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Abstract. Recently, Otake and Shaska have given a formula for the discrim-

inant of quadrinomials of the form f(x) = xn + t(x2 + ax + b). In their
concluding remarks, they ask if a formula can be found for the discriminant

of f(x) = xn + tg(x) when n > deg(g) = 3. Assuming that f(x) = xn + tg(x)

is irreducible, and under certain restrictions on a polynomial related to g(x),
in this article we give a formula for the discriminant of f(x), regardless of

deg(g) ≥ 1. We then use our discriminant formula to generate some new in-

finite families of monogenic polynomials f(x) = xn + tg(x) with n > deg(g),
when g(x) is monic and deg(g) ∈ {2, 3, 4}.
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1. Introduction

Throughout this article, when we say a polynomial f(x) ∈ Z[x] is “irreducible”,
we mean irreducible over Q. We let ∆(f) and ∆(K) denote the discriminants
over Q, respectively, of the polynomial f(x) and the number field K. If f(x) is
irreducible, with f(θ) = 0 and K = Q(θ), then we have the well-known equation
[1]

(1) ∆(f) = [ZK : Z[θ]]
2

∆(K),

where ZK is the ring of integers of K. We say that f(x) is monogenic if ZK = Z[θ],
or equivalently from (1), that ∆(f) = ∆(K). In this case, {1, θ, θ2, . . . , θdeg f−1}
is a basis for ZK , making computations easier, as in the cyclotomic fields [9]. We
see from (1) that if ∆(f) is squarefree, then f(x) is monogenic, but the converse is
false in general. In particular, when f(x) is monogenic and ∆(f) is not squarefree,
it can be difficult to establish that all the square factors of ∆(f) are, in fact, factors
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of ∆(K). For a generic polynomial, the first step in the procedure is to derive a
workable formula for ∆(f) in terms of the coefficients and exponents, which itself
is not an easy task in general. One known situation is the family of trinomials
f(x) = xn + axm + b ∈ Z[x] with 0 < m < n. In this case, the formula

(2) ∆(f) =

(−1)n(n−1)/2bm−1
(
nn/db(n−m)/d − (−1)n/d(n−m)(n−m)/dmm/dan/d

)d
,

where d = gcd(n,m), is due to Swan [8]. In 2019, the author [4] gave a formula for
the discriminant of an irreducible polynomial of the form

(3) f(x) = xn +A(Bx+ C)m ∈ Z[x], with n ≥ 3 and 1 ≤ m < n,

that was used to construct infinite families of monogenic polynomials under the
restriction gcd(n,mB) = C = 1. Also in 2019, Otake and Shaska [6] calculated the
discriminant of the polynomial f(x) = xn + t(x2 + ax+ b), where t ∈ Z and n > 2.
The proof of their discriminant formula required thirteen pages of fairly intense
computations, and they did not attempt to address when such polynomials were
monogenic or even irreducible. They did, however, ask in their concluding remarks
if a discriminant formula could be found for polynomials f(x) = xn + tg(x), where
t ∈ Z and n > deg(g) = 3.

Remark 1. We note that there is some overlap with the results in [4] and [6]. For
example, the situation in [4] when m = 2 and B = 1 in (3) is a special case of the
polynomials addressed in [6]. In addition, when m ≥ 3 in (3), a partial answer for
the discriminant of f(x) = xn + tg(x) when deg(g) ≥ 3 is achieved in [4].

In this article, with certain restrictions on a polynomial related to g(x), and
provided that f(x) is irreducible, we give a formula for the discriminant of f(x) =
xn + tg(x) with n > deg(g) ≥ 1, regardless of deg(g). To derive our formula, we use
a shorter and less computationally-intense approach than the one used in [6]. Then,
using this discriminant formula, we provide a method for generating some examples
of infinite families of monogenic polynomials of this form. These results generalize
the work in [4] and give a partial answer to the question of Otake and Shaska
concerning a discriminant formula for polynomials of the form f(x) = xn + tg(x),
where t ∈ Z and n > deg(g) = 3. More precisely, we prove the following:

Theorem 1. Let n and k be integers with n > k ≥ 1. Let

f(x) = xn + tg(x), where t ∈ Z and

g(x) = akx
k + ak−1x

k−1 + ak−2x
k−2 + · · ·+ a1x+ a0 ∈ Z[x] with a0, ak 6= 0.

Define

ĝ(x) := ak(n− k)xk + ak−1(n− (k − 1))xk−1 + · · ·+ a1(n− 1)x+ a0n,

and suppose that

ĝ(x) =

k∏
i=1

(Aix+Bi) ,

where the Aix+Bi ∈ Z[x] are not necessarily distinct. If f(x) is irreducible, then

∆(f) =
(−1)

n(n+2k−1)
2 tn−1

∏k
i=1

(
(−Bi)

n
+ t
∑k

j=0 ajA
n−j
i (−Bi)

j
)

a0
.
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Remark 2. Note that f(x) is a trinomial in Theorem 1 when k = 1, and Swan’s
formula (2) with m = 1 is recovered in this situation.

As an application of Theorem 1, we provide a method in the proof of the following
corollary to generate some examples of infinite families of monogenic polynomials of
the form f(x) = xn + tg(x), where n > deg(g), g(x) is monic and deg(g) ∈ {2, 3, 4}.
The proof requires neither Dedekind’s criterion [1] nor the Montes algorithm [5],
which are standard methods used for establishing monogeneity. Instead, the corol-
lary is proven using mainly elementary methods, along with two other tools. The
first tool is a basic result in algebraic number theory (see Theorem 3), while the
second tool is a well-known fact from analytic number theory (see Lemma 1).

Corollary 1. Let f(x), g(x) and ĝ(x) be as defined in Theorem 1 with g(x) monic.

(1) For any integer n ≥ 3, there exists g(x), with deg(g) = 2, such that f(x) =
xn + tg(x) is monogenic for infinitely many prime values of t.

(2) For any integer n ≥ 5 with n ≡ 1 (mod 4), there exists g(x), with deg(g) =
3, such that f(x) = xn + tg(x) is monogenic for infinitely many prime
values of t.

(3) For any integer n ≥ 8 with n ≡ 2 (mod 6), there exists g(x), with deg(g) =
4, such that f(x) = xn + tg(x) is monogenic for infinitely many prime
values of t.

All computer computations were done using either MAGMA, Maple or Sage.

2. Preliminaries

Definition 1. Let p be a prime and let

f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0 ∈ Z[x].

We say f(x) is p-Eisenstein if

an 6≡ 0 (mod p), ai ≡ 0 (mod p) for all 0 ≤ i ≤ n− 1

and a0 6≡ 0 (mod p2).

We present some known facts that are used to establish Theorem 1 and Corollary
1.

Theorem 2. [3] (Eisenstien’s Criterion) Let p be a prime and let f(x) ∈ Z[x] be
p-Eisenstein. Then f(x) is irreducible.

Theorem 3. [2] Let p be a prime and let f(x) ∈ Z[x] be a monic p-Eisenstien
polynomial with deg(f) = n. Let K = Q(θ), where f(θ) = 0. Then pn−1 || ∆(K) if
n 6≡ 0 (mod p).

Theorem 4. [3] Let f(x) ∈ Z[x] be monic and irreducible with deg(f) = n. Let
f(θ) = 0 and K = Q(θ). Then

∆(f) = (−1)
n(n−1)

2 NK/Q (f ′(θ)) .

Lemma 1. Suppose that h(x) =
∏k

i=1 (aix+ bi) with no repeated factors, where
ai and bi are integers with gcd(ai, bi) = 1. Suppose further that, for each prime

r, there exists some z ∈
(
Z/r2Z

)∗
such that h(z) 6≡ 0 (mod r2). Then there exist

infinitely many primes p such that h(p) is squarefree.
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In Lemma 1, the nonexistence of z ∈
(
Z/r2Z

)∗
for which h(z) 6≡ 0 (mod r2) is

called a local obstruction at the prime r. Because the factors of h(x) are all linear
in Lemma 1, it follows that if

φ
(
r2
)

= r(r − 1) ≥ 2(r − 1) > k,

then there exists z ∈
(
Z/r2Z

)∗
for which h(z) 6≡ 0 (mod r2). Hence, only finitely

many primes r need to be checked for local obstructions. They are precisely the
primes r such that r ≤ (k + 2)/2.

Remark 3. Hector Pasten has pointed out to us (private communication) that
Lemma 1 follows unconditionally (without the assumption of the abc-conjecture for
number fields) from Theorem 1.1 in [7].

3. The Proof of Theorem 1

Proof of Theorem 1. First note that

(4) f ′(x) = nxn−1 + t
(
kakx

k−1 + (k − 1)ak−1x
k−2 + · · ·+ a1

)
.

Suppose that

f(θ) = θn + tg(θ) = θn + t
(
akθ

k + ak−1θ
k−1 + · · ·+ a1θ + a0

)
= 0,

so that

(5) nθn = −nt
(
akθ

k + ak−1θ
k−1 + · · ·+ a1θ + a0

)
.

Then, from (4) and (5), it follows that

θf ′(θ) = nθn + t
(
kakθ

k + (k − 1)ak−1θ
k−1 + · · ·+ a1θ

)
= −nt

(
akθ

k + ak−1θ
k−1 + · · ·+ a1θ + a0

)
+ t
(
kakθ

k + (k − 1)ak−1θ
k−1 + · · ·+ a1θ

)
= −t

(
ak(n− k)θk + ak−1 (n− (k − 1)) θk−1 + · · ·+ a1(n− 1)θ + a0n

)
= −tĝ(θ)

= −t
k∏

i=1

(Aiθ +Bi) .

Then, writing N for the norm NK/Q, where K = Q(θ), and noting that N (θ) =
(−1)nta0, we have

(−1)nta0N (f ′(θ)) = (−1)ntn
k∏

i=1

N (Aiθ +Bi) .

Thus,

(6) N (f ′(θ)) =
tn−1

∏k
i=1N (Aiθ +Bi)

a0
.
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To calculate N (Aiθ +Bi), let z = Aiθ +Bi so that θ = (z −Bi) /Ai. Hence,

0 = An
i f(θ)

= An
i (θn + tg(θ))

= An
i

((
z −Bi

Ai

)n

+ t

(
ak

(
z −Bi

Ai

)k

+ ak−1

(
z −Bi

Ai

)k−1

+ · · ·+ a0

))

= (z −Bi)
n

+ t

k∑
j=0

ajA
n−j
i (z −Bi)

j
,

from which it follows that

N (z) = N (Aiθ +Bi) = (−1)n

(−Bi)
n

+ t

k∑
j=0

ajA
n−j
i (−Bi)

j

 .

Therefore, from (6) and Theorem 4, we conclude that

∆(f) =
(−1)

n(n+2k−1)
2 tn−1

∏k
i=1

(
(−Bi)

n
+ t
∑k

j=0 ajA
n−j
i (−Bi)

j
)

a0
. �

4. The Proof of Corollary 1

Proof of Corollary 1. The strategy for each part is the same. We start with a
possible factorization of ĝ(x) and retrofit the coefficients using necessary divisibility
conditions. We give the details of this process for part (2), and sketch the proofs
for parts (1) and (3), since the methods are similar.

To establish part (2), let n ≥ 5 be an integer such that n ≡ 1 (mod 4). Since
g(x) is monic and k = deg(g) = 3, we have that g(x) = x3 + a2x

2 + a1x+ a0 and

(7) ĝ(x) = (n− 3)x3 + a2(n− 2)x2 + a1(n− 1)x+ a0n.

Suppose that

ĝ(x) = (x+ 1)(x+ n)((n− 3)x+ a0)(8)

= (n− 3)x3 +
(
n2 − 2n− 3 + a0

)
x2 +

(
n2 − 3n+ a0n+ a0

)
x+ a0n.(9)

Observe that

n2 − 2n− 3 + a0 ≡ −3 + a0 (mod n− 2) and

n2 − 3n+ a0n+ a0 ≡ 2 (a0 − 1) (mod n− 1).

Thus, by equating coefficients in (7) and (9), we arrive at the system of congruences

a0 ≡ 3 (mod n− 2)

a0 ≡ 1 (mod (n− 1)/2)

Therefore, by the Chinese Remainder Theorem, it follows that

a0 ≡ 2n− 1 (mod (n− 2)(n− 1)/2),

and so we can write

(10) a0 = s(n− 2)(n− 1)/2 + 2n− 1.

Then, using (10), and again equating coefficients in (7) and (9), yields

a2(n− 2) = (n− 2) (n+ 2 + s(n− 1)/2) ,

albanian-j-math.com/archives/2020-03.pdf

http://albanian-j-math.com/archives/2020-03.pdf


Generating infinite families of monogenic polynomials 42

from which we conclude that

(11) a2 = n+ 2 + s(n− 1)/2.

Similarly,

(n− 1)a1 = n2 − 3n+ (s(n− 2)(n− 1)/2 + 2n− 1) (n+ 1)

= (n− 1) (3n+ 1 + s(n− 2)(n+ 1)/2) ,

so that

(12) a1 = 3n+ 1 + s(n− 2)(n+ 1)/2.

Consequently, from (10), (11) and (12), we have that

f(x) = xn + tg(x),

where

g(x) = x3 + (n+ 2 + s(n− 1)/2)x2

+ (3n+ 1 + s(n− 2)(n+ 1)/2)x+ s(n− 2)(n− 1)/2 + 2n− 1.

In light of (8) and assuming that f(x) is irreducible, we may apply Theorem 1 with

A1 = B1 = A2 = 1, B2 = n, A3 = n−3 and B3 = a0 = s(n−2)(n−1)/2+2n−1

to calculate

(13) ∆(f) = (−1)n(n+5)/2tn−1T1T2T3, where

T1 = (−s(n− 3)/2− 1) t+ (−1)n,

T2 =
(
s
(
n2 − n

)
/2− n2 + n+ s− 1

)
t+ (−n)n and

T3 = −Zt+ (−1)n (s(n− 1)(n− 2)/2 + 2n− 1)
n−1

, with

Z = (n− 3)n−3
((
s2 − 2s

)
n3 +

(
−4s2 + 18s− 4

)
n2

+
(
5s2 − 18s+ 4

)
n+

(
−2s2 − 14s+ 124

))
/4.

At this point, we want to choose, if possible, a value of s so that the product T1T2T3
satisfies the hypotheses of Lemma 1 for some infinite set of values of n. Computer
calculations suggest that s = 3 achieves this goal when n ≡ 1 (mod 4). To establish
this claim, we let s = 3 and proceed as follows. In this situation, we have that

g(x) = x3 +

(
5n+ 1

2

)
x2 +

(
3n2 + 3n− 4

2

)
x+

3n2 − 5n+ 4

2
,

and

T1 =

(
−3n+ 7

2

)
t+ (−1)n,

T2 =

(
n2 − n+ 4

2

)
t+ (−n)n and

T3 =

(
−(n− 3)n−3

(
3n3 + 14n2 − 5n+ 64

)
4

)
t

+ (−1)n
(

3n2 − 5n+ 4

2

)n−1

.
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Writing Ti as ait + bi, we claim that gcd(ai, bi) = 1 for each i. This claim is
clearly true for i = 1, and an easy gcd-argument shows that it is also true for i = 2.
For i = 3, let d = gcd (a3, b3). Then d divides(

513n3 + 9738n2 + 20889n− 90432
)
V − (513n+ 8028)U = 1179648 = 21732,

where

U = (n− 3)
(
3n3 + 14n2 − 5n+ 64

)
and V = 3n2 − 5n+ 4.

Since n ≡ 1 (mod 4), it is easy to see that V/2 ≡ 1 (mod 2). Also, V/2 ≡ 0
(mod 3) if and only if n ≡ 2 (mod 3). However, U/4 ≡ 1 (mod 3) when n ≡ 2
(mod 3). Consequently, d = 1.

With h(t) =
∏3

i=1 Ti, so that k = 3 in Lemma 1, we see that we only have to
check the prime r = 2 for a local obstruction. Since

h(t) ≡
{

3(2t+ 3)2 (mod 4) if n ≡ 1 (mod 8)
3 (mod 4) if n ≡ 5 (mod 8),

it follows that there is no local obstruction when n ≡ 1 (mod 4) with r = 2. Thus,
since the factors Ti are distinct, we deduce from Lemma 1 that, for each value of
n ≡ 1 (mod 4), there are infinitely many prime values of t such that the product
T1T2T3 is squarefree. Among such prime values of t, we can choose infinitely many
primes

(14) p > a0 = 3(n− 2)(n− 1)/2 + 2n− 1 > n,

so that f(x) = xn + pg(x) is p-Eisenstein and therefore irreducible. For such a
fixed prime p, let f(θ) = 0 and K = Q(θ). Since the product T1T2T3 is squarefree,
then ∆(K) ≡ 0 (mod T1T2T3). Finally, we deduce from (14) and Lemma 3 that
pn−1 || ∆(K), and the proof is complete for part (2) of the corollary.

For part (1), we start with the factorization

ĝ(x) = (x+ n) ((n− 2)x+ a0) .

Using the same procedure as used in part (2) yields

a0 = sn− s+ 1 and a1 = s+ n− 1,

so that

g(x) = x2 + (s+ n− 1)x+ sn− s+ 1 and

f(x) = xn + t
(
x2 + (s+ n− 1)x+ sn− s+ 1

)
.

Then the generic discriminant of f(x) in the parameters s and t is

∆(f) = (−1)n(n+3)/2tn−1T1T2,

where

T1 = (−s+ n+ 1)t+ (−n)n and

T2 = (n− 2)n−2(s− n+ 3)t+ (−1)n(sn− s+ 1)n−1.

Here we let s = 0, as suggested by computer calculations, and use Theorem 1 to
get

T1 = (n+ 1)t+ (−n)n, T2 = (n− 2)n−2(−n+ 3)t+ (−1)n and

∆(f) = (−1)n(n+3)/2tn−1 ((n+ 1)t+ (−n)n)
(
(n− 2)n−2(−n+ 3)t+ (−1)n

)
.
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With h(t) =
∏2

i=1 Ti, so that k = 2 in Lemma 1, we see that we only have to check
r = 2 for a local obstruction. Since

h(t) ≡


t (mod 4) if n ≡ 0 (mod 4)

(2t+ 3)2 (mod 4) if n ≡ 1 (mod 4)
3t (mod 4) if n ≡ 2 (mod 4)
3 (mod 4) if n ≡ 3 (mod 4),

it follows that there is no local obstruction in any case when r = 2. Hence, h(t)
satisfies the conditions of Lemma 1 for any integer n ≥ 3, and the conclusion of
part (1) follows with

g(x) = x2 + (n− 1)x+ 1.

Finally, for part (3), we start with the factorization

ĝ(x) = (x− 1)(x+ 1)(x− n) ((n− 4)x+ a0) .

Using the same procedure used previously, with s = 4, we get

a0 = 2n3 − 16n2 + 38n− 27,

a1 = −2n2 + 15n− 27,

a2 = −2n3 + 12n2 − 14n− 2 and

a3 = 2n2 − 11n+ 9,

so that

g(x) = x4 +
(
2n2 − 11n+ 9

)
x3

+
(
−2n3 + 12n2 − 14n− 2

)
x2 +

(
−2n2 + 15n− 27

)
x

+ 2n3 − 16n2 + 38n− 27.

Then,

∆(f) = (−1)n(n+7)/2tn−1T1T2T3T4,

where Ti is a linear polynomial in t. The exact formulas for the Ti are too large
to include here, and the computations to show that the product T1T2T3T4 satisfies
the conditions of Lemma 1 are too tedious to include here as well. �

As an illustration of ∆(f) for part (3) of Corollary 1, we provide the small
example n = 8:

∆(f) = t7(78t−1)(106t−1)(5501t+16777216)(1171892480t+125129118027271453).
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