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ZENAN ŠABANAC

Department of Mathematics,
University of Sarajevo, Zmaja od Bosne 35,

71 000 Sarajevo

LAMIJA ŠĆETA
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Abstract. We derive closed formula for the heat kernel KH,k associated to

the Maass-Laplacian operator Dk for any real weight k and prove that the
heat kernel KH,k is strictly monotone decreasing function of the hyperbolic

distance. We derive small time and large time asymptotic formulae for the
heat kernel KH,k and describe its behavior as a function of the real weight k.
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1. Introduction

Let Γ ⊂ PSL (2,R) be a discontinuous subgroup of the group of all real Möbius

transformations acting on the upper half-plane H, and by Γ̂ denote the group
covering Γ under the projection SL (2,R)→ PSL (2,R). We assume that −I ∈ Γ̂,
where I denotes the identity element.

We assume that the fundamental domain of Γ has finite hyperbolic area, in which
case the Riemann surface XΓ identified with H/Γ has a finite volume.
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The spectral theory of the Laplace operator and Laplace-like operators (Maass
Laplacians) on Riemann surfaces is an important object of study with vast ap-
plications in theory of automorphic forms, string theory, scattering theory and
differential geometry, to name a few.

The study of the determinant of the Laplacian acting on the space of twice
continuously differentiable complex functions on a Riemann surface (actually, the
study of its self-adjoint extension) is crucial in the Polyakov’s string theory [19].
Spectral theory of the hyperbolic Laplacian

D0 := −y2

(
∂2

∂x2
+

∂2

∂y2

)
and the related Selberg zeta function is a crucial ingredient in the construction of
the determinant of the Lax-Phillips scattering operator, introduced in [17] (see [9]
and the references therein).

The analytic and Reidemeister torsion on Riemannian manifolds is related to
the spectral theory of the associated Laplacian, see [20], so the spectral theory of
the Laplacian can be viewed as a tool to deduce geometric invariants.

When the manifold is compact, the study of the determinant of the Laplacian and
the study of the analytic torsion and related invariants from the abovementioned
references rely on the study of the spectral zeta function, defined as the Mellin
transform of the corresponding heat kernel.

More recently, the fact that for any integral or half-integral k, the kernel of the
operator Dk − k(1 − k) is isomorphic to the space of weight 2k cusp forms for Γ
(when both spaces are viewed as C−vector spaces) was used in [7] and [8] to deduce
effective sup-norm bounds on average for such cusp forms. Here Dk denotes the
weighted Maass-Laplacian, defined by

(1.1) Dk := −y2

(
∂2

∂x2
+

∂2

∂y2

)
+ 2iky

∂

∂x
.

The asymptotic behavior of the heat kernel of the Maass-Laplacian Dk on the upper
half-plane, evaluated for k ∈ 1

2Z in a closed form by [18] played a crucial role in the
results of [7] and [8].

The operator Dk acts on twice continuously differentiable functions f : H → C
satisfying transformation behavior (2.1) with respect to a certain multiplier system
of weight k. Multiplier systems and weighted Maass-Laplacians can be defined
for arbitrary real weights, not just for integral and half-integral weights, see the
construction on pp. 335–337 of [12]. Moreover, there are examples of important
multiplier systems with weight k /∈ 1

2Z, constructed from generalized Dedekind
sums associated to Fuchsian groups (see e.g. [2, 14, 3]). Therefore, it is of interest
to deduce a closed formula for the heat kernel associated to the weighted Maass-
Laplacian Dk on H for any real k and establish its asymptotic behavior.

In this paper we derive a closed formula for the heat kernel associated to Dk for
an arbitrary weight k 6= 0 (the case when k = 0 is well-known) and prove that it is
strictly monotone decreasing when viewed as a function of the hyperbolic distance
between the points in H. We further investigate asymptotic behavior of the heat
kernel as t ↓ 0 and t → ∞. We prove that the heat kernel decays exponentially
as t ↓ 0 and that the rescaled kernel is integrable in t on [1,∞). This result
is important in various applications, e.g. one may use results of [13] and obtain
a closed formula for a branched meromorphic continuation of the Poisson kernel
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associated to Dk. Also, one may follow the pattern described in [16] to deduce
meromorphic continuation of the spectral zeta function. We also investigate the
behavior of the heat kernel as a function of a real weight k and prove that the heat
kernel viewed as a function of k is strictly monotone decreasing when k < 0 and
strictly monotone increasing when k > 0.

Since the heat kernel is a fundamental object in various mathematical disciplines,
we are certain that a closed formula derived in this paper for all real weights k,
together with description of its behavior as a function of the hyperbolic distance,
as a function of time t, and as a function of the real weight k will have many
applications.

2. Preliminaries

Let H = {z| z = x + iy, y > 0} be the upper half-plane with Poincare metric

dz = |dz|
y and areal measure dµ(z) = dxdy

y2 expressed in the rectangular coordinates.

By r(z, w) we denote the hyperbolic distance between points z, w ∈ H.

For U =

(
aU bU
cU dU

)
∈ SL(2,R) and z ∈ H let j(U, z) := cUz + dU . Then, for

any two matrices U, T ∈ SL(2,R), there exist a unique number w(U, T ) ∈ {−1, 0, 1},
the phase factor such that

2πiw(U, T ) = − log j(UT, z) + log j(U, Tz) + log j(T, z),

where logarithmic function on the right hand side is the principal branch normalized
so that the argument takes values in (−π, π], see e.g. [14, Section 2.2].

A (scalar-valued) multiplier system νk of a real weight k on Γ̂ is a function

νk : Γ̂→ S1, where S1 is a unit circle in C with the properties:

i) νk(−I) = exp(−2πik),

ii) νk(UT ) = σ2k(U, T )νk(U)νk(T ), for U, T ∈ Γ̂,

where σ2k(U, T ) := exp(4πikw(U, T )) is the factor system of weight 2k, see [6,
Definition 1.3.1].

We denote by Fk the space of all functions f : H→ C, which transform as

(2.1) f (Uz) = νk (U)

(
cz + d

cz + d

)k
f (z) ,

for all U =

(
a b
c d

)
∈ Γ̂, where νk is the multiplier system of weight k on Γ̂.

We denote by Hk the Hilbert space of all functions f ∈ Fk that are square-
integrable on the fundamental domain of Γ, with respect to the hyperbolic measure
dµ(z).

The weighted Maass-Laplacian Dk, defined by (1.1) preserves the transformation
behavior (2.1) for all twice continuously differentiable functions from Fk and acts
on a dense subspace of Hk. It is proved in [21] that Dk extends to a self-adjoint
operator on Hk.

Let us note here that weighted Maass-Laplacian Dk is a specialization of the
operator

∆α,β = −y2

(
∂2

∂x2
+

∂2

∂y2

)
+ (α− β)iy

∂

∂x
− (α+ β)y

∂

∂y

at α+ β = 0, first studied by Maass in [15].
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The heat kernel of the Maass-Laplacian Dk on the upper half-plane, denoted by
KH,k (t; z, w), where t > 0 is real and z, w ∈ H is a unique fundamental solution to
the differential operator Dk + ∂t, satisfying a Dirac condition as t ↓ 0:

f(z) = lim
t↓0

∫
H,k

KH,k(t; z, w)dµ(w),

for any bounded and continuous function f on H, where the convergence is uniform
on compact subsets of H (see [13]).

3. Closed formula for the heat kernel associated to
Maass-Laplacian operator Dk

In his seminal paper [5], Fay initiated the study of the heat kernel of Dk on
H, however, D’Hocker and Phong [4] established that this formula is not com-
pletely correct. In case when k ∈ 1

2Z, the correct expression for the heat kernel
KH,k (t; z, w) of the Maass-Laplacian Dk on the upper half-plane was deduced by
Oshima in [18].

It is well known fact that the heat kernel is a radial function, i.e. it depends only
upon the hyperbolic distance r = r(z, w) between points z and w in H. Therefore, to
ease the notation, we will denote the heat kernel KH,k (t; z, w) simply by KH,k (t, r).

In this section we extend Oshima’s result to all real values of k and prove the
following theorem.

Theorem 3.1. The heat kernel for the Maass-Laplacian Dk, for every k ∈ R, is
given by

(3.1) KH,k (t, r) =
e−

t
4

(4πt)
3
2

∞∫
r

ue−
u2

4t

√
2 coshu− 2 cosh r

· T2k

(
cosh u

2

cosh r
2

)
du,

where

T2k (x) =
(
x+

√
x2 − 1

)2k

+
(
x−

√
x2 − 1

)2k

.

Proof. Our starting point is [18, formula (2.14)]

(3.2) g(r) = − 1

πi

∫
Res=α>|k|

h(s)

(
s− 1

2

)
Qs,k(cosh r)ds,

where h(s) is a test function satisfying certain conditions and

Qs,k (cosh r) = − 1

4π

+∞∫
r

e−(s− 1
2 )u Ik(u, r)√

2 coshu− 2 cosh r
du

is given by [5, formula (21)] with n = 0. Here

Ik (u, r) = (cosh r − 1)
−k ·

[
e2kΘ

(√
2 sinh

u

2
−
√

coshu− cosh r
)2k

+ e−2kΘ
(√

2 sinh
u

2
+
√

coshu− cosh r
)2k
]
,

(3.3)

where Θ satisfies the relation

(3.4) e±Θ sinh r = eu − cosh r ± eu
2

√
2 coshu− 2 cosh r,

see [5, p. 157].
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Formula (3.2) is derived from the spectral decomposition theorem ([5, Theorem
1.5]) and holds true for any k ∈ R. It is known that the heat kernel KH,k (t, r) is

deduced by taking h (s) = es(s−1)t in (3.2) and integrating along the vertical line
Res = α, for any α > |k|. Therefore, application of Fubini-Tonelli theorem in (3.2)
yields

(3.5) KH,k (t, r) =
1

4π2i

+∞∫
r

H(u, t)
Ik(u, r)√

2 coshu− 2 cosh r
du

where

H(u, t) =

∫
Res=α>|k|

es(s−1)t−(s− 1
2 )u
(
s− 1

2

)
ds,

is actually independent of k. Moving the line of integration in the above integral to
the line Res = 1/2, which is justified due to holomorphicity of the function under
the integral sign and setting s = 1/2 + iy we get

H(u, t) = −e− t
4

+∞∫
−∞

e−ty
2−iuyydy.

Applying [10, formula 3.462.6.] with p = t > 0 and q = −iu/2 we deduce that

H(u, t) =
iu

2t

√
π

t
e−

t
4 e−

u2

4t .

Inserting this into (3.5) we get

(3.6) KH,k (t, r) =
e−

t
4

(4πt)
3
2

∫ ∞
r

ue−
u2

4t Ik(u, r)√
2 coshu− 2 cosh r

du.

To complete the proof of the theorem it remains to prove that Ik (u, r) = T2k

(
cosh u

2

cosh r
2

)
.

Using (3.3), (3.4) and formula sinh2 r = (cosh r − 1) (cosh r + 1) we get
(3.7)

Ik (u, r) =
1

(cosh r − 1)
2k

(cosh r + 1)
k
·[(

eu − cosh r + e
u
2

√
2 coshu− 2 cosh r

)2k (√
2 sinh

u

2
−
√

coshu− cosh r
)2k

+
(
eu − cosh r − eu

2

√
2 coshu− 2 cosh r

)2k (√
2 sinh

u

2
+
√

coshu− cosh r
)2k
]
.

Elementary transformations based on the properties of functions sinh and cosh yield
that the first summand in the square bracket (3.7) is
(3.8)[(

eu − cosh r + e
u
2

√
2 coshu− 2 cosh r

)
·
(√

2 sinh
u

2
−
√

coshu− cosh r
)]2k

= (cosh r − 1)
2k
(√

2 cosh
u

2
+
√

coshu− cosh r
)2k

.
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Analogously, the second summand in the square bracket of (3.7) is
(3.9)[(

eu − cosh r − eu
2

√
2 coshu− 2 cosh r

)
·
(√

2 sinh
u

2
+
√

coshu− cosh r
)]2k

= (cosh r − 1)
2k
(√

2 cosh
u

2
−
√

coshu− cosh r
)2k

.

Inserting (3.8) and (3.9) into (3.7), we get

Ik (u, r) =
1

(cosh r + 1)
k
·
[(√

2 cosh
u

2
+
√

coshu− cosh r
)2k

+
(√

2 cosh
u

2
−
√

coshu− cosh r
)2k
]
.

Using that cosh r + 1 = 2 cosh2(r/2) we easily deduce the equality

Ik (u, r) = T2k

(
cosh u

2

cosh r
2

)
.

The proof is complete. �

Remark 1. When k ∈ 1
2Z, the function T2k(x) equals twice, the 2kth Chebyshev

polynomial hence our result indeed generalizes the main result of [18].

Remark 2. The similar formula was derived by Alili, Matsumoto and Shiraishi [1]
by considering Schrödinger operator with constant magnetic field and using Gruet’s
[11] calculation for Laplacian heat kernel.

4. Properties of the heat kernel

In this section we investigate properties of the heat kernel as a function of the
hyperbolic distance r, as a function of the time t > 0 and as a function of the weight
k.

4.1. Behavior of KH,k (t, r) as a function of r. Monotonicity of the heat kernel
for the Maass-Laplacian, as a function of the hyperbolic distance r is proven by
Friedman at al. in [7, Proposition 3.2], assuming that k ∈ 1

2Z. The following
proposition generalizes that result to the case of all real weights k.

Proposition 4.1. For any t > 0, the heat kernel KH,k (t, r) on H associated to Dk,
k ∈ R, is strictly monotone decreasing as a function of r > 0.

Proof. The proof follows the lines of the proof of [7, Proposition 3.2], so we will
focus on parts that use the function T2k instead of the Chebyshev polynomial T2k.
We start with by writing the heat kernel KH,k (t, r) as

KH,k (t, r) =
e−

t
4

√
2 (4πt)

3
2

∫ ∞
r

sinhu√
coshu− cosh r

Fk (t, r, u) du,

where

Fk (t, r, u) =
ue−

u2

4t

sinhu
· T2k

(
cosh u

2

cosh r
2

)
.

Integration by parts yields:

KH,k (t, r) = −
√

2e−
t
4

(4πt)
3
2

∫ ∞
r

∂

∂u
Fk (t, r, u)

√
coshu− cosh rdu.
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In order to prove monotonicity of KH,k (t, r) we need to prove that ∂
∂rKH,k (t, r) < 0

for all r > 0. Proceeding analogously as in [7], we get:

∂

∂r
KH,k (t, r) =

e−
t
4

√
2 (4πt)

3
2

∫ ∞
r

(
sinhu

∂

∂r
Fk (t, r, u) + sinh r

∂

∂u
Fk (t, r, u)

)
· du√

coshu− cosh r
.

(4.1)

Therefore, to prove the proposition it suffices to prove the inequality

(4.2) sinhu
∂

∂r
Fk (t, r, u) + sinh r

∂

∂u
Fk (t, r, u) < 0, for all r > 0.

It is trivial to deduce that

sinhu
∂

∂r
Fk (t, r, u) + sinh r

∂

∂u
Fk (t, r, u) = sinh r

(
1

u
− u

2t
− coshu

sinhu

)
· Fk (t, r, u)

+T ′2k (x) ·
ue−

u2

4t sinh r
2

2 cosh u
2 cosh2 r

2

(
cosh2 r

2
− cosh2 u

2

)
,

(4.3)

where

(4.4) T ′2k (x) =
2k√
x2 − 1

((
x+

√
x2 − 1

)2k

−
(
x−

√
x2 − 1

)2k
)

and x =
cosh u

2

cosh r
2

.

For u > 0 it holds tanhu ≤ u, hence coshu
sinhu = cothu ≥ 1

u . Therefore,

1

u
− u

2t
− coshu

sinhu
≤ − u

2t
< 0.

It is easy to check that T ′2k(x) > 0 for all x =
cosh u

2

cosh r
2
> 1, where T ′2k (x) denotes the

derivative with respect to x. Namely, when k > 0 both factors on the right-hand
side of (4.4) are positive, while, for k < 0 both factors are negative.
Trivially, cosh2 r

2 − cosh2 u
2 < 0 for u > r > 0, since cosh2 x is increasing function

for x > 0. This proves that each term in the sum on the right-hand side of (4.3) is
negative, hence (4.2) holds true.
The proof is complete. �

4.2. Behavior of KH,k (t, r) as a function of t. The small-time and large-time as-
ymptotic behavior of the heat kernel is essential for its applications in physics, since
the meromorphic continuation of the spectral zeta function associated to eigenval-
ues of the Maass-Laplacian relies on this information, see e.g. [16].

The following proposition describes the asymptotic behavior of KH,k (t, r) as t ↓ 0
and t→∞.

Proposition 4.2. The heat kernel KH,k (t, r) on H associated to Dk, k ∈ R, for
all r > 0 satisfies the following two relations:

(4.5) KH,k (t, r) = O
(
t−

3
2 e−

r2

4t

)
, as t ↓ 0,

where the implied constant is independent of t, and

(4.6) KH,k (t, r) = O
(
e−

t
4 t−

3
2

)
, as t→∞,
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where the implied constant is independent of t.

Proof. We start by writing the heat kernel as

KH,k (t, r) =
e−

t
4 e−

r2

4t

(4πt)
3
2

∞∫
r

ue−
u2−r2

4t

√
2 coshu− 2 cosh r

· T2k

(
cosh u

2

cosh r
2

)
du.

The integral on the right-hand side of the above inequality can be written as the
sum of two integrals J1(t, r), where the integration is along the interval (r, r + 1),
and J2(t, r), where the integration is taken along the interval (r + 1,∞). First, we
will show that the integral J1(t, r) is finite and bounded by a constant independent

of t. Namely, after substitution x =
cosh u

2

cosh r
2

, applying the inequality e−
u2−r2

4t ≤ 1,

we get

J1(t, r) ≤
a∫

1

arcosh(x cosh r
2 )

√
x2 − 1

T2k(x)
dx√

x2 cosh2 r
2 − 1

where a = cosh (r+1)
2 cosh−1 r

2 . Since x ≥ 1 it obviously holds

J1(t, r) ≤ 1√
2(cosh2 r

2 − 1)

a∫
1

arcosh(x cosh r
2 )

√
x− 1

T2k(x)dx.

Taking into account that arcosh(x cosh(r/2))√
x−1

T2k(x) = O
(

(x− 1)
−1/2

)
as x ↘ 1 and

(x− 1)
−1/2

is integrable on (1, a), we see that the integral on the right hand-side
is finite. Hence, we have proved that J1(t, r) is bounded.
Next, we estimate J2(t, r). When u > r + 1, there exists an absolute constant C,
depending upon r, such that (coshu−cosh r)−1/2 ≤ Ce−u/2. Since T2k(x) increases
for x > 1, from cosh(r/2) ≥ 1, we immediately deduce that

T2k

(
cosh u

2

cosh r
2

)
≤ T2k

(
cosh

u

2

)
≤ 22|k|+2e|k|u.

Therefore,

(4.7) J2(t, r)�
∞∫

r+1

ue−
u2−r2

4t e(|k|−
1
2 )udu,

where the implied constant is independent of t. When |k| − 1/2 < 0, the above
integral is obviously bounded by a constant which is independent of t, so it is left
to estimate it in the case |k| − 1/2 ≥ 0.
Until this point, we did not use any restrictions on t. Now, we will distinguish the
cases t ↓ 0 and t→∞.

First, assume that t ↓ 0, then, we may assume 0 < t < (4(|k| − 1/2) + 4)
−1

,
hence

J2(t, r)�
∞∫

r+1

ue−(u2−r2)e(|k|−
1
2 )(r2+ 1

4−(u− 1
2 )2)du,

where the implied constant is independent of t. The integral on the right-hand side
is obviously finite. Therefore, for 0 < t < (4(|k| − 1/2) + 4)

−1
it yields that J2(t, r),

and, hence, J1(t, r) + J2(t, r) is bounded uniformly in t, which proves (4.5).
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Next, we assume that t is large. Since the function under the integral sign on
the right hand-side of (4.7) is non-negative, for t > 1 we have

J2(t, r)� e
r2

4t

∞∫
0

ue−
u2

4t +(|k|− 1
2 )udu.

The above integral can be explicitly computed as a function of t, |k| and r using
[10, formula 3.462.1.] with β = 1/(4t) > 0, γ = −(|k| − 1/2) and ν = 2 > 0 to get

(4.8) J2(t, r)� e
r2

4t 2te
t
2 (|k|− 1

2 )
2

D−2

(
−
√

2t

(
|k| − 1

2

))
,

where D−ν(z) denotes the parabolic cylinder function (see, e.g. [10, p. 1037] for
a definition). Using the asymptotic expansion of the parabolic cylinder function

D−2(−
√

2t(|k| − 1/2)), with |z| =
√

2t(|k| − 1/2) large ([10, formula 9.246.1.]), we
deduce that

D−2

(
−
√

2t

(
|k| − 1

2

))
=

1

2t
(
|k| − 1

2

)2 e− t
2 (|k|− 1

2 )
2 (

1 +O(t−1)
)
.

Inserting this into (4.8), we immediately deduce that for large enough t the integral

J2(t, r) is bounded by a product of e
r2

4t and a function which is uniformly bounded
in t. Since

KH,k (t, r) =
e−

t
4

(4πt)
3
2

(J1(t, r) + J2(t, r)) ,

this proves (4.6).
The proof is complete. �

Remark 3. The asymptotic behavior (4.5) and (4.6) is important for various ap-
plications of the heat kernel. Namely, the upper half-plane is the universal cover for
the Riemann surface H/Γ, where Γ is a co-finite Fuchsian group of the first kind.

For example, (4.5) and (4.6) plus an additional consideration related to the small
t asymptotics suffices to apply e.g. [13, Theorem 5.1] to KH,k (t, r).

In the case when the surface is compact and the multiplier system is well chosen
(see e.g. [12, discussion on pp. 335-337]), the spectral expansion of the heat kernel,
together with (4.5) and (4.6) are sufficient to deduce the meromorphic continuation
of the spectral zeta function, following the approach described in [22].

We leave those applications to a subsequent paper.

4.3. Behavior of KH,k (t, r) as a function of k. Finally, Theorem 3.1 allows us
to investigate monotonicity of the heat kernel for the Maass-Laplacian as a function
of the weight k.

Proposition 4.3. For any t > 0 and r > 0, the heat kernel KH,k (t, r), as a function
of k, is strictly monotone decreasing for k < 0 and strictly monotone increasing for
k > 0.

Proof. First let us show that KH,k (t, r) is differentiable as a function of a real
parameter k. The function under the integral sign in (3.1) is differentiable as a
function of k and its derivative with respect to k equals

2ue−
u2

4t

√
2 coshu− 2 cosh r

log
(
x+

√
x2 − 1

)[(
x+

√
x2 − 1

)2k

−
(
x−

√
x2 − 1

)2k
]
,
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where x =
cosh u

2

cosh r
2

. Therefore, to prove differentiability of KH,k (t, r) it is left to

prove that, uniformly in k, for k in some interval, say k ∈ (−M,M), M > 0, this
function is bounded by an integrable function on (r,∞).

First, it is obvious that, for a fixed (large) R > 0, the function

ue−
u2

4t

√
2 coshu− 2 cosh r

· d
dk

(
T2k

(
cosh u

2

cosh r
2

))
χ(r,R)(u),

where χ(r,R)(u) denotes the characteristic function of the interval (r,R), is bounded
by an integrable function, uniformly in k ∈ (−M,M). For large enough R, for all
u ≥ R and k ∈ (−M,M) one has∣∣∣∣ ddkT2k

(
cosh u

2

cosh r
2

)∣∣∣∣ ≤ Aue(M+ 1
2 )u,

where A is a positive constant independent of k. The last inequality yields that

∣∣∣∣∣ ue−
u2

4t

√
2 coshu− 2 cosh r

· d
dk
T2k

(
cosh u

2

cosh r
2

)
χ[R,∞)(u)

∣∣∣∣∣ ≤ Aue−u2

4t +(M+ 1
2 )u.

By [10, formula 3.462.1.] with β = 1/(4t) > 0, γ = − (M + 1/2) and ν = 2 > 0

we see that the function ue−
u2

4t +(M+ 1
2 )u is integrable on (0,∞) and hence, by

positivity, it is integrable on [R,∞). Therefore, we can conclude that for k ∈
(−M,M), M > 0, the derivative

2ue−
u2

4t

√
2 coshu− 2 cosh r

log
(
x+

√
x2 − 1

)[(
x+

√
x2 − 1

)2k

−
(
x−

√
x2 − 1

)2k
]

is bounded by an integrable function on (r,∞), uniformly in k ∈ (−M,M). Since
M > 0 is arbitrary, by the theorem on differentiation under the integral sign it
follows that KH,k (t, r) is a differentiable as a function of a real parameter k and

d

dk
KH,k (t, r) =

∞∫
r

ue−
u2

4t

√
2 coshu− 2 cosh r

· d
dk

(
T2k

(
cosh u

2

cosh r
2

))
du.

By writing T2k (x) = 2 cosh
(
2k log

(
x+
√
x2 − 1

))
, one immediately gets d

dkT2k (x) <

0 for all k < 0 and d
dkT2k (x) > 0 for all k > 0 . Namely,

d

dk
T2k (x) = 4 log

(
x+

√
x2 − 1

)
sinh

(
2k log

(
x+

√
x2 − 1

))
which is of the same sign as k since x =

cosh u
2

cosh r
2
> 1 and the function sinh is an odd

function. Therefore, we conclude that for arbitrary, but fixed t > 0 and r > 0 we
have d

dkKH,k (t, r) < 0 for k < 0 and d
dkKH,k (t, r) > 0 for k > 0.

The proof is complete. �
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