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Abstract. τ -Li coefficients describe if a function satisfies the Generalized
Riemann Hypothesis or not. In this paper we prove that certain values of the

τ -Li coefficients lead to existence or non-existence of certain zeros. The first
main result gives explicit numbers N1 and N2 such that if all real parts of

the τ -Li coefficients are non-negative for all indices between N1 and N2, then

the function has non zeros outside a certain region. According to the second
result, if some of the real parts of the τ -Li coefficients are negative for some

index n between numbers n1 and n2, then there is at least one zero outside a

certain region.
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1. Introduction

In 1997 X.-J. Li [10] proved an equivalent condition for the Riemann Hypothesis.
The condition is based on the non-negativity of a real sequence (λn), where

λn =
∑
ρ

(
1−

(
1− 1

ρ

)n)
and the sum runs over the non-trivial zeros of the Riemann zeta function. The
numbers λn are called Li coefficients and they are non-negative if and only if the
Riemann Hypothesis holds. Two years later E. Bombieri and J. C. Lagarias [1]
proved that also other functions can be considered by using the Li coefficients. They
also provided an arithmetic formula for the Li coefficients. There are several other
results considering the Li coefficients for different sets of the functions. For example,
J. C. Lagarias [9] investigated the Li coefficients for automorphic L-functions and
L. Smajlović [17] for a certain subclass of the extended Selberg class.
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In 2006 P. Freitas [7] proved that all the zeros of the Riemann zeta function lie
inside the region <(s) ≤ τ

2 , where τ ∈ [ 12 ,∞), if and only if the numbers

1

τ

∑
ρ

(
1−

(
ρ

ρ− τ

)n)
are non-negative when n ≥ 1 is an integer. The sum runs over the non-trivial
zeros of the Riemann zeta function and terms including zeros ρ and 1 − ρ are
paired together. We notice that if τ = 1, then the condition is equivalent to the
Li’s condition. A. D. Droll [5] generalized the result for a certain subclass of the
extended Selberg class. He proved that all the zeros of a function F (s) in this
subclass lie inside the region <(s) ≤ τ

2 if and only if the terms

(1) λF (n, τ) = lim
t→∞

∑
ρ

|=(ρ)|≤t

(
1−

(
ρ

ρ− τ

)n)
,

where τ ∈ [1, 2) and the sum runs over the non-trivial zeros of the function F (s), are
non-negative for all positive integers n. These coefficients are called τ -Li coefficients.
A. Bucur, A.-M. Ernvall-Hytönen, A. Odžak and L. Smajlović [3] also investigated
the numerical behavior of some τ -Li coefficients for some functions which violate
the Riemann Hypothesis.

Zero-free regions in the critical strip can be investigated using the Li coefficients
or the τ -Li coefficients. F. C. Brown [2, Theorem 3] proved that if a finite number
of the Li coefficients for a certain function F (s) are non-negative, then the critical
strip contains zero-free regions. Furthermore, he also tried to show [2, Theorem
2] that if there exist certain zero-free regions, then certain Li coefficients must be
non-negative. Unfortunately, his proof of Lemma 5 contains two errors. A. D. Droll
investigated the errors in his thesis and was able to fix one of them. As a result of
the other error Brown’s Theorem 2 is left unproved.

In this paper we prove two main results regarding the τ -Li coefficients and zero-
free regions. The main results are summarized below:

Summary of Theorem 3.1. Let R > 1 be a real number. If all real parts of the
τ -Li coefficients attached to F are non-negative in a certain interval, which is given

in Theorem 3.1, then all zeros ρ of F satisfy the condition
∣∣∣ ρ
ρ−τ

∣∣∣ < R.

Summary of Theorem 3.3. Let R > 1 be a real number. If at least one of the real
parts of the τ -Li coefficients attached to F is negative in a certain interval, which

is given in Theorem 3.3, then there is at least one zero ρ of F with
∣∣∣ ρ
ρ−τ

∣∣∣ ≥ R.

Theorem 3.1 is similar to Brown’s Theorem 3 and Theorem 3.3 to Theorem 2
but in this article we consider also some cases τ 6= 1 and have different conditions
for the function F (s). We do not make any assumptions of the order of a function
F (s) while Brown did.

The results give a computational way to determine certain zero-free regions.
Indeed, the results give us set of integers. Depending on the signs of the real parts
of the τ -Li coefficients computed using these integers it may be possible to conclude
that all zeros lie on certain region or there is at least one zero outside the region. If
all real parts of the τ -Li coefficients obtained from Theorem 3.1 are non-negative,

then there are no zeros ρ with
∣∣∣ ρ
ρ−τ

∣∣∣ ≥ R. If some of the real parts are negative,
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there may or may not exists a zero ρ with
∣∣∣ ρ
ρ−τ

∣∣∣ ≥ R. Next we can apply Theorem

3.3. If some of the real parts of the τ -Li coefficients obtained from Theorem 3.3 are

negative, then there is at least one zero ρ with
∣∣∣ ρ
ρ−τ

∣∣∣ ≥ R. The tricky case is that

if some of the real parts obtained from Theorem 3.1 are negative but all of the real
parts obtained from Theorem 3.3 are non-negative. In this case we can say nothing

about the existence of the zeros ρ with
∣∣∣ ρ
ρ−τ

∣∣∣ ≥ R. Instead, in this case there must

be zeros ρ with <(s) > τ
2 since otherwise all real parts of the τ -Li coefficients are

non-negative.
Let τ > 1

e be a real number. We are interested in the zeros ρ which have
<(ρ) ∈ [0, τ ] and τ -Li coefficients defined as

(2) λF (n, τ) = lim
t→∞

∑
ρ

|=(ρ)|≤t
0≤<(ρ)≤τ

(
1−

(
ρ

ρ− τ

)n)
.

With condition (a) the previous definition coincides with the classical definition of
the τ -Li coefficient (1).

In this paper we investigate a function F (s) which satisfies the following condi-
tions:

(a) Location of the zeros, 1: The function F (s) does not have zeros ρ with
<(ρ) > τ .

(b) Location of the zeros, 2: The function F (s) does not have a zero ρ = τ .
(c) Number of the zeros: Let NF (t) denote the number of the zeros ρ of

the function F (s) with 0 ≤ <(ρ) ≤ τ and 0 ≤ |=(ρ)| ≤ t. Furthermore, let
similarly NF (t1, t2) denote the number of the zeros ρ of the function F (s)
with 0 ≤ <(ρ) ≤ τ and t1 < |=(ρ)| ≤ t2. For some real numbers AF > 0
and BF and for a real number T0 > 0 which is large enough, we have the
following two properties:

(3)

|NF (T )−AFT log T −BFT |

< CF,1(T0) log T + CF,2(T0) +
CF,3(T0)

T
,

where T ≥ T0 is a real number and the numbers CF,j(T0), where j = 1, 2, 3,
are non-negative real numbers which depend on the function F (s) and the
number T0. Furthermore, we also have

(4)

|NF (T, 2T )−AFT log T − (AF log 4 +BF )T |

< cF,1(T0) log T + cF,2(T0) +
cF,3(T0)

T
,

where cF,1(T0), cF,2(T0) and cF,3(T0) are non-negative real numbers.
We notice that formula (4) actually follows from formula (3), indeed we

have

(5)

cF,1(T0) ≤ 2CF,1(T0),

cF,2 ≤ 2CF,2(T0) + CF,1(T0) log 2,

cF,3(T0) ≤ 3CF,3(T0)

2
.
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However, formula (3) does not follow from formula (4). Since we would like
to apply both formula (3) and formula (4), we have listed them separately.

(d) Computation: The numbers λF (n, τ) can be computed without knowing
the zeros of the function F (s).

The first condition is not necessary for proving the results. It is assumed since we
would like keep our definition of the term λF (n, τ) (2) unchanged compared to the
classical definition of the τ -Li coefficient (see formula (1)).

Furthermore, the last condition is not needed to prove the results. Instead, it is
needed for being able to apply the results to determine zero-free regions without
knowing the zeros. For example, for τ = 1 and the Riemann zeta function the third
condition is satisfied since by [10]

λζ(n, 1) =
1

(n− 1)!

dn

dsn
[sn−1 log ξ(s)]s=1

where

ξ(s) = s(s− 1)π−
s
2 Γ
(s

2

)
ζ(s).

The previous conditions are not very restrictive. For example, the Riemann zeta
function satisfies these conditions. Furthermore, all Selberg class functions also
satisfy these conditions for τ ≥ 1 (see [5, 16,18]).

Notice also that the assumption τ > 1
e is a same type of assumption as Freitas

did for the number τ and thus a very natural assumption. For example, non-trivial
zeros ρ of the Riemann zeta function satisfy 0 < <(ρ) < 1. Since the number τ
can be selected to be any real number in the interval [1, 2), all interesting values
for the number τ are possible while considering the Riemann zeta function. The
assumption τ > 1

e is needed for technical purposes, indeed, mainly to be able to
estimate eτ > 1 and thus log (eτ) > 0 and neτ > n, where n is a positive integer.

Our main goal is to prove Theorems 3.1 and 3.3. We approach the proof as
follows: We want to estimate the contribution of the zeros which lie outside of
certain regions to the τ -Li coefficients. By these estimates we can estimate the
terms <(λF (n, τ)) and obtain the results. For these results we need to prove some
preliminary results in Section 2. The main results are proved in Section 3. In
Section 4 we consider a special case in which the function F (s) has only one zero
which lies outside of a certain region.

At the end of the paper, in Sections 5 and 6, we give numerical examples for
Dirichlet L-functions and an L-function associated with a holomorphic newform.
We keep in mind that there already are several results concerning Dirichlet L-
functions and zero-free regions. Let F (s) be a Dirichlet L-function associated with
a primitive non-principal character modulo q. The first result concerning explicit
zero-free regions was proved by K. S. McCurley [13, Theorem 1]. According to the
result, the function F (s) has no zeros in the region

(6) <(s) ≥ 1− 1

9.645908801 log (max{q, q|=(s)|, 10})
to the exception of at most one zero. There are several improvements to the con-
stant. Recently H. Kadiri [8, Theorem 1.1.1] proved that the function F (s) with
3 ≤ q ≤ 400000 does not vanish in the region

(7) <(s) = 1− 1

5.60 log (qmax{1, |=(s)|})
.
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By F. C. Brown [2, Corollary 1] we also know that for every k ≥ 2 there is at most
one primitive Dirichlet character of conductor dividing k such that the completed
function of F (s) has a zero ρ with

<(ρ) ≥ 1− 1

48 log k
and |=(ρ)| ≤ 1

48 log k
.

If such a character exists, it is real and ρ ∈ R and ρ is simple. K. Mazhouda [11]
investigated the non-negativity of the Li coefficients for the Dirichlet L-functions if
the Generalized Riemann Hypothesis holds up to height T .

2. Preliminary results

In this section we prove upper bounds for the contributions of the zeros ρ for
the coefficients <(λF (n, τ)). The main goal is to apply these results to determine
the connections between the terms <(λF (n, τ)) and the zeros of the function F .
We consider two cases: first we consider the contribution of the zeros with the
absolute values of the imaginary parts large enough, and then the contribution of
the zeros with the absolute values of the imaginary parts small enough. We apply
these results in Section 3.

2.1. Contribution of the zeros with the absolute values of the imaginary
parts large enough. In this section we consider an upper bound for the contri-
bution of the zeros ρ whose imaginary parts have large enough absolute values to
the τ -Li coefficients. This means that we would like to find an upper bound for the
term

(8)

∣∣∣∣ lim
t→∞

∑
T<|=(ρ)|≤t

<
(

1−
(

ρ

ρ− τ

)n) ∣∣∣∣,
where T is a (certain) positive real number, since

λF (n, τ) = lim
t→∞

∑
ρ

|=(ρ)|≤t

(
1−

(
ρ

ρ− τ

)n)

and we are interested in the term <(λF (n, τ)). To estimate the contribution, we ap-
ply the binomial formula. We also assume that the number n in the τ -Li coefficient
λF (n, τ) is large enough. This is not a very restrictive assumption since we would
like to apply the result to find at least one number n for which <(λF (n, τ)) < 0,
and this number n can be large.

Theorem 2.1. Let τ > 1
e be a real number and T0, AF , BF , cF,j(T0), where

j = 1, 2, 3, be defined as in condition (c). Assume that n ≥ max
{
e, 1
eτ T0

}
is a

positive integer and define T (n) := neτ . Furthermore, let

KF,1(τ) :=
2τ

3

(
e+

1

e

)
(AF + |AF log (8eτ) +BF |)

+
4

27

(
1 +

1

e2

)(
cF,1(T0)

3
log 2

+cF,1(T0) log (e2τ) + cF,2(T0) +
2cF,3(T0)

7eτ

)
.
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Then ∣∣∣∣ lim
t→∞

∑
T (n)<|=(ρ)|≤t

<
(

1−
(

ρ

ρ− τ

)n) ∣∣∣∣ < KF,1(τ)n log n.

Proof. First we consider the term <
(

1−
(

ρ
ρ−τ

)n)
. We define

(9) x := <
(

ρ

ρ− τ

)
=
|ρ|2 −<(ρ)τ

|ρ− τ |2
= 1 +

<(ρ)τ − τ2

|ρ− τ |2

and

(10) y := =
(

ρ

ρ− τ

)
= − =(ρ)τ

|ρ− τ |2
.

We write the term <
(

1−
(

ρ
ρ−τ

)n)
using the numbers x and y, but before that

we estimate the numbers x and y. Since 0 ≤ <(ρ) ≤ τ , we have <(ρ)τ − τ2 ≤
0. Furthermore, we also have

∣∣<(ρ)τ − τ2
∣∣ ≤ τ2 and |ρ − τ |2 ≥ =(ρ)2 > τ2 for

|=(ρ)| > T (n). Thus |x| ≤ 1. We also notice |y| ≤ τ
|=(ρ)| .

We have

<
(

1−
(

ρ

ρ− τ

)n)
= 1−<

(
n∑
k=0

(
n

k

)
xn−k(iy)k

)

= 1− xn −
bn2 c∑
k=1

(
n

2k

)
xn−2k(−1)ky2k.

We estimate this term in two parts: first we estimate the term 1 − xn, and then
the sum on the right-hand side of the previous formula. By the definition and the
estimates for the term x we have

|1− xn| ≤ |1− x|
n−1∑
k=0

|x|k ≤
∣∣−<(ρ)τ + τ2

∣∣
|ρ− τ |2

n <
nτ2

=(ρ)2
.

Next, since
(
n
2k

)
<
(
ne
2k

)2k
[4, inequality (2)], |x| ≤ 1 and |y| ≤ τ

|=(ρ)| , we have∣∣∣∣∣∣
bn2 c∑
k=1

(
n

2k

)
xn−2k(−1)ky2k

∣∣∣∣∣∣ <
bn2 c∑
k=1

(
neτ

2k|=(ρ)|

)2k

<

(
neτ

2=(ρ)

)2 ∞∑
k=0

(
neτ

2=(ρ)

)2k

=
(neτ)2

4=(ρ)2
· 1

1−
(

neτ
2=(ρ)

)2 .(11)

Furthermore, since T (n) = neτ , for |=(ρ)| > T (n) we have 1−
(

neτ
2=(ρ)

)2
> 3

4 . Thus

the right-hand side of inequality (11) is

<
(neτ)2

3=(ρ)2
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and we have obtained that∣∣∣∣<(1−
(

ρ

ρ− τ

)n)∣∣∣∣ < 3nτ2 + (neτ)2

3=(ρ)2
.

Next we estimate term (8) for T = T (n). By the previous estimates we have∣∣∣∣ lim
t→∞

∑
T (n)<|=(ρ)|≤t

<
(

1−
(

ρ

ρ− τ

)n) ∣∣∣∣
<

∞∑
h=0

∑
|=(ρ)|∈(2hT (n),2h+1T (n)]

3nτ2 + (neτ)2

3=(ρ)2
.

From the assumptions posed on parameters T (n) = neτ ≥ T0 follows that we can
apply formula (4) for the number of the zeros and the right-hand side of the previous
inequality is

<

∞∑
h=0

3nτ2 + n2e2τ2

3 · 22hT (n)2

(
AF 2hT (n) log

(
2hT (n)

)
+ (AF log 4 +BF ) 2hT (n) + cF,1(T0) log

(
2hT (n)

)
+ cF,2(T0) +

cF,3(T0)

2hT (n)

)
=

3nτ2 + n2e2τ2

3T (n)

(
2AF log (2T (n)) + 2 (AF log 4 +BF )

+
4cF,1(T0)

9T (n)
log 2 +

4(cF,1(T0) log (T (n)) + cF,2(T0))

3T (n)
+

8cF,3(T0)

7T (n)2

)
=
(eτ

3
n+

τ

e

)(
2AF log (8neτ) + 2BF

+
4cF,1(T0)

9neτ
log 2 +

4(cF,1(T0) log (neτ) + cF,2(T0))

3neτ
+

8cF,3(T0)

7(neτ)2

)
=

2eτAF
3

n log n+
2eτ

3
(AF log (8eτ) +BF )n+

2τAF
e

log n+
4cF,1(T0)

27
log 2

+
4(cF,1(T0) log (neτ) + cF,2(T0))

9
+

2τ

e
(AF log (8eτ) +BF ) +

8cF,3(T0)

21neτ

+
4cF,1(T0)

9ne2
log 2 +

4(cF,1(T0) log (neτ) + cF,2(T0))

3ne2
+

8cF,3(T0)

7n2e3τ
.

Since n ≥ e is an integer, the right-hand side of the previous formula is

≤ n log n

(
2eτAF

3
+

2eτ

3
|AF log (8eτ) +BF |+

2τAF
3e

+
4cF,1(T0)

81
log 2

+
4(cF,1(T0) log (e2τ) + cF,2(T0))

27
+

2τ

3e
|AF log (8eτ) +BF |+

8cF,3(T0)

189eτ

+
4cF,1(T0)

81e2
log 2 +

4(cF,1(T0) log (e2τ) + cF,2(T0))

27e2
+

8cF,3(T0)

189e3τ

)
= KF,1(τ)n log n.

�
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2.2. Contribution of the zeros with the absolute values of the imaginary
parts small enough. In this section we investigate the upper bound for the con-
tribution of the zeros with absolute values of the imaginary parts small enough to
the coefficients < (λF (n, τ)). To obtain the result, we need the following lemma
which is proved in Chapter 5, Theorem 11 in [14]:

Lemma 2.2. Let M ≥ 1 be an integer and let z1, z2, . . . , zM be complex numbers
which satisfy the condition max

j
|zj | = 1. Then

max
1≤n≤5M

<

 M∑
j=1

znj

 ≥ 1

20
.

Next we apply the above lemma and estimate the contribution of the zeros with
the absolute values of the imaginary parts small enough. We also assume that the
number n in the τ -Li coefficient λF (n, τ) is in a certain interval, and there exists a

number R > 1 such that for some zero ρ it holds that
∣∣∣ ρ
ρ−τ

∣∣∣ ≥ R. These are not

too restrictive assumptions since we would like to apply the result to find at least
one number n for which <(λF (n, τ)) < 0. Using the following we can investigate
whether there exists zeros outside certain regions or not. Recall also that <(ρ) = τ

2

if and only if
∣∣∣ ρ
ρ−τ

∣∣∣ = 1.

Before going to the the next theorem, we would like to point out that we cannot
remove any elements from the lower bound for the number N described in the
following theorem. We have made no other assumptions for the numbers T0, τ and
R than they are greater than certain constants which are smaller than e, and the
number R can be arbitrary large. Furthermore, the number MF can be positive,
negative or zero and the number AF can be any positive real number. Since we
have also made no specific assumptions for the (numerical) relationships between
the numbers T0, τ , R, AF and BF which would simplify the expressions described
in the lower bound for the number N , we can conclude that no elements can be
removed.

Theorem 2.3. Let τ > 0 be a real number and T0, AF , BF , CF,j(T0), where
j = 1, 2, 3, be defined as in condition (c). Assume that there is a real number R > 1

such that there exists at least one zero ρ with
∣∣∣ ρ
ρ−τ

∣∣∣ ≥ R. Furthermore, we define

MF := BF +
CF,1(T0)

e
+
CF,2(T0)

3
+
CF,3(T0)

9

and assume that for an integer N it holds

N ≥

⌈
max

{
e, T0,

τ√
R2 − 1

, e
1−15MF

15AF

}⌉
.

Then

<

( ∑
ρ

|=(ρ)|≤N

(
1−

(
ρ

ρ− τ

)n))
<

∑
ρ

|=(ρ)|≤N

1− 1

20
Rn

for some positive integer n ∈ [N, 5N2(AF logN +MF )] for which N | n.
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Proof. First we prove that there exists an integer n in

[N, 5N2(AF logN +MF )]

such that N | n. Since we have N ∈ Z, N ≥ 3 and N ≥ e
1−15MF

15AF , we obtain

5N(AF logN +MF ) ≥ 15

(
AF ·

1− 15MF

15AF
+MF

)
= 1.

Thus such an integer exists.
Next we prove the claim using Lemma 2.2. First we recognize that we can apply

Lemma 2.2 since there exist only finitely many zeros ρ with |=(ρ)| ≤ N . By formula
(3), for N ≥ max{3, T0} there are at most

AFN logN +BFN + CF,1(T0) logN + CF,2(T0) +
CF,3(T0)

N
≤ N(AF logN +MF )

zeros ρ with |=(ρ)| ≤ N . Let these zeros be ρ1, ρ2, . . . , ρM , where M is a non-

negative integer. Furthermore, since N ≥ τ√
R2−1 , for all zeros with

∣∣∣ ρ
ρ−τ

∣∣∣ ≥ R it

also holds that <(ρ) ≥ Rτ
1+R and

|=(ρ)| ≤

√
<(ρ)2 −R2 (<(ρ)− τ)

2

R2 − 1
≤ τ√

R2 − 1
≤ N.

Thus, and by the assumptions for the number R, there also exists R′ ≥ R such
that R′ = max

j∈[1,M ]
| ρj
ρj−τ | and M ≥ 1. Thus we can set

ρj
ρj−τ = R′rj exp(φji)

(j = 1, 2, . . . ,M) where 0 ≤ rj ≤ 1 and φj are real numbers for all j. Then we can
apply Lemma 2.2 for the complex numbers zj = rNj e

Nφji and get

<

( ∑
ρ

|=(ρ)|≤N

(
1−

(
ρ

ρ− τ

)n))
=

M∑
j=1

<
(

1−
(

ρj
ρj − τ

)n)

=

M∑
j=1

1−R′n<

 M∑
j=1

z
n
N
j


≤

∑
ρ

|=(ρ)|≤N

1− 1

20
R′n

for some integer n
N ∈ [1, 5M ]. Since M < N(AF logN + MF ), the previous in-

equality holds for some integer n ∈ [N, 5N2(AF logN + MF )] for which N | n.
Furthermore, since R ≤ R′, the right-hand side of the previous inequality is

≤
∑
ρ

|=(ρ)|≤N

1− 1

20
Rn,

which we wanted to prove. �
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0 τ
2

τ

0

<(ρ)

=
(ρ

)

Figure 1. Region
∣∣∣ ρ
ρ−τ

∣∣∣ < R is in white. The smaller the value

R is, the closer the left part of the gray region is to value τ/2.
Moreover, the smaller the number R is, the larger the height of the
gray region (meaning the largest absolute value of the imaginary
parts in it) is.

3. Main results

In this section we consider the terms <(λF (n, τ)) and how they are related to
zero-free regions. Recall that

<(λF (n, τ)) = lim
t→∞

∑
ρ

|=(ρ)|≤t

<
(

1−
(

ρ

ρ− τ

)n)
.

First we prove that if the terms <(λF (n, τ)) are non-negative for all integers n in

a certain interval, then there are no zeros ρ with
∣∣∣ ρ
ρ−τ

∣∣∣ ≥ R. The second theorem

takes care of the other case: it states that if at least one term <(λF (n, τ)) is
negative for some integer n in a certain interval, then there is at least one zero ρ

with
∣∣∣ ρ
ρ−τ

∣∣∣ > R. The intervals will be given explicitly. Furthermore, the shape

of the region
∣∣∣ ρ
ρ−τ

∣∣∣ < R, where R > 1, is coloured in white in Figure 1. The

reason why we consider these kind of regions is that in Theorem 2.3 we applied a

lower bound for the term
∣∣∣ ρ
ρ−τ

∣∣∣. Furthermore, Brown also investigated these kind

of regions. To prove the results we use the results proved in Section 2.
In the next two results we use the inverse of the function xex. Let

W0 : [−e−1,∞)→ [−1,∞) and W−1 : [−e−1, 0)→ (−∞,−1]

be different branches of the inverse of the function xex. For these branches we have

W0(−e−1) = −1, lim
x→∞

W0(x) =∞,

W−1(−e−1) = −1 and lim
x→0−

W−1(x) = −∞.
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Furthermore, we remember that τ > 1
e is a real number. Also, in this section,

the terms T0, AF , BF , cF,j(T0) and CF,j(T0), where j = 1, 2, 3, are defined as in
condition (c), KF,1(τ) is defined as in Theorem 2.1 and MF as in Theorem 2.3.
Using this notation, let us define

(12)

KF,2(τ) := 5(AF + |MF |)
(

5

2
+ log (5eτ) +

∣∣∣∣log

(
AF +

|MF |
1.732

)∣∣∣∣) ·
·
(

2τe
5τ2MF+2

2

(
AF +

|BF |
log (3eτ)

+
CF,1(T0)

3eτ
+

CF,2(T0)

3eτ log (3eτ)

+
CF,3(T0)

9(eτ)2 log (3eτ)

)
+KF,1(τ)

)
.

As before, we would like to point out that we cannot remove any elements from
the lower bound for the number N described in the following theorem. The reason
behind this is that the elements in the lower bounds depend on different sets of
constants.

Now we are ready to prove the first main result:

Theorem 3.1. Let R > 1, τ > 1
e be real numbers, T0, AF , BF , cF,j(T0), CF,j(T0),

where j = 1, 2, 3, be defined as in condition (c), MF as in Theorem 2.3 and KF,2(τ)
as in formula (12). We define

N =

⌈
max

{
τ√

R2 − 1
, T0, e

1−15MF
15AF ,

exp

(
−W−1

(
− 4

3(5τ2AF + 4)
logR

))
,

12 log (20KF,2(τ))

logR

}⌉

if R ≤ e
3(5τ2AF+4)

4e and

N =

⌈
max

{
e,

τ√
R2 − 1

, T0, e
1−15MF

15AF ,
12 log (20KF,2(τ))

logR

}⌉

otherwise.
If all coefficients <(λF (n, τ)) are non-negative for

n ∈ [N, 5N2(AF logN +MF )], where N | n,

then all zeros ρ satisfy the condition
∣∣∣ ρ
ρ−τ

∣∣∣ < R.

Proof. The main idea of the proof is to show that if there exists at least one zero

ρ with
∣∣∣ ρ
ρ−τ

∣∣∣ ≥ R, then <(λF (n, τ)) is negative for some

n ∈ [N, 5N2(AF logN +MF )], where N | n.

First we notice that according to the first paragraph of the proof of Theorem
2.3, there exists an integer n ∈ [N, 5N2(AF logN +MF )] with N | n. Thus we can
consider integers in [N, 5N2(AF logN +MF )].
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For all n ∈ [N, 5N2(AF logN +MF )] we denote T (n) := neτ . Clearly T (n) > N
and we have

<(λF (n, τ)) = lim
t→∞

∑
T (n)<|=(ρ)|≤t

<
(

1−
(

ρ

ρ− τ

)n)

+
∑

N<|=(ρ)|≤T (n)

<
(

1−
(

ρ

ρ− τ

)n)
(13)

+
∑

|=(ρ)|≤N

<
(

1−
(

ρ

ρ− τ

)n)
.

The proof consists of estimating the three terms on the right-hand side of formula
(13).

First we consider the second term. Remember that for the terms x = <
(

ρ
ρ−τ

)
and y = =

(
ρ

ρ−τ

)
, defined in formulas (9) and (10), we have proved that |x| ≤ 1

and |y| ≤ τ
|=(ρ)| (see the first paragraph of the proof of Theorem 2.1). Thus

∣∣∣∣<(( ρ

ρ− τ

)n)∣∣∣∣ = |< ((x+ yi)
n
)| ≤

(
1 +

τ2

=(ρ)2

)n
2

.

Furthermore, since n ≤ 5N2(AF logN + MF ), for |=(ρ)| > N the right-hand side
is

<

(
1 +

τ2

N2

)N2

τ2
· 5τ22 (AF logN+MF )

< e
5τ2MF

2 N
5τ2AF

2 .

By the previous estimate and Theorems 2.1 and 2.3, the right-hand side of for-
mula (13) is

(14)

< KF,1(τ)n log n+ e
5τ2MF

2 N
5τ2AF

2

∑
N<|=(ρ)|≤T (n)

(
e−

5τ2MF
2 N−

5τ2AF
2 + 1

)
+

∑
ρ

|=(ρ)|≤N

1− 1

20
Rn

for some integer n ∈ [N, 5N2(AF logN +MF )] for which N | n. We prove that the
expression given in formula (14) is less than zero for all n ∈ [N, 5N2(AF logN +
MF )]. First we consider the second and the third term of the formula (14). Thus

we would like to estimate the term e−
5τ2MF

2 N−
5τ2AF

2 and hence the term MF . As
we have already noticed, we have 5N(AF logN +MF ) ≥ 1 and thus

MF ≥
1

5N
−AF logN > −AF logN.
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It follows that

e
5τ2MF

2 N
5τ2AF

2

∑
N<|=(ρ)|≤T (n)

(
e

−5τ2MF
2 N

−5τ2AF
2 + 1

)
+

∑
|=(ρ)|≤N

1

< e
5τ2MF

2 N
5τ2AF

2

 ∑
N<|=(ρ)|≤T (n)

(1 + 1) +
∑

|=(ρ)|≤N

1


≤ e

5τ2MF
2 N

5τ2AF
2

∑
|=(ρ)|≤T (n)

2.

By formula (3) and since T (n) = neτ ≤ 5eτN2 (AF logN +MF ) and n ≥ N ≥ 3,
the previous formula is

< 2e
5τ2MF

2 N
5τ2AF

2 T (n) log T (n)

(
AF +

BF
log T (n)

+
CF,1(T0)

T (n)
+

CF,2(T0)

T (n) log T (n)
+

CF,3(T0)

T (n)2 log T (n)

)
≤ 10τe

5τ2MF+2

2 N
5τ2AF+4

2 (AF logN +MF ) log
(
5eτN2(AF logN +MF )

)
·

·
(
AF +

|BF |
log (3eτ)

+
CF,1(T0)

3eτ
+

CF,2(T0)

3eτ log (3eτ)
+

CF,3(T0)

9(eτ)2 log (3eτ)

)
.

Furthermore, since logN <
√
N , the right-hand side of the previous inequality is

(15)

< 10τe
5τ2MF+2

2 N
5τ2AF+4

2 (AF logN +MF )
(

log (5eτ) + 2 logN + log
√
N

+ log

(
AF +

|MF |√
N

))
·
(
AF +

|BF |
log (3eτ)

+
CF,1(T0)

3eτ
+

CF,2(T0)

3eτ log (3eτ)
+

CF,3(T0)

9(eτ)2 log (3eτ)

)
< 10τe

5τ2MF+2

2 N
5τ2AF+4

2 (AF logN +MF )

(
5

2
logN + log (5eτ)

+ log

(
AF +

|MF |
1.732

))
·
(
AF +

|BF |
log (3eτ)

+
CF,1(T0)

3eτ
+

CF,2(T0)

3eτ log (3eτ)
+

CF,3(T0)

9(eτ)2 log (3eτ)

)
.

We have estimated the second and the third term of formula (14).
Next we consider the first and the last term of formula (14). Similarly as before,

for n ∈ [N, 5N2(AF logN +MF )] and N ≥ 3 we have logN <
√
N and

KF,1(τ)n log n− 1

20
Rn

< 5N2KF,1(τ)(AF logN +MF ) log
(
5N2(AF logN +MF )

)
− 1

20
RN

< 5N2KF,1(τ)(AF logN +MF )·

·
(

5

2
logN + log 5 + log

(
AF +

|MF |
1.732

))
− 1

20
RN .

(16)

Thus we have also estimated the first and last the term of formula (14).
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Now we can combine the previous computations and estimate formula (14). By
estimates (15) and (16)

KF,1(τ)n log n+ e
5τ2MF

2 N
5τ2AF

2

∑
N<|=(ρ)|≤T (n)

(
e−

5τ2MF
2 N−

5τ2AF
2 + 1

)
+

∑
ρ

|=(ρ)|≤N

1− 1

20
Rn

< 5N
5τ2AF+4

2 (AF logN +MF )·(17)

·
(

5

2
logN + log (5eτ) + log

(
AF +

|MF |
1.732

))
·(18)

·
(

2τe
5τ2MF+2

2

(
AF +

|BF |
log (3eτ)

+
CF,1(T0)

3eτ
+

CF,2(T0)

3eτ log (3eτ)
(19)

+
CF,3(T0)

9(eτ)2 log (3eτ)

)
+KF,1(τ)

)
− 1

20
RN .(20)

Since on lines (19) and (20) in the previous inequality the only term which depends
on the number N is the term RN , it is sufficient to estimate lines (17) and (18) in
the previous inequality. Since N > e, we have

5N
5τ2AF+4

2 (AF logN +MF )

(
5

2
logN + log (5eτ) + log

(
AF +

|MF |
1.732

))
< 5(AF + |MF |)N

5τ2AF+4

2 log2N ·

·
(

5

2
+ log (5eτ) +

∣∣∣∣log

(
AF +

|MF |
1.732

)∣∣∣∣) .
Thus formula (14) is

< KF,2(τ)N
5τ2AF+4

2 log2N − 1

20
RN .

We want to prove that the previous expression is at most zero for the number
N . This can be equivalently written as

(21)

(
5τ2AF

4
+ 1

)
logN

N
+

log logN

N
+

log (20KF,2(τ))

2N

≤ 1

3
logR+

1

8
logR+

1

24
logR.

We prove this in three parts. The coefficients 1/3, 1/8 and 1/24 are chosen because

the term
(

5τ2AF
4 + 1

)
logN > logN grows faster than the term log logN , this

grows faster than a constant term and for all N ≥ e we have 3 logN ≥ 8 log logN .
First we prove that the first term on the left-hand side of inequality (21) is at

most the first term on the right-hand side of the inequality. This can be equivalently
written as

(22) − e− logN logN ≥ − 4

3(5τ2AF + 4)
logR.
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First we notice that if R > e
3(5τ2AF+4)

4e , then for all N ≥ e we have

−e− logN logN = − logN

N
≥ −1

e
> − 4

3(5τ2AF + 4)
logR

and inequality (22) holds. Furthermore, since by the definition of the number N
given in formulation of the theorem we have

N ≥ exp

(
−W−1

(
− 4

3(5τ2AF + 4)
logR

))
if R ≤ e

3(5τ2AF+4)

4e

and the function W−1(x) is decreasing for x ∈ (−1/e, 0), inequality (22) holds also
in this case and the inequality is proved. Morever, using estimate (22) for N > 1
we also have

log logN

N
≤ 3

8

logN

N
<

3

8

(
5τ2AF

4
+ 1

)
logN

N
≤ 3

8
· 1

3
logR =

1

8
logR.

Next we compare the third terms on the left- and right-hand side of inequality (21).

Since N ≥ 12 log (20KF,2(τ))
logR , we have

log (20KF,2(τ))
2N ≤ 1

24 logR. Thus we have proved

the claim. �

Remark 3.2. We notice that the number N in the previous theorem is not the best
one. We used upper bounds for the terms instead of the exact values. On the

other hand, the term RN grows faster than N
5τ2AF+4

2 log2N and the smallest N
for which the term

KF,2(τ)N
5τ2AF+4

2 log2N − 1

20
RN

is non-positive depends mainly on the term R. Thus the number N given by
Theorem 3.1 is good enough.

Next we prove that if at least one of the real parts of the τ -Li coefficients is

negative in a certain interval, then there is at least one zero ρ with
∣∣∣ ρ
ρ−τ

∣∣∣ ≥ R. To

obtain the result, we use the notation where

(23)

KF,3(T, τ) :=
0.432τ2

T

(
AF
2

log (2T ) +
AF log 4 +BF

2

−cF,1(T0)

3T
log(2

1
3T )− cF,2(T0)

3T
− 2cF,3(T0)

7T 2

)
.

In the following theorem we have an upper bound for the number R. This is
not a too restrictive assumption since a smaller number R means larger regions
which do not have zeros and we would like to find as large areas as possible without
zeros. Furthermore, we would like to notice that we cannot remove any elements
from the lower bound for the term T . The reason is that most of the elements
depend on different constants, and depending on the size of the term BF

AF
the term

exp
(
− 96BF

23AF

)
is sometimes greater than the term exp

(
0.324BF

(e2−1.296)AF

)
and sometimes

not. Furthermore, even though by equations (5) we can bound the terms cF,j(T0)
(j = 1, 2) by the terms CF,j(T0) (j = 1, 2), it is not enough for simplifying the
lower bound for the term T .

Now we move on to the next theorem:
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Theorem 3.3. Let τ > 1
e be a real number and T0, AF , BF , cF,j(T0), CF,j(T0),

where j = 1, 2, 3, be defined as in condition (c) and KF,3(T, τ) as in formula (23).
Furthermore, let T be a real number for which

T > max

{
T0, exp

(
−96BF

23AF

)
, exp

(
0.324BF

(e2 − 1.296)AF

)
,

8cF,1(T0)

3AF
,

8cF,2(T0)

3AFW0

(
16cF,2(T0)

3AF

) , 96CF,1(T0)

23AF
,

96CF,2(T0)

23AFW0

(
96CF,2(T0)

23AF

) ,√√√√ 192CF,3(T0)

23AFW0

(
192CF,3(T0)

23AF

)
 .

Further, let R > 1 be a real number such that

R ≤ exp

(
4W0

(√
KF,3(T, τ)

4e2NF (T )

))
.

We denote

n0 = max

{
1,

⌈
1

2
− 2

logR
W0

(
− logR

2

√
NF (T )

KF,3(T, τ)
exp

(
logR

4

))⌉}
and

n1 = min

{
T

eτ
,

⌊
1

2
− 2

logR
W−1

(
− logR

2

√
NF (T )

KF,3(T, τ)
exp

(
logR

4

))⌋}
.

If the term <(λF (n, τ)) is negative for some n ∈ [n0, n1], then there exists at

least one zero ρ with
∣∣∣ ρ
ρ−τ

∣∣∣ ≥ R.

Proof. For the proof the contraposition will be used. Thus we show that there are

no zeros ρ with
∣∣∣ ρ
ρ−τ

∣∣∣ ≥ R, then the terms <(λF (n, τ)) are non-negative for all

n ∈ [n0, n1].
First we prove the case n = 1. Since

<
(

1− ρ

ρ− τ

)
=
τ(τ −<(ρ))

|ρ− τ |2
≥ 0,

the coefficient λF (1, τ) ≥ 0. Thus it is enough to consider the cases n ≥ 2. We can
estimate the τ -Li coefficients by first considering the contribution of the zeros with
absolute values of the imaginary parts greater than T and then the contribution of
zeros with the absolute values at most T . Indeed, we have

(24)

<(λF (n, τ)) = lim
t→∞

∑
ρ

|=(ρ)|≤t

<
(

1−
(

ρ

ρ− τ

)n)

= lim
t→∞

∑
T<|=(ρ)|≤t

<
(

1−
(

ρ

ρ− τ

)n)

+
∑

|=(ρ)|≤T

<
(

1−
(

ρ

ρ− τ

)n)
.
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We estimate each term for n ∈ [n0, n1].
First we estimate the sum over the zeros with |=(ρ)| > T . Since

<
(

1−
(

ρ

ρ− τ

)n)
= <

(
1−

(
1 +

τ

ρ− τ

)n)
= −nτ<

(
1

ρ− τ

)
− n(n− 1)τ2

2
<
(

1

(ρ− τ)2

)
(25)

−
n∑
j=3

(
n

j

)
<

((
τ

ρ− τ

)j)
,

we can estimate each term on the right-hand side separately. First we estimate the
first term on the right-hand side. Since <(ρ) ≤ τ , we can compute

<
(

1

ρ− τ

)
=
<(ρ)− τ
|ρ− τ |2

≤ 0.

Thus the first term on the right-hand side of the equation (25) is non-negative.
Next, we have

<
(

1

(ρ− τ)2

)
=

(<(ρ)− τ)2 −=(ρ)2

|ρ− τ |4
.

We notice that the term in the right-hand side of the previous equality is negative
since |=(ρ)| > neτ > τ . Thus we want to have large values in the denominator.
Hence, the right-hand side of the previous equation is

≤ τ2 −=(ρ)2

(τ2 + =(ρ)2)2
.

Finally we estimate the third term on the right-hand side of equation (25). Recall
that n ≤ n1 ≤ T

eτ . Hence, for j ≥ 3 and |=(ρ)| > T we have∣∣∣∣∣
(
n

j

)(
τ

ρ− τ

)j∣∣∣∣∣ ≤
∣∣∣∣∣n(n− 1)(n− 2)nj−3

j!

(
τ

|=(ρ)|

)j∣∣∣∣∣
≤ τ3n(n− 1)(n− 2)

ej−3j!|=(ρ)|3
.

Thus the third term on the right-hand side of equation (25) is

≥ −τ
3n(n− 1)(n− 2)

|=(ρ)|3
n∑
j=3

1

ej−3j!

> −τ
3n(n− 1)(n− 2)

|=(ρ)|3
∞∑
j=3

1

ej−3j!

> −0.184τ3n(n− 1)(n− 2)

|=(ρ)|3
.

Using obtained bounds we can estimate the right-hand side of equation (25).
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By the above derived estimates we have

(26)

<
(

1−
(

ρ

ρ− τ

)n)
> −n(n− 1)τ2

=(ρ)2

(
τ2 −=(ρ)2

2( τ2

|=(ρ)| + |=(ρ)|)2
+

0.184(n− 2)τ

|=(ρ)|

)
.

Further, since |=(ρ)| > T ≥ neτ , we also have 0.184(n−2)τ
|=(ρ)| < 0.184

e . The function

τ2 −=(ρ)2

2( τ2

|=(ρ)| + |=(ρ)|)2
+

0.184

e

is negative and decreasing in variable =(ρ) for all |=(ρ)| > T > neτ > 2τ . This

means that since the term 0.184(n−2)τ
|=(ρ)| is a non-negative and decreasing function in

variable |=(ρ)|, we can set |=(ρ)| = neτ in the right-hand side of inequality (26).
We obtain that the the right-hand side of formula (26) is

> −n(n− 1)τ2

=(ρ)2

(
1− (ne)2

2
(

1
ne + ne

)2 +
0.184(n− 2)

ne

)
.

The expression inside the brackets is negative for all n ≥ 2. It has a stationary point
s ≈ 2.837 and it is an increasing function for n > s and decreasing for n ∈ [2, s].
Thus the previous formula is

≥ n(n− 1)τ2

=(ρ)2
min

{
−1 + (2e)2

2
(

1
2e + 2e

)2 , lim
n→∞

(
−1 + (ne)2

2
(

1
ne + ne

)2 − 0.184(n− 2)

ne

)}

>
0.432n(n− 1)τ2

=(ρ)2
.

Thus we have estimated the right-hand side of equation (25), and using this estimate
we can estimate the first term on the right-hand side of equation (24).
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Since the number of zeros in each interval (2hT, 2h+1T ] is non-negative, by the
previous estimates and formula (4) we have

lim
t→∞

∑
ρ

T<|=(ρ)|≤t

<
(

1−
(

ρ

ρ− τ

)n)

>

∞∑
h=0

∑
|=(ρ)|∈(2hT,2h+1T ]

0.432n(n− 1)τ2

=(ρ)2

≥
∞∑
h=0

∑
|=(ρ)|∈(2hT,2h+1T ]

0.432n(n− 1)τ2

22h+2T 2

>
0.432n(n− 1)τ2

T

∞∑
h=0

(
AF log (2hT )

2h+2
+
AF log 4 +BF

2h+2
(27)

−cF,1(T0) log (2hT )

22h+2T
− cF,2(T0)

22h+2T
− cF,3(T0)

23h+2T 2

)
=

0.432n(n− 1)τ2

T

(
AF
2

log (2T ) +
AF log 4 +BF

2

−cF,1(T0)

3T
log(2

1
3T )− cF,2(T0)

3T
− 2cF,3(T0)

7T 2

)
= KF,3(T, τ)n(n− 1).

Further, by the assumptions made in the formulation of the theorem, we have

(28)

T > max

{
exp

(
−96BF

23AF

)
, exp

(
0.324BF

(e2 − 1.296)AF

)
,

8cF,1(T0)

3AF
,

8cF,2(T0)

3AFW0

(
16cF,2(T0)

3AF

) ,√√√√ 192CF,3(T0)

23AFW0

(
192CF,3(T0)

23AF

)
 .

By direct computations and using the first two terms and the last term from the
right-hand side of inequality (28) and the third inequality (5) we also have

T > max

1

2
exp

(
− 4

AF
(AF log 4 +BF )

)
,

√√√√ 32cF,3(T0)

7AFW0

(
128cF,3(T0)

7AF

)
 .

Thus we can divide the term AF
2 log (2T ) from inequality (27) by 4, compare it to

the other terms from inequality (27), use the previous lower bounds and obtain
that the right-hand side of inequality (27) is greater than zero. The reason why
we divide by 4 is that we do not know how large the terms AF , BF and cF,j(T0)
(j = 1, 2, 3) are and thus we do not know the optimal way to prove that the right-
hand side of inequality (27) is greater than zero. Hence, our choice is just simply
divide by the number of the terms. This is not a crucial problem, see Remark 3.4.

Next we estimate the second term on the right-hand side of inequality (24) and
then combine the results. Since | ρ

ρ−τ | < R for all ρ, we have∑
|=(ρ)|≤T

<
(

1−
(

ρ

ρ− τ

)n)
> NF (T )(1−Rn).
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Thus, and by inequalities (24) and (27), we have

λF (n, τ) > KF,3(T, τ)n(n− 1) +NF (T )(1−Rn)

for n ∈ [n0, n1]. We want to prove that the right-hand side of the previous inequality
is at least zero. Equivalently, we can write

(29)
KF,3(T, τ)

NF (T )

(
n− 1

2

)2

≥ Rn +
KF,3(T, τ)

4NF (T )
− 1.

We want to prove that

(30)
KF,3(T, τ)

4NF (T )
− 1 ≤ 0

because this implies that it is sufficient to consider the inequality

(31)
KF,3(T, τ)

NF (T )

(
n− 1

2

)2

≥ Rn.

Next we prove inequality (30). First we prove N (T ) ≥ AF
24 T log T and then,

using this estimate, that inequality (31) holds. By formula (3) it is sufficient to
show that the following inequality holds:

(32)
23

24
AFT log T ≥ −BFT + CF,1(T0) log T + CF,2(T0) +

CF,3(T0)

T
.

Similarly as before, we can divide the term on the left-hand side by four and then
compare it to the terms on the right-hand side. This is done because of the similar
reasons as before i.e. since we do not know how large the terms AF , BF and
CF,j(T0) (j = 1, 2, 3) are. Since we have

T > max

 exp

(
−96BF

23AF

)
,

96CF,1(T0)

23AF
,

96CF,2(T0)

23AFW0

(
96CF,2(T0)

23AF

) ,√√√√ 192CF,3(T0)

23AFW0

(
192CF,3(T0)

23AF

)
 ,

and W0(x) is a decreasing function for x > 0, inequality (32) holds. Thus we have
NF (T ) ≥ AF

24 T log T and we can apply it to prove the estimate (29).
By the definition of the term KF,3(T, τ) and since the terms cF,j(T0), where

j = 1, 2, 3, are non-negative real numbers, to prove inequality (31) it is sufficient to
show

0.432τ2
(
AF
2

log (2T ) +
AF log 4 +BF

2

)
≤ 1

6
AFT

2 log T.

For all T ≥ neτ > 2 and n ≥ 2, we have

(33) 0.432τ2
AF
2

log (2T ) <
0.432AF

(ne)2
T 2 log (T ) ≤ 0.108AF

e2
T 2 log T.

Furthermore, since we have also assumed T > exp
(

0.324BF
(e2−1.296)AF

)
, we obtain

(34)

0.432τ2
AF log 4 +BF

2
<

0.432

8e2
T 2 (2AF log T +BF ) <

(
1

6
− 0.108

e2

)
AFT

2 log T.
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Thus by combining inequalities (32), (33) and (34), we have proved inequality (30).
To obtain the estimates for the terms < (λF (n, τ)), we need to prove inequality
(31).

Taking a square root and dividing by exp
(

logR
2

(
n− 1

2

))
(n ≥ 0.5) and by√

KF,3(T,τ)
NF (T ) , inequality (31) can be equivalently written as

(
n− 1

2

)
exp

(
− logR

2

(
n− 1

2

))
≥

√
NF (T )

KF,3(T, τ)
exp

(
logR

4

)
.

We multiply the inequality by − logR
2 and obtain

− logR

2

(
n− 1

2

)
exp

(
− logR

2

(
n− 1

2

))
≤ − logR

2

√
NF (T )

KF,3(T, τ)
exp

(
logR

4

)
.

This holds for n ∈ [n0, n1], where

n0 ≥
1

2
− 2

logR
W0

(
− logR

2

√
NF (T )

KF,3(T, τ)
exp

(
logR

4

))
,

n1 ≤
1

2
− 2

logR
W−1

(
− logR

2

√
NF (T )

KF,3(T, τ)
exp

(
logR

4

))
and

R ∈

(
1, exp

(
4W0

(√
KF,3(T, τ)

4e2NF (T )

))]
.

Thus λF (n, τ) ≥ 0 also for any number n ≥ 2 which lies in the interval [n0, n1].
This proves the claim. �

Remark 3.4. As in Theorem 3.1, the values of the numbers n0 and n1 in the previous
theorem are not the best possible. They have been obtained by estimating the term
λF (n, τ) and then estimating the result. Thus we lose precision. On the other hand,
the term Rn grows faster than the term n(n − 1) and thus the terms n for which
the expression

(35) KF,3(T, τ)n(n− 1) +NF (T )(1−Rn)

is non-negative mainly depend on the term R.

Remark 3.5. From formula (35) we also recognize that since

lim
R→1

(1−Rn) = 0,

there always exist solutions for the terms n0 and n1 when the number R is close
enough to the number 1.
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4. Only one zero which lies outside of a certain region and a growth
condition

In this section, we consider relationships between growth conditions for the co-
efficients <(λF (n, τ)) and existence of exactly one zero outside a certain region.

Besides of the non-negativity conditions, there are also growth conditions for
the Li coefficients which imply the Generalized Riemann Hypothesis. For example,
in 2006 A. Voros [20] proved that the Riemann Hypothesis is equivalent to the
condition λn ∼ n(a log n + b) with explicit a > 0 and b. In 2010 and 2011 S.
Omar and K. Mazhouda [12] and A. Odžak and L. Smajlović [15] derived similar
conditions for certain classes containing the Selberg class.

Furthermore, considering at most one zero outside a certain region is an interest-
ing question. If we know that there exists at most one zero outside a certain region,
then it is sufficient to consider how at most one zero affects the τ -Li coefficients.
These kind of results are known, for example, for Dirichlet L-functions, as we have
already mentioned (recall results (6),(7)).

We prove a growth condition for the coefficients <(λF (n, τ)) whether the function
F (s) has exactly one zero ρ1 with | ρ1

ρ1−τ | > 1 or not and we know a lower bound for

the term | ρ1
ρ1−τ |. The growth condition is same type as Voros’ result i.e. O(n log n).

The result can be applied to the τ -Li coefficients to determine whether the function
F (s) has exactly one zero outside a certain region or not. The advantages of the
result compared to Theorems 3.1 and 3.3 are that we don’t have to compute as
many values n as in those theorems. Furthermore, Theorem 4.1 gives an equivalent
condition while Theorems 3.1 and 3.3 do not.

Before we move on to the next theorem, let us introduce a new symbol in order
to make the expressions little bit shorter. As before, let τ > 1

e be a real number.
The terms T0, AF , BF and CF,j(T0), where j = 1, 2, 3, are defined as in condition
(c) and the term KF,1(τ) is defined as in Theorem 2.1. Using this notation, let us
denote

(36)

KF,4(τ) := 2

(
AF eτ log (e2τ) + |BF |eτ

+
CF,1(T0) log (e2τ) + CF,2(T0)

3
+
CF,3(T0)

9eτ

)
.

As before, we notice that we cannot remove any elements from the sets used in
definitions for the term N . The elements depend on different constants.

Now we can move on to the next theorem:

Theorem 4.1. Let τ > 1
e be a real number and T0, AF , BF , cF,j(T0), CF,j(T0),

where j = 1, 2, 3, be defined as in condition (c), KF,1(τ) as in Theorem 2.1 and
KF,4(τ) as in formula (36). Suppose that the function F (s) has at most one zero
ρ1 with | ρ1

ρ1−τ | > 1. Furthermore, we also assume that if such a zero ρ1 exists, then

R > 1 is a real number such that | ρ1
ρ1−τ | ≥ R. Let

N =

⌈
max

{
1

eτ
T0, exp

(
−W−1

(
−2 logR

3

))
,

12 log (40 (0.5 +KF,1(τ) +KF,4(τ)))

logR

}⌉
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if R ≤ e 3
2e , and

N =

⌈
max

{
e,

1

eτ
T0,

12 log (40 (0.5 +KF,1(τ) +KF,4(τ)))

logR

}⌉
otherwise.

The zero ρ1 exists if and only if

|<(λF (n, τ))| ≥ (KF,1(τ) +KF,4(τ))n log n

for at least one integer n ∈ [N, 5N ] where N | n.

Proof. The proof consists of finding an upper bound for the term |<(λF (n, τ))| if
the zero ρ1 does not exist and a lower bound for the term |<(λF (n, τ))| if the zero
exists. These results can be derived from the same estimates.

We denote T (n) := neτ . For all zeros ρ 6= ρ1 of the function F (s) we have
| ρ
ρ−τ | ≤ 1 and thus <(ρ) ≤ τ

2 . Hence we have

(37)

<(λF (n, τ)) = lim
t→∞

∑
T (n)<|=(ρ)|≤t

0≤<(ρ)≤ τ2

<
(

1−
(

ρ

ρ− τ

)n)

+
∑

|=(ρ)|≤T (n)
0≤<(ρ)≤ τ2

<
(

1−
(

ρ

ρ− τ

)n)
+ <

(
1−

(
ρ1

ρ1 − τ

)n)
,

where the last term exists if and only if the zero ρ1 exists. The first term on the
right-hand side can be estimated by Theorem 2.1. Thus it is sufficient to estimate
the last two terms of the previous equation.

We have ∣∣∣∣∣∣∣∣
∑

|=(ρ)|≤T (n)
0≤<(ρ)≤ τ2

<
(

1−
(

ρ

ρ− τ

)n)∣∣∣∣∣∣∣∣ ≤
∑

|=(ρ)|≤T (n)
0≤<(ρ)≤ τ2

2.

By formula (3), for n ≥ N ≥ 3 the right-hand side is

< 2

(
AFT (n) log T (n) +BFT (n)

+CF,1(T0) log T (n) + CF,2(T0) +
CF,3(T0)

T (n)

)
≤ 2n log n

(
AF eτ log (e2τ) + |BF |eτ

+
CF,1(T0) log (e2τ) + CF,2(T0)

3
+
CF,3(T0)

9eτ

)
= KF,4(τ)n log n.

Using formula (37) and Theorem 2.1, it follows

|<(λF (n, τ))| < KF,1(τ)n log n+KF,4(τ)n log n

if the function F (s) does not have zeros with <(ρ) > τ
2 .
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We have also almost estimated the right-hand side of formula (37) with the zero
ρ1. Similarly as in the proof of Theorem 2.3, we obtain

<
(

1−
(

ρ1
ρ1 − τ

)n)
≤ 1− 1

20
Rn

for some integer n ∈ [N, 5N ] for which N | n. For n ≥ N ≥ log 20
logR , this means that∣∣∣∣<(1−

(
ρ1

ρ1 − τ

)n)∣∣∣∣ ≥ 1

20
Rn − 1.

Thus, if a zero ρ exists, then for some n ∈ [N, 5N ] it holds that

|<(λF (n, τ))| > 1

20
Rn − 1− (KF,1(τ) +KF,4(τ))n log n.

We want to prove that the previous formula is at least

(KF,1(τ) +KF,4(τ))n log n

for all n ∈ [N, 5N ].
It is sufficient to show

Rn ≥ 40n log n(
1

2
+KF,1(τ) +KF,4(τ)).

This can be equivalently written as

2

3
logR+

1

4
logR+

1

12
logR

≥ log n

n
+

log log n

n
+

log (40 (0.5 +KF,1(τ) +KF,4(τ)))

n
.

This follows similarly from the assumptions for the number n as result (21) in the
proof of Theorem 3.1. Also, the coefficients 2/3, 1/4 and 1/12 are selected because
of the similar reasons as in the proof of Theorem 3.1. Indeed, the term log n grows
faster than the term log log n, this grows faster than a constant term and for all
n ≥ e we have 3 log n ≥ 8 log log n.

Thus we have proved the claim. �

5. Example: Dirichlet L-functions

Let F (s) be a Dirichlet L-function associated with a primitive non-principal
character modulo q and τ ≥ 1. We know that the function F does not have zeros
with real parts greater than one and F (1) 6= 0. Thus it satisfies conditions (a) and
(b) for τ . By T. S. Trudgian [19, Theorem 1], for T ≥ 1 we have

(38)

∣∣∣∣NF (T )− T

π
log T − T

π
log

q

2πe

∣∣∣∣ < 0.317 log T + 0.317 log q + 6.401.

Thus the function F (s) also satisfies condition (c). Furthermore, the function F (s)
is in the Selberg class and thus by [5, Lemma 2.1.2] satisfies also condition (d).
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We can set

AF =
1

π
, BF =

1

π
log

q

2πe
, T0 = 1,

CF,1(T0) = 0.317, cF,1(T0) = 0.634,

CF,2(T0) = 0.317 log q + 6.401,

cF,2(T0) = 0.317 log 2 + 0.634 log q + 12.802,

and CF,3(T0) = cF,3(T0) = 0.

This leads to the following two corollaries which describe Theorems 3.1 and 4.1 for
the function F (s). We do not write a full corollary for the result obtained from
Theorem 3.3 since the formulas are quite long and we give little bit nicer numerical
results in Section 5.2.

The first one describes the relationship between Theorem 3.1 and the Dirichlet L-
functions associated with a primitive non-principal character modulo q. We cannot
remove any terms form the sets which give lower bound for the number N since
the term KF,2(τ) depends on the number q on the other terms do not and the first
term may be larger than the other ones.

Corollary 5.1. Let R > 1 and τ ≥ 1 be real numbers. If we consider a Dirichlet
L-function associated with a primitive non-principal character modulo q, then in
Theorem 3.1 we have

N =

⌈
max

{
τ√

R2 − 1
,

exp

(
−W−1

(
− 4

3(5τ2/π + 4)
logR

))
,

12 log (20KF,2(τ))

logR

}⌉

if R ≤ e
3(5τ2/π+4)

4e and

N =

⌈
max

{
e,

τ√
R2 − 1

,
12 log (20KF,2(τ))

logR

}⌉
.

Here

KF,2(τ) = 5(1/π +MF )

(
5

2
+ log (5eτ) + log

(
1/π +

MF

1.732

))
·

·

(
2τe

5τ2MF+2

2

(
1

π
+

∣∣log q
2πe

∣∣
π log (3eτ)

+
0.317

3eτ

+
0.317 log q + 6.401

3eτ log (3eτ)

)
+KF,1(τ)

)
,

MF =
1

π
log

q

2πe
+

0.317

e
+

0.317 log q + 6.401

3
and

KF,1(τ) =
2τ

3π

(
e+

1

e

)(
1 +

∣∣∣∣log
4qτ

π

∣∣∣∣)
+

4

27

(
1 +

1

e2

)(
0.634

3
log 2 + 0.317 log (2e4q2τ2) + 12.802

)
.
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Now, we describe what the 4.1 says for the function F (s). Please notice that in
the next theorem we cannot remove any element from the sets since they depend
on the different sets of variables.

Corollary 5.2. Let us consider a Dirichlet L-function associated with a primitive
non-principal character modulo q and let R > 1 and τ ≥ 1 be real numbers. Then
the number N defined in Theorem 4.1 can be written as

N =

⌈
max

{
exp

(
−W−1

(
−2 logR

3

))
,

12 log (40 (0.5 +KF,1(τ) +KF,4(τ)))

logR

}⌉
if R ≤ e 3

2e , and

N =

⌈
max

{
e,

12 log (40 (0.5 +KF,1(τ) +KF,4(τ)))

logR

}⌉
otherwise.

Here KF,1(τ) is defined as on Corollary 5.1 and

KF,4(τ) = 2

(
eτ

π

(
log (e2τ) +

∣∣∣log
q

2πe

∣∣∣)+
0.317 log (e2qτ) + 6.401

3

)
.

In the next two sections we consider numerical examples of Theorems 3.1, 3.3 and
4.1 and Corollaries 5.1 and 5.2 for Dirichlet L-functions associated with a primitive
non-principal character modulo q = 100.

We consider different regions
∣∣∣ ρ
ρ−τ

∣∣∣ ≥ R determined by the numbers R and

τ . Some regions
∣∣∣ ρ
ρ−τ

∣∣∣ ≥ R for τ = 1 and different values for the number R

are described in Figure 2. The regions are symmetric with respect to the line
<(s) = 1

2 since the zeros of the function F (s) lie symmetrically with respect to
this line. Figure 2 also contains the results described in formulas (6) and (7) and
proved by McCurley [13, Theorem 1] and Kadiri [8, Theorem 1.1.1] respectively.
As it can be seen in Figure 2, the results proved in Theorems 3.1 and 3.3 allow us
to consider existence of the zeros which have real parts close to the line <(s) = 1

2
while Kadiri’s and McCurley’s results consider zeros which real parts are close to the
lines <(s) = 1 and <(s) = 0. On the other hand, Kadiri’s and McCurley’s results
do not have upper bound for the absolute values of imaginary parts of the zeros
whereas Theorems 3.1, 3.3 and 4.1 consider only zeros up to some height. Kadiri’s
and McCurley’s results also provide clear zero-free regions while the results proved
in this article only provide some conditions to hold. Also, with the exception of
Theorem 4.1, we do not give any if and only if statements.

5.1. Dirichlet L-functions and Theorems 3.1 and 4.1. In this section we
consider what Theorems 3.1 and 4.1 and Corollaries 5.1 and 5.2 state for Dirichlet
L-functions associated with a primitive non-principal character modulo q = 100.
Recall that according to Theorem 3.1 if certain τ -Li coefficients are non-negative,
then all of the zeros lie outside certain region. Furthermore, according to Theorem

4.1, if there exists exactly one zero ρ with
∣∣∣ ρ
ρ−τ

∣∣∣ ≥ R, then |λF (n, τ)| is large enough

for a certain integer n. The numerical results can be seen in Table 1.
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0 0.2 0.4 0.6 0.8 1

−50

0

50

<(ρ)

=
(ρ

)

R = 1.0001

R = 1.001

R = 1.01

R = 1.1

McCurley

Kadiri

Figure 2. Different regions,
∣∣∣ ρ
ρ−1

∣∣∣ ≥ R, McCurley (6) and Kadiri (7).

Table 1. Different values of the terms defined in Theorem
3.1/Corollary 5.1 and in Theorem 4.1/Corollary 5.2. Here F is
a Dirichlet L-function associated with a primitive non-principal
character modulo 100.

τ R Theorem 3.1: Theorem 3.1: Theorem 4.1:
N 5N2 (AF logN +MF ) N

1 1.1 2228 142 795 217 838
1 1.01 21 335 14 730 585 353 8027
1 1.001 212 394 1 624 882 482 585 79 909
1 1.0001 2 122 983 178 855 533 212 062 798 729
1.5 1.1 3551 372 085 537 876
1.5 1.01 34 009 38 288 548 586 8387
1.5 1.001 338 570 4 213 969 451 870 83 491
1.5 1.0001 3 384 171 462 978 327 657 268 834 529

5.2. Dirichlet L-functions and proof of Theorem 3.3. Next we consider what
the proof of Theorem 3.3 states for the Dirichlet L-function associated with a
primitive non-principal character modulo q = 100. The goal is to find numbers n

such that if λF (n, τ) < 0, then there exists at least one zero ρ with
∣∣∣ ρ
ρ−τ

∣∣∣ ≥ R. The

reason why we consider the proof instead of using the formulas proved in Theorem
3.3 is that this way the results are a little bit sharper than in the general case
proved in Theorem 3.3. We do not prove full formulas for this case. Instead, we
compute numerical examples which can be seen in Table 2.
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Recall τ ≥ 1 and R > 1. In the proof of Theorem 3.3 we proved the claim by

showing that if for all the zeros ρ it holds
∣∣∣ ρ
ρ−τ

∣∣∣ ≥ R, then certain τ -Li coefficients

are non-negative. The same method is used here. We also used a variable T such
that T ≥ max{T0, neτ}. Using similar methods as in the proof of Theorem 3.3, we
want

0.432τ2

T

(
1

2π
log (2T ) +

1

2π
log

200

πe

−0.634

3T
log(2

1
3T )− 1

3T
(0.317 log 2 + 0.634 log 100 + 12.802)

)
:= KF,3(T, τ)

> 0.

(39)

This holds for T ≥ 6.348. Further, by the proof of Theorem 3.3 and previous
estimates, we have

λF (n, τ) > KF,3(T, τ)n(n− 1) +NF (T )(1−Rn).

We want the right-hand side of the previous inequality to be at least zero for
n ∈ [n0, n1], where n0 and n1 are positive integers and n1 ≤ T

eτ .
We have computed different values for the terms n0 and n1 using different values

for the terms T , τ and R. In the computations we have used formula (38) for the
term NF (T ), recalling that the number of zeros is always an integer and we always
have <(λF (1, τ)) ≥ 0. The results can be seen in Table 2.

We can notice some results from the table. For example, if the coefficient
< (λF (n, 1)) is negative for some integer n ∈ [5, 36] ∪ [95, 183], then there exists

at least one zero ρ with
∣∣∣ ρ
ρ−1

∣∣∣ ≥ 1.0001.

6. Example: L-function associated with a holomorphic newform with
a level 1 and a weight 12

In this section we assume that the function F (s) is an L-function associated with
a holomorphic newform with level 1 and weight 12. We also assume that all zeros
ρ with |=(ρ)| ≤ 27 lie on the critical line. The function F (s) is in the Selberg class
and thus satisfies conditions (a)-(d). We consider what Theorem 4.1 states for the
function F (s). Theorem 4.1 says that if the function F (s) has exactly one zero ρ

with
∣∣∣ ρ
ρ−τ

∣∣∣ ≥ R, then |λF (n, τ)| is large enough for an integer n which lies in a

certain interval.
By G. França and A. LeClair [6, Table IX] ,NF (27) = 14. Thus and by [16, Table

1] we have

AF =
1

π
, BF = − 1

π
(1 + log (4π2)), T0 = 27,

CF,1(T0) = 586, CF,2(T0) = 3904, CF,3(T0) = 23 274,

cF,1(T0) = 864, cF,2(T0) = 3622 and cF,3(T0) = 21 012.

Using these constants we can formulate the following corollary which describes
Theorem 4.1 for the function F (s):
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Table 2. Different values for the terms n0 and n1 such that if for
some n ∈ [n0, n1] it holds < (λF (n, τ)) < 0, then there exists at

least one zero ρ with
∣∣∣ ρ
ρ−τ

∣∣∣ ≥ R. Here F is a Dirichlet L-function

associated with a primitive non-principal character modulo 100.

T τ R n0 n1

100 1 1.0001 5 36
100 1 1.00001 1 36
500 1 1.0001 95 183
500 1 1.00001 11 183
500 1 1.000001 1 183
10 000 1 1.000001 391 3678
10 000 1 1.0000001 40 3678
10 000 1 1.00000001 5 3678
10 000 1 1.000000001 1 3678
100 1.5 1.001 19 24
100 1.5 1.0001 3 24
100 1.5 1.00001 1 24
500 1.5 1.0001 43 122
500 1.5 1.00001 6 122
500 1.5 1.000001 1 122
10 000 1.5 1.00001 1748 2452
10 000 1.5 1.000001 175 2452
10 000 1.5 1.0000001 19 2452
10 000 1.5 1.00000001 3 2452
10 000 1.5 1.000000001 1 2452

Corollary 6.1. Let F be a L-function associated with a holomorphic newform with
level 1 and weight 12 and let R > 1 and τ ≥ 1 be real numbers. Then the number
N defined in Theorem 4.1 can be written as

N =

⌈
max

{
exp

(
−W−1

(
−2 logR

3

))
,

12 log (40 (0.5 +KF,1(τ) +KF,4(τ)))

logR

}⌉

if R ≤ e 3
2e , and

N =

⌈
max

{
e,

27

eτ
,

12 log (40 (0.5 +KF,1(τ) +KF,4(τ)))

logR

}⌉

otherwise.
Here

KF,1(τ) =
2τ

3π

(
e+

1

e

)(
1 +

∣∣∣∣log
2τ

π2

∣∣∣∣)
+

4

27

(
1 +

1

e2

)(
288 log (2e6τ3) + 3622 +

21 012

7eτ

)
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Table 3. Different values for the term N which is defined in The-
orem 4.1/Corollary 6.1. Here F is a L-function associated with a
holomorphic newform with a level 1 and a weight 12.

τ R Theorem 4.1/Corollary 6.1: N

1 1.0001 1 498 217
1 1.00001 14 981 490
1 1 + 10−10 1 498 141 425 042
1.5 1.0001 1 488 111
1.5 1.00001 14 880 440
1.5 1 + 10−10 1 488 036 546 102

and

KF,4(τ) = 2

(
1

π
eτ log (4e3π2τ) +

586 log (e2τ) + 3904

3
+

2586

eτ

)
.

Please notice that the term N in the previous corollary cannot be simplified since
the elements in the sets depend on different sets of variables.

We also compute the values for the number N described in Corollary 6.1. The
results can be seen in Table 3.
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comments for the manuscript.
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[17] L. Smajlović, On Li’s criterion for the Riemann hypothesis for the Selberg class, J. Number

Theory 130 (2010), no. 4, 828–851.
[18] J. Steuding, On the value-distribution of L-functions, Fiz. Mat. Fak. Moksl. Semin. Darb. 6

(2003), 87–119.

[19] T. S. Trudgian, An improved upper bound for the error in the zero-counting formulae for
Dirichlet L-functions and Dedekind zeta-function, Math. Comp. 84 (2015), no. 293, 1439–

1450.
[20] A. Voros, Sharpenings of Li’s criterion for the Riemann Hypothesis, Math. Phys. Anal.

Geom. 9 (2006), no. 1, 53–63.

albanian-j-math.com/archives/2020-04.pdf

http://albanian-j-math.com/archives/2020-04.pdf

	1. Introduction
	2. Preliminary results
	2.1. Contribution of the zeros with the absolute values of the imaginary parts large enough
	2.2. Contribution of the zeros with the absolute values of the imaginary parts small enough

	3. Main results
	4. Only one zero which lies outside of a certain region and a growth condition
	5. Example: Dirichlet -functions
	5.1. Dirichlet -functions and Theorems 3.1 and 4.1
	5.2. Dirichlet -functions and proof of Theorem 3.3

	6. Example: -function associated with a holomorphic newform with a level  and a weight 
	Acknowledgements

	References

