξ1, . . . , ξn be the generators of the ring of invariants Rd of
degree d binary forms. A k-isomorphism class of a binary form f is determined by
the point

ξ(f) := [ξ0(f), ξ1(f), . . . , ξn(f)] ∈ Pnw,k.
Moreover, for any two forms f, and g we have that f = gM for some M ∈ GL2(k)

if and only if ξ(f) = λ ? ξ(g), for λ = (detA)
d
2 .

Remark 2. Determining generating sets of invariants for Rd was the focus of
XIX century mathematics. It was exactly this problem that lead to Hilbert’s basis
theorem and Emmy Noether to the concept of finitely generated ideals and what are
now called Noetherian rings.

2.3. Generating invariants. Finding generators for the ring of invariants Rd is
a classical problem in which worked many of the most important mathematicians
of the XIX-century. Such invariants are generated in terms of transvections or root
differences. While generating set of invariants for Rd, for d ≤ 8 is part of the
classical invariant theory, in the last decades such sets have been determined for
d = 9, 10. For a complete list of invariants up to d = 10 we refer to [Pop14].

For given binary invariants f, g ∈ Vd the r-th transvection of f and g, denoted
by (f, g)r, is defined as

(f, g)r :=
(m− r)! (n− r)!

n!m!

r∑
k=0

(−1)k
(
r
k

)
· ∂rf

∂xr−k ∂yk
· ∂rg

∂xk ∂yr−k
.
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Transvections are a convenient way of generating invariants since they are expressed
in terms of the coefficients of the binary form, on contrary to the method of gener-
ating invariants through root differences which give the invariants in terms of roots
of binary forms, which we will briefly describe next.

While there is no method known to determine a generating set of invariants
for any Rd, we display a minimal generating set for all 3 ≤ d ≤ 10. For the
rest of this section f(x, y) is given as in Eq. (1) and a minimal set of invariants is
always picked as in Lem. 1. Proofs of the following facts are elementary for classical
invariant theory experts and we skip them here. All the polynomial expressions of
invariants were generated using Maple; see [Map22].

2.3.1. Cubics. A generating set for R3 is ξ = {J4} for J4 = ((f, f)2, (f, f)2)2.
Computing J4 it yields

J4 =
4

3
a1a3a0a2 −

8

27
a3

1a3 −
8

27
a3

2a0 +
2

27
a2

2a
2
1 − 2a2

0a
2
3

Since we want to take ξ0 primitive, then we take

ξ0 =
1

2
((f, f)2, (f, f)2)2 =

2

3
a1a3a0a2 −

4

27
a3

1a3 −
4

27
a3

2a0 +
1

27
a2

2a
2
1 − a2

0a
2
3

2.3.2. Quartics. A generating set for R4 is ξ = [ξ0, ξ1] with w = (2, 3), where

ξ0 =
1

2
(f, f)4 and ξ1 = (f, (f, f)2)4

In terms of a0, . . . , a4, the invariants ξ0 and ξ1 are

ξ0 = a4a0 −
a1a3

4
+
a2

2

12

ξ1 = a2a4a0 −
3

8
a2

1a4 −
3

8
a0a

2
3 +

1

8
a2a1a3 −

1

36
a3

2

2.3.3. Quintics. A generating set for R4 is ξ = [ξ0, ξ1, ξ2] with w = (4, 8, 12), where

ξ0 =
1

2
(c1, c1)2, ξ1 = (c4, c1)2, ξ2 = (c4, c4)2,

for
c1 = (f, f)4, c2 = (f, f)2, c3 = (f, c1)2, c4 = (c3, c3)2.

2.3.4. Sextics. The case of sextics was studied in detail due to their connection to
genus 2 curves. Generating sets were known in detail by XIX-century mathemati-
cians (Bolza, Clebsch, et al.) when char k = 0 and by Igusa for char k > 0. For a
more modern treatment see [KSV05] or [MS17,BHK+18,MS19a], where invariants
of binary sextics are used to study the moduli space of genus 2 curves and even
expressed in terms of modular forms. To have a uniform treatment of invariants in
this paper we will define a generating set for the case d = 6 slightly different from
generating sets commonly used in literature.

Let c1 = (f, f)4, c3 = (f, c1)4, c4 = (c1, c1)2. A generating set for R6 is ξ =
[ξ0, ξ1, ξ2, ξ3] with weights w = (2, 4, 6, 10) (we are assuming char k 6= 2), where

ξ0 =
1

2
(f, f)6, ξ1 =

1

2
(c1, c1)4, ξ2 =

1

2
(c4, c1)4, ξ3 = (c4, c

2
3)4.

Remark 3. The reader should be aware that usually the invariants of binary sextics
are denoted by [J2, J4, J6, J10] with J10 being the discriminant of the sextic, but that
is not the case here.
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2.3.5. Septics. A generating set of R7 is given by ξ = [ξ0, ξ1, ξ2, ξ3, ξ4] with weights
w = (4, 8, 12, 12, 20). We define them as follows. Let

c1 = (f, f)6, c2 = (f, f)4, c4 = (f, c1)2, c5 = (c2, c2)4, c7 = (c4, c4)4

and

ξ0 =
1

2
(c1, c1)2, ξ1 = (c7, c1)2, ξ2 =

1

16
((c5, c5)2, c5)4,

ξ3 =
(
(c4, c4)2, c

3
1

)
6
, ξ4 =

1

64

(
[(c2, c5)4]

2
, (c5, c5)2

)
4

2.3.6. Octavics. Finding a generating set for the ring of invariants of binary octavics
was one of the biggest achievements of classical invariant theory. A basis was
determined by von Gall; see [Gal80]. Later the ring R8 was studied by Shioda
in [Shi67], see Shaska in [Sha14] for details. A generating set of R8 is given by
ξ = [ξ0, ξ1, ξ2, ξ3, ξ4, ξ5] with weights w = (2, 3, 4, 5, 6, 7). We define them as follows.
Let

c1 = (f, f)6, c2 = (f, c1)4, c3 = (f, f)4, c5 = (c1, c1)2.

Then the invariants are:

ξ0 =
1

2
(f, f)8, ξ1 = (f, c3)8, ξ2 =

1

2
(c1, c1)4,

ξ3 = (c1, c2)4, ξ5 =
1

2
(c5, c1)4, ξ6 = ((c1, c2)2, c1)4.

2.3.7. Nonics. A generating set of R9 is given by ξ = [ξ0, ξ1, ξ2, ξ3, ξ4, ξ5, ξ6] with
weights w = (4, 8, 10, 12, 12, 14, 16); see [BP10b]. Let

c1 = (f, f)8, c2 = (f, f)6, c4 = (f, f)2, c5 = (f, c1)2, c6 = (f, c2)6,

c7 = (c2, c2)4, c9 = (c5, c5)4, c21 = (f, c2)2, c25 = (c4, c4)10, c27 = (c36, c6)3

and

ξ0 =
1

2
(c1, c1)2, ξ1 = (c2, c

2
6)6, ξ2 = (((c25, f)6, c21)5, c2)6 , ξ3 =

1

16
((c7, c7)2, c7)4

ξ4 = (c9, c
3
1)6, ξ5 = (c2, c27)6 , ξ6 =

(
(c5, c5)2, c

5
1

)
10
.

2.3.8. Decimics. A generating set ofR10 is given by ξ = [ξ0, ξ1, ξ2, ξ3, ξ4, ξ5, ξ6, ξ7, ξ8]
with weights w = (2, 4, 6, 6, 8, 9, 10, 14, 14); see [BP10a]. Let

c1 = (f, f)8, c2 = (f, f)6, c5 = (f, c1)4, c6 = (f, c2)8,

c7 = (c2, c2)6, c8 = (c5, c5)4, c9 = (c2, c7)4, c10 = (c1, c1)2,

c16 = (c5, c5)2, c19 = (c5, c1)1, c25 = (c7, c7)2

and

ξ0 =
1

2
(f, f)10, ξ1 =

1

2
(c1, c1)4, ξ2 = (c5, c5)6,

ξ3 = (c6, c6)2, ξ4 = (c1, c8)4, ξ5 = (c19, c
2
1)8,

ξ6 = (c16, c
2
1)8, ξ7 =

1

4
(c25, c9)4, ξ8 = (c210, c16)8.
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Remark 4. Transvections don’t always give an intuitive idea of what given invari-
ant represents, but the benefit of using transvections to generate invariants is that
such invariants are obtained in terms of the coefficients of the binary forms. On
contrary, invariants generated by root differences, which we will see next, are easily
associated to the action of the permutation group on the set of roots of the binary
forms, however expressing such invariants in terms of the coefficients is usually
computationally difficult.

2.4. Root differences. Let f ∈ Vd, say

(3) f(x, y) =

i=d∑
i=0

aix
iyd−i =

i=d∏
i=0

(βix− aiy).

Set dij :=

(
αi αj
βi βj

)
. For M ∈ SL2(k), we have

fM = (β
′

1x− α
′

1y) . . . (β
′

6x− α
′

6y), with

(
α

′

i

β
′

i

)
= M−1

(
αi
βi

)
.

Clearly dij is invariant under this action of SL2(k) on P1. All invariants can be
expressed in terms of root differences. For example, the discriminant of the binary
form f(x, y) is given by the formula

∆(f) =
∏
i<j

d2
ij

An excellent article on invariants including root differences is [KR84].
A classical nontrivial example to illustrate expressing invariants in terms of root

differences is the case of binary sextics; see [KSV05] for details.

Example 1 (Binary sextics). Let d = 6 and {i, j, k, l,m, n} = {1, 2, 3, 4, 5, 6}.
Treating ai as variables, we construct the following elements in R6.

I10 =
∏
i<j

d2
ij , I2 =

∑
i<j,
k<l,
m<n

d2
ijd

2
kld

2
mn,

I4 = (4I2
2 −B), I6 = (8I3

2 − 160I2I4 − C)

where

B =
∑
i<j,
j<k,
l<m,
m<n

d2
ijd

2
jkd

2
kid

2
lmd

2
mnd

2
nl, C =

∑
i<j
j<k
l<m
m<n

i<l
′

j<m
′

k<n
′

d2
ijd

2
jkd

2
kid

2
lmd

2
mnd

2
nld

2
il

′d2
jm

′d2
kn

′

for l
′
,m

′
, n

′ ∈ {l,m, n}.

Remark 5. Notice that there is a one to one correspondence between the equiva-
lence classes of effective divisors of degree n in P1(Q̄). For any f(x, y) as in Eq. (3)
we can associate a divisor D as follows. Let [a0 : · · · : an] ∈ Pnk . Take the divisor
of degree n, namely D =

∑
i[xi : yi].
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Conversely for any divisor D =
∑d
i aiPi, where Pi = [xi : yi] ∈ P1

Q̄ and
∑
ai = n,

we consider f(x, y) =
∏
i(xyi − yxi). Denote f =

∑d
i=0 aix

iyd−i and consider
[a0 : · · · : an] ∈ Pnk . These are called the Chow coordinates of D.

It is the action on the roots that determines stability for binary forms. However,
it would be more convenient that such action on roots is expressed as condition on
invariants. While expressions of the above invariants are well known in terms of
coefficients a0, . . . , a6 from Bolza (1898) and many others since, for higher degree
things get computationally more difficult.

It turns out that if the binary form has a root of high multiplicity all the invari-
ants vanish and this is exactly the condition that determines stability as we will
see next.

Lemma 2. Let f ∈ Vd.
(i) If f a root of multiplicity r > d

2 then ξ(f) = (ξ0, . . . , ξn) = (0, . . . , 0).

(ii) If d is even, then all binary forms with a root of multiplicity d
2 have the

same invariants.

Proof. Let m = bd2c. Hence, d = 2m when d is even and d = 2m + 1 when d
is odd. Notice that every degree s invariant Js ∈ k[a0, . . . , ad] is invariant under
the permutation (ai, ad−i) for i = 0, · · · ,m, since such permutation corresponds to
permuting x and y. If f(x, y) has a root of multiplicity r then we can assume that
f(x, y) = xrg(x, y) for some degree (d− r) binary form g(x, y), say

g(x, y) = bd−rx
d−r + bd−r−1x

d−r−1y + · · · b1xyd−r−1 + b0y
d−r.

Then

(4) f(x, y) = bd−rx
d + bd−r−1x

d−1y + · · · b1xr+1yd−r−1 + b0x
ryd−r.

Hence every ξi(f) will be written in terms of coefficients b0, . . . , bd−r or equivalently
in terms of ai, where

a0 = · · · = ar−1 = 0 and ar+j = bj , for j = 0, . . . , d− r.

Thus, evaluated at f(x, y) as in Eq. (4) is given by a sum of degree s monomials in
ar, . . . , ad since a0 = · · · = ar−1 = 0.

To prove part i) let r = m+1. Then all a0 = · · · = a(m+1)−1 = 0 which makes all
ai = 0, for i = 0, . . . ,m. Since Js is invariant under the permutation (ai, ad−i) for
i = 0, · · · ,m, above, then Js = 0 which implies that (ξ0(f), . . . , ξn(f)) = (0, . . . , 0).

To prove ii) let r = m and d = 2m. Then, all a0 = · · · = am−1 = 0. Hence
am = b0 is the only nonzero coefficient. Since each ξi(f) is invariant under the
permutation (ai, ad−i) for i = 0, · · · ,m, above then each ξi(f) is a degree qi ho-
mogenous polynomial in b0. Thus,

ξ(f) = [bq00 · λ0 : bq10 · λ1 : . . . : bqn0 · λn] = [λ1 : · · · : λn]

for some λi ∈ k. Hence, there is a unique set of invariants ξ(f) = [λ0, λ1, . . . , λn] .
This completes the proof. �

Remark 6. The second part of the lemma says that when d is even there is only
one binary form (up to equivalence) which has a root of multiplicity d/2. In the
last section we will list all degree d binary forms and their invariants which have a
root of multiplicity d/2 for 4 ≤ d ≤ 10.
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3. Stability and the Hilbert-Mumford criterion.

Stability of binary forms has long been studied. In this section we want to give
the basic definitions and terminology and give an outline of the main result which
is Thm. 3. Our main references are [DM69] and [New09].

Let G be an algebraic group acting rationally on a variety X (that is, through a
morphism

G×X → X
(g, x)→ g.x

We shall always write G.x for the orbit

{y ∈ X : y = g.x for some g ∈ G}
of x. From now on we will assume that G is a reductive group.

Let X ⊂ Pdk and G act linearly on X . Hence we can assume G ≤ GL2(k)
acting on X in the natural way and I ∈ k[a0, . . . , ad] a G-invariant polynomial. By
XI ⊂ Pd(k) we denote the set

XI := {β ∈ X | I(β) 6= 0}.
Definition 1. A point α ∈ X is called stable under the G-action if α has a
finite stabilizer Gα and there exist a G-invariant I ∈ k[a0, . . . , ad] such that α ∈ XI .

If we drop the condition that the stabilizer Gα is finite then α ∈ X is called
semistable under the G-action.

3.1. Actions of k?. Let G = k? acting linearly on a projective variety X ⊂ Pd(k).
There exists a basis B := {b0, . . . , bd} such that this action can be diagonalized. In
other words

t.bi = tribi,

for some integers ri. Choose α̂ one of its pre-images of α under the natural projec-
tion π : Ad+1(k)→ Pdk. Then

α̂ =

d∑
i=0

α̂ibi.

for some α̂i ∈ k. Then

t.α̂ =
∑

tri âibi

We define
µ(α) := max{−ri |αi 6= 0}

and have the following:

Lemma 3. For every α ∈ X , µ(α) is the unique integer such that limt→0 t
µ(α)(t.α)

exists and is nonzero. Moreover, µ(α) is independent of α̂ or the basis B and

(i) µ(α) > 0 if and only if limt→0(t.α) does not exist
(ii) µ(α) = 0 if and only if limt→0(t.α) exist and is non-zero

For a proof see [DM69] or [New09, pg. 7] among other places. Similarly define

µ−(α) := max{ri |αi 6= 0}
Then we have the following:

Proposition 1. The following hold:

(i) α is stable if and only if µ(α) > 0 and µ−(α) > 0.
(ii) α is semistable if and only if µ(α) ≥ 0 and µ−(α) ≥ 0.
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3.2. 1-parameter groups. Consider now an arbitrary linear action of a reductive
groupG on a projective variety X . A subgroupG of SLn(k) is called a 1-parameter
group if there is a non-trivial homomorphism of algebraic groups λ : k∗ → G. For
any 1-parameter subgroup G and a homomorphism λ, sometimes we write µ(α, λ)
for the value of µ(α) for the action of k∗ on X induced by λ.

The following result is often used as the definition of stability of binary forms.
Its proof is done usually via the Hilbert-Mumford criteria.

Theorem 2 (Hilbert-Mumford Criterion). The following hold:

(i) α is stable if and only if µ(α, λ) > 0 for every 1-PS λ of G.
(ii) α is semistable if and only if µ(α, λ) ≥ 0 for every 1-PS λ of G.

Remark 7. For the semistable case when G is SLn(C) there is a proof given by
Hilbert using convergent power series. Mumford and Seshadri proved it for all k
and all reductive G using formal power series and a theorem of Iwahori.

3.3. Binary forms. Next we apply the above results to the case of binary forms.
Any 1-PS subgroup of 2(k) is conjugate to a form λr for some r ≥ 0 such that

λr(t) =

[
tr 0
0 t−r

]
Hence, we have the following:

Theorem 3. A binary form f(x, y) ∈ k[x, y] of degree deg f = d is stable if and
only if all roots of f are of multiplicity < d

2 and semistable if and only if all roots

are of multiplicity ≤ d
2 .

Proof. Any one parameter subgroup G of SL2(k) is given by

λ(t) =

{(
tr 0
0 t−r

)
: t ∈ k?

}
for some r ≥ 0. Then for f(x, y) =

∑d
i=0 aix

iyd−i we have

λ(t) · f(x, y) =
∑

tr(2i−d)aix
iyd−i.

Hence

µ(f, λ) = −min{2i− d : ai 6= 0} = max{2i− d : ai 6= 0} = 2i0 − d,
where i0 is the largest integer for which αi 6= 0. Hence, when µ(f, λ) ≥ 0 we have
[0, 1] as a root with multiplicity at most d

2 and when µ(f, λ) > 0 then [0, 1] has

multiplicity strictly less than d
2 . This completes the proof. �

Definition 4. If a degree d ≥ 2 binary form f(x, y) has roots of multiplicity d
2 we

say that f is strictly semistable.

Corollary 1. A binary form f(x, y) of degree deg f = d is unstable if and only if
ξ(f) = 0 in Pnw,k. Moreover, if d is even there is only one strictly semistable point
in the moduli space and there are no such points when d is odd.

Proof. We can assume that [0, 1] is a root of multiplicity d/2. Then f(x, y) can be
written as

(5) f(x, y) = x
d
2 ·
(
xd/2 + a d

2−1x
d
2−1y + · · ·+ a1xy

d
2−1 + a0y

d
2

)
From Thm. 3 there is only one point in the moduli corresponding to such binary
forms. �
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4. Minimal models and stability

Next we want to focus on the stability of binary forms over number fields. As
above, we let k be a number field and Ok its ring of integers. Mk denotes the set of
places of k, where Mk are the Archimedean places and M∞ the non Archimedean
places of k. For any norm ν ∈Mk, the completion of k at ν is denoted by kν .

Historically, minimal models of binary forms or hyperelliptic curves have been
considered for obvious reasons. There are two main ways to consider minimality ;
minimality in terms of the coefficients, and minimality in terms of invariants. Get-
ting sucha minimal models is normally refereed to as reduction. In [Sha22] the
author calls them Type A and Type B reduction and points out that a similar
approach was also considered in the seminal paper of Birch and Swinnerton-Dyer;
see [BSD63,BSD65].

In [Bur92], Burnol proves that f is minimal if and only if its reduction is
semistable under the SL2(k̄)-action. In other words, minimality is equivalent to
residual semistability. It was this type of statement in terms of weighted moduli
height which was one of our main motivations for this paper.

4.1. Minimal models. Let f ∈ Ok[x, y] and x := ξ(f) ∈ Pnw(Ok) its correspond-
ing weighted moduli point. The following terminology is commonly used for alge-
braic curves, especially hyperelliptic and superelliptic curves; see [Sha22].

A local minimal model for a binary form f defined over a number field k at a
prime p of k is an equivalent binary form g all of whose coefficients are integral at p,
and whose moduli point ξ(g) has minimal valuation at p among all such equivalent
binary forms. A global minimal model for a binary form f defined over a number
field k is an equivalent binary form g which is integral and is a local minimal model
at all primes p of k.

We define the weighted valuation of the tuple x = (x0, . . . xn) at the prime
p ∈ Ok as

(6) valp(x) := max
{
j | pj divides xqii for all i = 0, . . . n

}
,

We say that a binary form f(x, y) has a integral minimal model over k if it is
integral (i.e. f ∈ Ok[x, y]) and valp(ξ(f)) is minimal for every prime p ∈ Ok.

Lemma 4. A binary form f ∈ Vd is a minimal model over Ok if for every prime
p ∈ Ok such that p | wgcd (ξ(f)) the following holds

(7) valp(ξ(f)) <
d

2
qi, for all i = 0, . . . , n.

Moreover, for every integral binary form f its minimal model exist; see [Sha22] .

Remark 8. Notice that an integral minimal model is not necessary semistable,
since its moduli point can have minimal evaluation and still can be zero.

4.2. Local and global stability. Take p = ξ(f) ∈ Pnw,k. We can assume that

ξ(f) = [ξ0 : · · · : ξn] has coordinates in Ok. Further assume that p is normalized
(i.e. wgcd (ξ0, . . . , ξn) = 1). Let p be a prime in Ok such that p | gcd(ξ0, . . . , ξn).
Then f is unstable over the residue field Ok/pOk. Next we show how to determine
an equivalent binary form g(x, y) to f(x, y) which is semistable over the residue
field Ok/pOk.

Lemma 5. Let f ∈ Ok[x, y] and p = ξ(f) = [ξ0, . . . , ξn] ∈ Pnw(Ok).

Albanian J. Math. Vol. 16 (2022), no. 1, 3–23

http://albanian-j-math.com/vol-16.html


Elira Curri 15

(i) f is a semistable binary form over the residue field Ok/pOk if and only if
p - gcd(ξ0, . . . , ξn).

(ii) If p | gcd(ξ0, . . . , ξn) let

αp := min{|xi|p | such that xi 6= 0 and i = 0, . . . , n.}.

Then fM is semistable over the residue field Ok/pOk for M =

[ 1
prp 0

0 1

]
,

where

(8) rp =
2αp
d · qj

,

for some j ∈ {0, 1, · · · , n} such that ξj 6= 0.

Proof. From Lem. 5, a binary form f is semistable if and only if there exists some
ξj such that ξj 6= 0 in Ok/pOk. Hence, the first claim of the theorem.

Assume p | ξi, for all i = 0, . . . n. We can further assume that wgcd (ξ(f)) = 1
so f is minimal as in [BGS20, Prop. 6]. Pick ξj such that ξj 6= 0. Let ξj = pαβ
such that gcd(α, β) = 1 and take

M =

[ 1
pr 0

0 1

]
∈ GL2(k̄)

for r = 2α
dqj

. Then fM (x, y) = f
(
x
pr , y

)
and from Eq. (2) we have

ξ(fM ) =

[(
1

pr

) 1
2dq0

ξ0, . . . , β, . . .

(
1

pr

) 1
2dqn

ξn

]
and p - β. This completes the proof. �

A point p = ξ(f) ∈ Pnw,k is unstable if there is a prime p ∈ Ok such that

p | gcd(ξ0, . . . , ξn). Assume there is such a p | gcd(ξ0, . . . , ξn).

Proposition 2. Let f ∈ Ok[x, y] be a semistable binary form and ξ(f) = [ξ0, . . . , ξn] ∈
Pnw(Ok) its moduli point. Assume ξ(f) is normalized (i.e. multiply ξ(f) by 1

wgcd (ξ(f))).

Let
λ =

∏
p|gcd(ξ0,...,ξn)

prp

where rp is as in Eq. (8) and take M =

[
1
λ 0
0 1

]
. Then fM is semistable over all

residue fields Ok/pOk for all primes p ∈ Ok.

Proof. If p is normalized then wgcd (ξ0(f), . . . , ξn(f)) = 1. Let

gcd (ξ0(f), . . . , ξn(f)) =

s∏
i=1

paii ,

where pi ∈ Ok are primes. Then from the above Lemma, exists ri such that for

Mi =

[
1
λi

0

0 1

]
the form fMi is semistable over kpi . Let M =

∏s
i=1Mi. Then fM

is semistable for every prime pi | gcd(ξ0(f), . . . , ξn(f)), hence it is semistable over
all Ok/pOk. �

A prime p ∈ Ok is called a bad prime for f if p| gcd(ξ0(f), . . . , ξn(f)). In this

case f mod p is unstable. However, there might still exist a twist of f , say f̃ such
that f̃ mod p is semistable.
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Proposition 3. Let f be a binary form which is semistable over k. Then for each
prime p ∈ Ok there exists a twist f̃ of f which is semistable over Ok/pOk.

Proof. Let ξ(f) = [ξ0(f), . . . , ξn(f)] be the corresponding moduli point and p a bad
prime. Then p|ξj(f) for all j = 1, . . . , n. Without loss of generality we can assume
that wgcd (ξ(f)) = 1. There exists 1 ≤ s ≤ n such that

valp(ξs(f)) = min{valp(ξs(f)) | j = 1, . . . , n}

Denote by λ = 1
pr , where r = 1

qs
valp(ξs(f)). Consider f̃ = fM . Then,

ξ(f̃) = λ ? [ξ0(f) : · · · : ξs(f) : · · · : ξn(f)]

= [λq0 · ξ0(f) : . . . : λqs · ξs(f) : . . . : λqn · ξn(f)] ,

where ξs(f̃) is not divisible by p and f̃ is semistable over Ok/pOk. �
A prime p ∈ Ok is called a prime of good reduction for f if f is semistable over

Ok/pOk.

5. Stability, weighted height, and invariant height

Let k be an algebraic number field of degreem = [k : Q], and k̄ be an algebraically
closed field containing k. We denote by Ok the ring of algebraic integers in k.

Denote by Mk the set of all places of k, i.e., the equivalent classes of absolute
values on k. It is a disjoint union of M0

k , the set of all non-archimedian places, and
M∞k , the set of all Archimedean places of k. More precisely, if ν ∈M0

k , then ν = νp
for some prime ideal p ⊂ Ok over a prime element p such that νp|Q is the p-adic
absolute value. If ν ∈M∞k , then ν = ν∞ and ν∞|Q is the usual absolute value | · |∞
on Q.

The local degree nν at ν ∈ Mk is defined by nν = [kν : Qν ], where kν and
Qν are the completions with respect to ν. For each ν ∈ Mk, we let | · |ν be a
representative of the equivalence class which is the nν-th power of the one that
extends a normalized absolute value over Q. Since k is a number field, then for
every x ∈ k∗ we have the product formula

∏
ν∈Mk

|x|ν = 1.

Given a finite field extension K/k, we denote by MK the set of places w on
K such that w |k= ν, for some ν ∈ Mk. Then, we have the degree formula as∑
w∈MK

w|k=ν
[Kw : kν ] = [K : k].

5.1. Heights. For x ∈ k∗ multiplicative and logarithmic height are defined by

(9) Hk(x) =
∏
ν∈Mk

max{1, |x|ν} and hk(x) = logHk(x) =
∑
ν∈Mk

log |x|ν .

For x̃ = (x0, · · · , xn) ∈ kn+1 and v ∈Mk, we let

|x̃|ν = max{|xi|ν : 0 ≤ i ≤ n}.
One can extend such definitions to the projective space by defining the multiplica-
tive and logarithmic height of x = [x0 : · · · : xn] ∈ Pn(k) by

Hk(x) =
∏
ν∈Mk

max
0≤i≤n

{|xi|ν}

hk(x) = logHk(x) =
∑
ν∈Mk

max
0≤i≤n

{log |xi|ν}.
(10)

Note that such height functions are independent of the choice of the coordinates.
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Let K be a number field containing k. For w ∈MK , we normalize the absolute

value | · |w such that its restriction | · |ν on k satisfies | · |ν = | · |[Kν :kν ]
w . Thus, for

x ∈ k∗ we have

(11) Hk(x) = HK(x)1/[K:k], and hk(x) =
1

[K : k]
hK(x),

and for x ∈ Pnk
Hk(x) = HK(x)1/[K:k]

hk(x) =
1

[K : k]
hK(x).

(12)

The field of definition of x ∈ Pn(k̄) is k(x) = k
(
x0

xi
, . . . , xnxi

)
, for any i such that

xi 6= 0. The absolute multiplicative and logarithmic global Weil heights of
x ∈ k̄∗ are defined by

H(x) = HK(x) and h(x) = hK(x),

and for x ∈ Pn(k̄) by

(13) H(x) = HK(x) and h(x) = hK(x),

where K is a number field containing k(x). The absolute heights are independent
of the choice of K. We call h(x) as global Weil height on Pn(k̄).

5.2. Heights on weighted projective spaces. In this section we briefly define
weighted heights (i.e. heights on weighted projective spaces), invariant heights1 and
investigate how such heights behave on strictly semistable points.

The group action k? on An+1(k) induces a group action of Ok on An+1(k). By
Orb(p) we denote the Ok-orbit in An+1(Ok).

For any point p = [x0 : · · · : xn] ∈ Pnw,k we can assume, without loss of generality,

that p = [x0 : · · · : xn] ∈ Pnw,k(Ok). The height for weighted projective spaces will
be defined in the next section.

Let w = (q0, . . . , qn) be a set of weights and Pnw,k the weighted projective space

over a number field k. Let p ∈ Pnw,k a point such that p = [x0, . . . , xn]. We define
the weighted multiplicative height of p as

(14) Sk(p) :=
∏
v∈Mk

max

{
|x0|

nv
q0
v , . . . , |xn|

nv
qn
v

}
.

The logarithmic height of the point p is defined as follows

(15) sk(p) := logSk(p) =
∑
v∈Mk

max
0≤j≤n

{
nv
qj
· log |xj |v

}
.

Sk(p) is well defined and Sk(p) ≥ 1 for any p ∈ Pnw,k, see [BGS20] or [SS22]. The

absolute (multiplicative) weighted height of p ∈ Pnw,k is the function

S : Pnw,Q̄ → [1,∞)

S(p) = Sk(p)1/[k:Q],

1Sometimes called GIT heights
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where p ∈ Pnw,k, for any k which contains Q(wgcd (p)). The absolute (logarith-

mic) weighted height on Pn
w,Q̄ is the function

s : Pnw,Q̄ → [0,∞)

s(p) = log Sk(p) =
1

[k : Q]
Sk(p).

where again p ∈ Pnw,k, for any k which contains Q(wgcd (p)). For more details on

the theory of weighted heights see [BGS20] and [SS22].

5.3. Invariant height. Let v ∈ Mk be a place and ξ(f) the set of invariants of a
degree d binary form f ∈ Vd. We define the norm

| ξ(f) | := max
0≤i≤n

{
‖ξi‖

1
qi
v

}
,

and

‖ξ‖tv (f) :=
| ξ(f) |t

maxi{| fi |tv}

see [Rab13] or [RS15] for details.
Let D be the divisor determined by the roots of f(x, y) via the Chow coordinates

as in Remark 5. The invariant height of the divisor D is defined

(16) h(D) :=

( ∏
v∈Mk

inf
M∈SL2(C)

(
‖ξ‖tv

(
fM
))− 1

t

) 1
[k:Q]

The logarithmic invariant height of D is defined as

(17) ĥ(D) =
1

[k : Q]

∑
v∈Mk

inf
M∈SL2(C)

(
− log ‖ξ‖tv

(
fM
)

t

)

as defined in [Zha96] or [Rab13].

Remark 9. In [Rab13, Thm.4.4.2] it is claimed that if f is a degree deg f = d

semi-stable binary form then ĥ(f) ≥ 0. Moreover, if ∆f 6= 0 then

ĥ(f) ≥ d

2
log

4

3

If f is a stable binary form then ĥ(f) > 0.

In our comparison between the weighted height and invariant height for binary
forms f(x, y) = xd − yd we will use repeatedly the following theorem.

Theorem 5 (Them. 4.3.3 [Rab13]). Let d ≥ 3. Then if d = pr for some prime p
then

ĥ(xd − yd) =
d

2
log 2− p

2(p− 1)
log p,

otherwise ĥ(xd − yd) = d
2 log 2.
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5.4. Weighted height of semistable binary forms. On contrary to the invari-
ant height in [Zha96] the weighted moduli height is very easily computed once the
set of invariants is known. While the generators ξ0, . . . , ξn of the invariant ring
Rd are chosen as primitive polynomials (see Lem. 1), then weighted height Sk is
smaller than the invariant height as we will see next. First we determine the heights
of strictly semistable and semistable points in Pnw,k.

Theorem 6. Let d ≥ 3, k be a number field, f ∈ Vd an integral form defined over
k, and p = ξ(f) ∈ Pnw,k the moduli point in the corresponding weighted projective

space. If f is semistable, then s(ξ(f)) ≥ 0. Moreover, for every d ≥ 4, there exist
an integral binary form g ∈ Vd, defined over k, such that s (ξ(g)) = 0.

Proof. Let f be semistable and p = ξ(f) the corresponding moduli point p ∈ Pnw,k.
Then at least one of the coordinates of p is nonzero. Without loss of generality we
can assume that p ∈ Pnw,k(Ok). Then, S(p) ≥ 1. Hence, s(ξ(f)) ≥ 0.

To prove the second statement we take p with all coordinates 0 or ±1, but not
all coordinates zero. All such points have weighted moduli height S(p) = 1 and
s(p) = 0. Since a generic form has no automorphisms, from a theorem of Shimura
such binary forms are defined over k. �

Remark 10. It is interesting to know some statistical evidence on the number of
moduli points of height s(f) = 0 which are defined over their field of moduli. For
example, for d = 6 such evidence was provided in [BHK+18]; see last table.

A natural question is to understand what happens to the lower bound of the

weighted height as d increases. There is no known estimate for S(ξ(f))
d asd → ∞.

We compute such heights for some small values of d for strictly semistable binary
forms.

Lemma 6. If f is strictly semistable then d = deg f is even and its absolute
weighted moduli height S(ξ(f) and absolute logarithmic weighted height s(ξ(f)), for
d = 4, 6, 8, 10 are determined in Table 1.

Proof. Let f be a binary form which is strictly semistable. Then f can be written
as in Eq. (5). Without loss of generality we can further assume that a0 = 1. Then,
computing invariants for d = 4 we get

ξ(f) = [ξ0 : ξ1] =

[
1

12
: − 1

36

]
= [3 : −6].

Its weighted height is

S ([3 : −6]) = max
{√

3, 6
1
3

}
= 6

1
3 ≈ 1.817

Let f be a sextic with a root of multiplicity 3. Invariants of f with weights w =
(2, 4, 6, 10) are given by

[ξ0 : ξ1 : ξ2 : ξ3] =

[
− 1

(2)
3

(5)
,

1

(2)
2

(3) (5)
4 ,−

1

(2)
3

(3)
2

(5)
6 ,−

1

(2)
4

(3)
2

(5)
10

]
=
[
−3 · 5 : 24 · 3 : 26 · 3 : 210 · 33 · 5

]
Its weighted height is

S(ξ(f)) ≈ 3.872
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An octavic f(x, y) is strictly semistable if and only if the basic invariants with
weights w = (2, 3, 4, 5, 6, 7) take the form

ξ(f) = [ξ0 : ξ1 : ξ2 : ξ3 : ξ4 : ξ5]

=

[
1

22 · 5 · 7
:

1

22 · 52 · 73
:

1

24 · 3 · 74
:

1

23 · 5 · 75
:

1

26 · 32 · 76
:

1

23 · 3 · 5 · 77

]
=
[
32 · 5 · 7 : 2 · 35 · 5 : 33 · 54 : 22 · 35 · 54 : 34 · 56 : 22 · 36 · 56

]
Its weighted height is

S(ξ(f)) = 3
√

5 · 7 ≈ 17.748

For the decimic binary form

f(x, y) = x5
(
x5 + x4ya4 + x3y2a3 + x2y3a2 + x y4a1 + y5

)
the strictly semistable point is given below:

ξ(f) = [ξ0 : ξ1 : ξ2 : ξ3 : ξ4 : ξ5 : ξ6 : ξ7 : ξ8]

=

[
− 1

23327
,

1

243772
,− 5

2431074
,− 1

273874
,

1

2431475
, 0,

− 1

2631677
,− 1

2213155 · 714
,− 1

21032479

]
=
[
−2 · 32 · 5 · 7 : 24 · 3 · 52 · 72 : −28 · 32 · 54 · 72 : −25 · 34 · 54 · 72 :

212 · 32 · 54 · 73 : 0 : −214 · 34 · 55 · 73 : −27 · 313 · 56 : −218 · 34 · 57 · 75
]

Its weighted height is

Sk(ξ(f)) = 3
√

70 ≈ 25.099

This completes the proof. �

Table 1. Strictly semistable points and their weighted heights

d ξ(f) S ξ(f) s ξ(f) ĥ(f)

4 [3 : −6] 1.817 0.259 0.249

6
[
−3 · 5 : 24 · 3 : 26 · 3 : 210 · 33 · 5

]
3.872 0.588 0.375

8
[
32 · 5 · 7 : 2 · 35 · 5 : 33 · 54 : 22 · 35 · 54 :

34 · 56 : 22 · 36 · 56
]

17.748 1.249 0.499

10
[
−2 · 32 · 5 · 7 : 24 · 3 · 52 · 72 : −28 · 32 · 54 · 72 :

−25 · 34 · 54 · 72 : 212 · 32 · 54 · 73 : 25.099 1.399 0.625
−214 · 34 · 55 · 73 : −27 · 313 · 56 : −218 · 34 · 57 · 75

]
In the fourth column of Table 1 we have presented the logarithmic weighted

height. It seems that such logarithmic height increases steadily as d increases. It
would be interesting to determine how fast the logarithmic height increases and
how does it compare to the invariant height (which is also a logarithmic height) as
defined in [Zha96].

One obvious observation from Thm. 6 and Table 1 seems that the weighted
height s(ξ(f)) seems to be growing fast as d increases. This seems to be different
from the behavior of the invariant height and the results in [Rab13]. In order to
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compare in more detail the weighted height with the invariant height, we consider
the family of binary forms

f(x, y) = xd − yd,
for which we have a lower bound for the height, see Thm. 5.

Table 2. Weighted heights for f(xd − yd)

d w ξ(f) = [ξ0(f) : · · · : ξn(f)] S(ξ(f)) s(f) ĥ(f)

3 (4) [-1] 1 0 0.09

4 (2, 3) [-1, 0] 1 0 0.301

5 (4, 8, 12) [-1, 0, 0] 1 0 0.315

6 (2, 4, 6, 10)
[
−1, 1

3 ,
1
9 , 0
] √

3 0.239 0.903

7 (4, 8, 12, 12, 20)
[
−1, 0,− 1

140625 , 0,−
1

87890625

]
75

1
4 0.469 0.56

8 (2, 3, 4, 5, 6, 7)
[
−1, 0, 1

3 , 0,
1
9 , 0
] √

3 0.239 0.903

9 (4,8,10,12,12,14,16)
[
−1, 0, 0,− 1

140625 , 0, 0, 0
]

75
1
4 0.469 0.996

10 (2,4,6,6,8,9,
[
−1 : 1

3 : 0 : 0 : 0 : 0 :
√

105 1.011 1.505
10, 14, 14) 0 : − 1

12353145 : 0
]

Lemma 7. Let f(x, y) = xd − yd and s(f) its absolute logarithmic weighted height
obtained by the choice of invariants ξ = [ξ0 : · · · : ξn], as in Section 2.3. Then, for
3 ≤ d ≤ 10, s(f) is computed in Table 2

Proof. Computing the weighted height of cases d = 3, . . . , 5 is quite easy. We
illustrate with d = 6. The weights are w = (2, 4, 6, 10) and

ξ
(
x6 − y6

)
= p =

[
−1 :

1

3
:

1

9
: 0

]
Take λ =

√
3 and we have

λ ? p = [−3 : 3 : 3 : 0]

Then

S(p) = max{3 1
2 , 3

1
4 , 3

1
6 , 0} =

√
3

Hence, we have s(x6 − y6) = 0.239. Computation for the rest of the cases goes
similarly. All results are presented in Table 2. In the 4-th and 5-th column of the
table are displayed logarithmic weighted height and logarithmic invariant height.

�
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