
ALBANIAN JOURNAL OF MATHEMATICS
Volume 13, Number 1, Pages 211–218
ISSN: 1930-1235; (2019)
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Abstract. It is shown that under some additional assumption two diagonal-

izable integral matrices X and Y with only rational eigenvalues are conjugate
in GLn(Z) if and only if they are conjugate over all localizations. This is

used to prove that for a prime p ≡ 3 (mod 4) the adjacency matrices of the

Paley graph and the Peisert graph on p2 vertices are conjugate in GLp2 (Z),
answering a question by Peter Sin [9].
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1. Introduction

Let X, Y ∈ Zn×n be two integral matrices. Then C(X) := {A ∈ Zn×n | AX =
XA} is a Z-order and C(X,Y ) := {A ∈ Zn×n | AX = Y A} is a right module for
C(X). Faddeev [4] shows that X and Y are conjugate in GLn(Z) if and only if
C(X,Y ) is a free C(X)-module.

Local-global properties for similarity of matrices have been considered for lattices
over orders in [6] and later in [5]. Using the above mentioned result by Faddeev
both papers, [6, Satz 7] and [5, Theorem 7], show that two matrices over the ring
of integers in an algebraic number field are conjugate over all localizations if and
only if they are conjugate over the ring of integers in some finite field extension. In
certain cases, there is no need to pass to an extension field. This paper gives an
additional sufficient condition (see Assumption 2.1) for which a thorough analysis
of [6] allows to prove Theorem 2.2 saying that, two diagonalizable integral matrices
satisfying Assumption 2.1 are conjugate in GLn(Z) if and only if they are conjugate
over all localizations.
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The work on this paper started during the Hausdorff Trimester program “Logic
and Algorithmic group theory”. I thank the HIM for their support during this
program and Eamonn O’Brien for communicating a question by Peter Sin which
was the main motivation for this note. The recent paper [9] shows that for any
prime p ≡ 3 (mod 4) the adjacency matrices of the Paley graph A(p2) and the
Peisert graph A∗(p2) on p2 vertices are conjugate over all localizations of Z and
asks whether these are also conjugate in GLp2(Z). As these adjacency matrices are
rationally diagonalizable and satisfy Assumption 2.1 (see Section 4) Theorem 2.2
implies a positive answer to this question.

The paper contributes to the SFB TRR 195 “Symbolic Tools in Mathematics
and their Application”.

2. Notation and statement of main result

We denote by Z the ring of integers in the rationals Q. For a prime p let

Z(p) := {a
b
∈ Q | p does not divide b}

denote the localization of Z at p. For n ∈ N let

GLn(Z) := {g ∈ Zn×n | det(g) ∈ {±1}}

be the group of invertible integral matrices of size n and

GLn(Z(p)) := {g ∈ Zn×n
(p) | p does not divide det(g)}

the group of invertible matrices over Z(p).

Let A ∈ Zn×n. Then there are matrices g, h ∈ GLn(Z) such that

gAh = diag(d1, . . . , dr, 0, . . . , 0), with di ∈ N, d1 | d2 | . . . | dr.

Then the abelian invariants (d1, . . . , dr) of A are uniquely determined by A and the
Smith group of A is the torsion part of the cokernel of the endomorphism A; as an
abelian group this is isomorphic to Z/d1Z× . . .× Z/drZ. Its exponent is dr.

In this note we consider integral diagonalizable matrices X,Y ∈ Zn×n with the

same minimal polynomial µX = µY =
∏k

i=1(t− ai) ∈ Z[t] where a1, . . . , ak ∈ Z are
pairwise distinct integers. Then by Chinese Remainder Theorem the Q-algebras
Q[X] and also Q[Y ] are isomorphic to a direct sum of copies of Q

Q[X] ∼=
k⊕

i=1

Q[t]/(t− ai) ∼=
k⊕

i=1

Q.

Let ei ∈ Q[X] ⊆ Qn×n denote the primitive idempotents of this algebra (1 ≤ i ≤ k).
Then there are minimal qi ∈ N such that Ei := qiei ∈ Zn×n for all i. For our proof
of the main result we make the following assumption on the Smith group of Ei:

Assumption 2.1. Assume that one of the following two statements holds:

(a) For all 1 ≤ i ≤ k the Smith group of Ei has exponent qi.
(b) rk(e1) = 1 and for all 2 ≤ i ≤ k the Smith group of Ei has exponent qi.

Though the formulation of part (b) of the assumption does not seem to be
natural, this is the situation that will occur quite frequently in graph theory. It is
the one that we need in Section 4.
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Theorem 2.2. Let X,Y ∈ Zn×n be two matrices with minimal polynomial µX =

µY =
∏k

i=1(t − ai) ∈ Z[t] where a1, . . . , ak ∈ Z are pairwise distinct integers.
Assume that X satisfies Assumption 2.1. Then there is some T ∈ GLn(Z) with
TXT−1 = Y if and only if for all primes p there are matrices Tp ∈ GLn(Z(p)) with

TpXT
−1
p = Y .

Note that we could prove Theorem 2.2 under weaker hypotheses, for instance for

minimal polynomials µX = µY =
∏k

i=1 fi where all the pairwise distinct irreducible
factors fi have equation orders Z[t]/(fi(t)) that are principal ideal domains. Such
an assumption on the equation orders is necessary as the following example shows:
Put

Y :=

(
0 1
-6 0

)
, X :=

(
0 2
-3 0

)
, T2 :=

(
0 -1
3 0

)
, Tp := diag(1, 2) for p > 2.

Then µX = µY = t2+6 is irreducible but the equation order Z[t]/(t2+6) ∼= Z[
√
−6]

has class number 2. It is easy to see that X and Y are not conjugate in GL2(Z)
but for all primes p the matrix Tp ∈ GL2(Z(p)) satisfies TpXT

−1
p = Y , so X and Y

are conjugate over all localizations.
Also Assumption 2.1 cannot be completely omitted, as can be seen by taking

Y :=

(
1 1
0 6

)
, X :=

(
1 2
0 6

)
, T2 :=

(
-1 1
0 3

)
, Tp := diag(1, 2) for p > 2.

Here µX = µY = (t− 1)(t− 6) and TpXT
−1
p = Y for all primes p but X and Y are

not conjugate over GL2(Z). Note that neither X nor Y satisfies Assumption 2.1 as
both matrices

E1 = 5e1 = X − 1, E2 = 5e2 = 6−X
have trivial Smith group.

3. Proof of Theorem 2.2 based on [6]

For a ring O we put SLn(O) := {g ∈ On×n | det(g) = 1}.

Lemma 3.1. (see [7, Theorem K.14]) Let q ∈ Z be such that q ≥ 2.
Then the entry-wise reduction map SLn(Z)→ SLn(Z/qZ) is onto.

It is clear that Lemma 3.1 cannot be true for GLn, as the determinant of the
reduction modulo q of a matrix in GLn(Z) is ±1 mod q.

One direction of Theorem 2.2 is obvious: If there is a matrix T ∈ GLn(Z) with
TXT−1 = Y then we may put Tp := T ∈ GLn(Z(p)) for all primes p to see that the
two matrices are also conjugate over all localizations.

To see the opposite direction we use [6, Satz 4]. I thank Peter Sin for simplifying
my original approach.

The ring

R := Z[t]/

k∏
i=1

(t− ai)

is a Z-order in the commutative split semisimple Q-algebra

A := Q[t]/

k∏
i=1

(t− ai) ∼=
k⊕

i=1

Q.
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Let e1, . . . , ek ∈ A denote the primitive idempotents. Then the unique maximal
order O in A is

O =

k⊕
i=1

Rei ∼=
k⊕

i=1

Z.

The two matrices X and Y in Zn×n with minimal polynomial µX = µY =
∏k

i=1(t−
ai) define two R-module structures MX and MY on Z1×n by letting t act as right
multiplication by X respectively Y .

Remark 3.2. C(X) = {A ∈ Zn×n | AX = XA} ∼= EndR(MX) and C(X,Y ) ∼=
HomR(MY ,MX). In particular any isomorphism between the two R-modules MX

and MY is given by a matrix T ∈ GLn(Z) conjugating X to Y .

Applying Remark 3.2 to the localizations of MX and MY , the matrices Tp ∈
GLn(Z(p)) conjugating X to Y yield isomorphisms between these localizations for
all primes p. So MX and MY are in the same genus of R-lattices.

The O-module

Γ := MXO =

k⊕
i=1

MXei =:

k⊕
i=1

Γi

has endomorphism ring

∆ := EndO(Γ) ∼=
k⊕

i=1

Zni×ni

where ni = dim(Γi). In particular the genus of the ∆-lattice Γ consists of a single
class, and hence by [6, Satz 3] the genus of the R-lattice MX consists of a single
narrow genus.

Put Λi := MX ∩ Γi. Then

Γ =

k⊕
i=1

Γi ⊇MX ⊇
k⊕

i=1

Λi

and X acts on Γi and on Λi as a scalar matrix, the multiplication by ai. Recall
that we choose qi ∈ N to be minimal such that Ei = qiei ∈ EndZ(MX) = Zn×n.

Remark 3.3. If (d1, . . . , dni) are the abelian invariants of Ei and mj := qi/dj for
i = 1, . . . , ni, then

Γi/Λi
∼= Z/m1Z× . . .× Z/mni

Z.

To agree with the notation in [6] we put H := C(X) = EndR(MX) ⊆ ∆. Then
∆ is a maximal order containing H and the maximal two-sided ∆-ideal contained
in H is

F :=

k⊕
i=1

Ei∆ =

k⊕
i=1

qiZni×ni ⊆ C(X) ⊆ ∆.

Moreover MXF = ΓF =
⊕k

i=1 qiΓi. In the notation preceding [6, Satz 4] we put

∆̃ := ∆/F and H̃ := C(X)/F .
Then H̃ ≤ ∆̃. The respective groups of units are

U(∆) =
∏k

i=1 GLni
(Z) =

∏k
i=1 GL(Γi),

U(∆̃) =
∏k

i=1 GLni
(Z/qiZ) = GL(Γ/FΓ), and

U(H̃) = U(C(X)/F) = {g ∈ U(∆̃) | (MX/MXF)g = MX/MXF}.
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We also put Ũ(∆) := U(∆)/F ≤ U(∆̃) to denote the reduction of the units of ∆
modulo F .

Then [6, Satz 4] tells us that the isomorphism classes of C(X)-lattices in the
(narrow) genus of MX correspond bijectively to the double cosets

U(H̃)/U(∆̃)\Ũ(∆).

So to prove Theorem 2.2 we need to show that this set consists of only one element.

Lemma 3.4. In the situation of Theorem 2.2 we have |U(H̃)/U(∆̃)\Ũ(∆)| = 1.

Proof. Clearly C(X) = H ≤ ∆, so we may write any element B of H as a tuple
(B1, . . . , Bk) of matrices Bi ∈ Zni×ni = EndZ(Γi) which will be our canonical
notation for the elements of ∆ = ⊕k

i=1EndZ(Γi). In particular

H = {B := (B1, . . . , Bk) ∈ ∆ |MXB ⊆MX}.

Let Ã := (Ã1, . . . , Ãk) ∈ U(∆̃) and choose a preimage A = (A1, . . . , Ak) ∈ ∆, so

Ai ∈ Zni×ni reducing modulo qi to Ãi. Then di := det(Ai) ∈ Z maps onto a unit

det(Ãi) ∈ Z/qiZ. Let d′i ∈ Z with did
′
i ≡ 1 (mod qi) be the corresponding inverse.

We construct B = (B1, . . . , Bk) ∈ H such that det(Bi) ≡ d′i (mod qi) for all i.
Assume that part (a) of Assumption 2.1 holds. If m1, . . . ,mni

are as in Remark

3.3 there is a basis (b
(i)
1 , . . . , b

(i)
ni ) of Γi such that

(m1b
(i)
1 , . . . ,mni

b(i)ni
)

is a basis of Λi. By Assumption 2.1 we have mni
= 1 for all i. Put

Ki := 〈b(i)ni
〉 and K ′i := 〈b(i)1 , . . . , b

(i)
ni−1〉.

Then Γi = Ki ⊕K ′i and Λi = Ki ⊕ (K ′i ∩ Λ). Let

K :=

k⊕
i=1

Ki and K ′ := (

k⊕
i=1

K ′i) ∩MX .

Then MX = K ⊕K ′ is a direct sum of these two R-sublattices.
Let B be the endomorphism of MX that is the identity on K ′ and the multi-

plication by d′i on Ki for all i = 1, . . . , k. Then B = (B1, . . . , Bk) ∈ C(X) and
det(Bi) = d′i for all i.
If part (b) of Assumption 2.1 holds then we may first add a multiple of q1 to d′1
such that d′1 is prime to qi for all i = 2, . . . , k. With the same construction as before
we then find B′ = (B′1, . . . , B

′
k) ∈ C(X) with det(B′i) ≡ d′i/(d

′
1)ni (mod qi) for all

i = 2, . . . , k and det(B′1) = 1. Then B := d′1B
′ ∈ C(X) has the desired properties.

In both cases B̃ ∈ U(H̃) and BA = (B1A1, . . . , BkAk) ∈ ∆ satisfies det(BiAi) ≡
1 (mod qi), so B̃iAi ∈ SLni(Z/qiZ). By Lemma 3.1, there are matrices Ci ∈
SLni

(Z) with C̃−1i = B̃iAi for all i. Then C := (C1, . . . , Ck) ∈ U(∆) satisfies

B̃ÃC̃ = 1.
�

4. Paley and Peisert

This last section is dedicated to the proof that the adjacency matrices of the
Paley and Peisert graphs satisfy Part (b) of Assumption 2.1.
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Let p be a prime p ≡ 3 (mod 4) and q := p2t be an even power of p. The Paley
graph (see [2, p. 101]) and the Peisert graph [8] on q vertices are two cospectral
Cayley graphs on an elementary abelian group of order q which are isomorphic if and
only if q = 9 (see [9]). Choose a primitive element β ∈ F×q and let U := 〈β4〉 ≤ F×q
denote the subgroup of fourth powers in the multiplicative group F×q of the field
with q elements. Then

F×q = U ∪ βU ∪ β2U ∪ β3U.

The Paley graph P (q) and the Peisert graph P ∗(q) have vertex set Fq. Two vertices
i, j ∈ Fq are joined in P (q), if and only if i−j ∈ U∪β2U =: S = (F×q )2 and in P ∗(q)
is and only if i − j ∈ U ∪ βU . Let A(q) respectively A∗(q) denote the adjacency
matrices of P (q) respectively P ∗(q).

One main result of [9] is that for q = p2 the adjacency matrices A(q) and A∗(q)
are conjugate in GLq(Z(`)) for all primes `.

Using Theorem 2.2 this allows us to show the following result:

Theorem 4.1. The matrices A(p2) and A∗(p2) are conjugate in GLp2(Z).

To prove the theorem we show that the matrix X := A(p2) satisfies part (b) of
Assumption 2.1. Put

k :=
p2 − 1

2
, r :=

p− 1

2
, s :=

−p− 1

2
.

Then the eigenvalues of X are k, r, s with multiplicities 1, p
2−1
2 , p

2−1
2 . Define

E1 := 2(X − rI)(X − sI)/k = J
E2 := −(X − kI)(X − sI)/r = sJ + pX − psI
E3 := −(X − kI)(X − rI)/s = rJ − pX + prI

where I denotes the unit matrix and J the all-ones matrix. Then elementary
computations show that for i 6= j ∈ {1, 2, 3}

E2
i = p2Ei and EiEj = 0.

In particular ei := 1
p2Ei are the primitive idempotents in Q[X] and qi = p2 for

i = 1, 2, 3. Moreover rk(E1) = 1 and hence rk(E2) = rk(E3) = k. The next
lemma shows that the Ei satisfy part (b) of Assumption 2.1. Therefore Theorem
2.2 together with the local considerations in [9] imply Theorem 4.1.

Lemma 4.2. For i = 2, 3 the Smith group of Ei is

Z/Z⊕ (Z/pZ)(p+1)2/4−2 ⊕ (Z/p2Z)(p−1)
2/4.

Proof. We use the methods from [3]. We first note that the exponent of the Smith
group of Ei divides p2 by Remark 3.3. In particular we may pass to the p-adics. Let
R := Zp[ζq−1] denote the ring of integers in the unramified extension of Qp of degree
2. Then the adjacency matrix X of P (p2) is seen as an endomorphism of R[Fq].
Recall that S = 〈β2〉 = (F×q )2. Then S acts on R[Fq] permuting the basis vectors

([x], s) 7→ [xs] for all x ∈ Fq, s ∈ S. As |S| = q−1
2 ∈ R

× is invertible in R the RS-
module R[Fq] is semisimple. Let τ : F×q → R× denote the group monomorphism
known as the Teichmüller character. The matrices J : [x] 7→

∑
y∈Fq

[y] and X :
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[x] 7→
∑

s∈S [x+s] commute with the action of S and hence act on the homogeneous
components

M0 := 〈1 :=
∑
y∈Fq

[y], [0], bk :=
∑
s∈S

[s]−
∑

x∈F×
q \S

[x]〉

and

Mj := 〈bj , bj+k〉, j = 1, . . . , k − 1, where bj :=
∑
x∈F×

q

τ j(x−1)[x]

(see [3, Section 3]). For the action of Ei on M0 we compute

E
(0)
1 :=

 p2 0 0
1 0 0
0 0 0

 , E
(0)
2 :=

1

2

 0 0 0
-1 p2 p
-p p3 p2

 , E
(0)
3 =

1

2

 0 0 0
-1 p2 -p
p -p3 p2

 .

In particular the rank of E
(0)
i is 1, contributing a 1 to the abelian invariants of Ei

for i = 1, 2, 3. Clearly J = E1 acts on Mj as 0 for j ≥ 1. In the notation of [3]
let j > 0 and αj := J(τ−j , τk) denote the Jacobi sum. Then [3, Lemma 3.1] shows

that X acts on Mj as right multiplication by Xj := 1
2

(
−1 αj

αj+k −1

)
so E2 and

E3 by right multiplication with p(Xj − s) respectively −p(Xj − r) in matrices

E
(j)
2 :=

p

2

(
p αj

αj+k p

)
and E

(j)
3 :=

p

2

(
p −αj

−αj+k p

)
.

As the rank of E2 and E3 is (p2 − 1)/2 = 1 + (k − 1) and all E
(j)
i are non-zero for

i = 2, 3, j = 1, . . . , k − 1 we obtain that all these E
(j)
i have rank 1, in particular

αjαj+k = p2, for all j = 1, . . . , k − 1. Now [3, Theorem 3.4] says that the p-adic
valuation of αi is

c(j) =
1

p− 1
(s(j) + s(k)− s(j + k))

where s(j) = a+ b if j ≡ ap+ b (mod p2) with 0 ≤ a, b ≤ p−1. As k = p−1
2 p+ p−1

2
we have s(k) = p− 1. Moreover for

1 ≤ j = ap+ b <
p2 − 1

2
= k

we have a ≤ (p− 1)/2 and a ≤ (p− 3)/2 if b ≥ (p− 1)/2. Computing the digits of
j + k for these j we find

(0) s(j + k) = s(j) + s(k) if 0 ≤ a, b ≤ p−1
2 , (a, b) 6∈ {(0, 0), (p−1

2 , p−12 )}
(1) s(j + k) = s(j) + s(k)− (p− 1) if p+1

2 ≤ b ≤ p− 1 and 0 ≤ a ≤ p−3
2 .

So there are (p+1
2 )2 − 2 such 1 ≤ j < k with c(j) = 0 and (p−1

2 )2 such j with

c(j) = 1. For the j with c(j) = 1 (and hence also c(j + k) = 1 as αjαj+k = p2)

all entries of E
(j)
i are divisible by p2 so these j contribute a value p2 to the abelian

invariants of both, E2 and E3. If c(j) = 0 there is one entry of E
(j)
i having valuation

1, so these j contribute a value p to the abelian invariants of E2 and E3.
�
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