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Abstract. We investigate a relationship between topological insulators and

spin structures on Riemann surfaces, along with their theta function interpre-

tation, via Quillen’s determinant bundle. The genus one case is analyzed in
detail and it is found to yield a non trivial Kane-Mele type invariant.
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1. Introduction

Topological insulators, also called quantum spin Hall systems, represent a ma-
jor topic in modern condensed matter physics. They are materials which behave
as insulators in their bulk, i.e. they admit an energy gap separating the valence
and conduction bands, whilst exhibiting gapless topologically protected conducting
edge or surface states on their boundary (surviving impurities or geometric pertur-
bations), with the topological protection arising from spin-orbit coupling together
with time-reversal or other symmetries of the underlying one-particle Hamiltonians
(see e.g. [17] for a recent in depth review and also the agile survey [28]). As such,
they fostered fascinating mathematical problems requiring, for their solution, ex-
tensive use of sophisticated techniques in geometry and topology, notably classical
and noncommutative geometry and K-theory ([12, 13, 20, 21, 22, 27, 23]).

In this short note we discuss a quite simple two-dimensional toy model exhibiting
such a behaviour, by resorting to spin geometry in connection with theta charac-
teristic theory, building on the classical papers [2, 25], see also [26]. A crucial tool
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is provided by Quillen’s theorem [29], in a form used in early string theory investi-
gations by Alvarez-Gaumé et al. ([1]). In a nutshell, we consider the spinor bundle
over a complex 2-torus, identified with its Jacobian and with its Picard group, to-
gether with a family of Spinc operators thereon, taken as a family of Landau-Bloch
Hamiltonians. The common spectrum (band structure) of the family is easily de-
termined and it is then shown that enforcement of time-reversal invariance of the
Hamiltonian selects the points corresponding to the four spin structures on the
torus. The ensuing harmonic spinors, i.e. the zero modes of the Dirac operator
(the eigenvalue zero is the corresponding Fermi energy) exist only in the odd spin
structure case and play the role of the topologically protected edge states. Then,
Quillen determinant ideas lead via [1] to the theta characteristics, coming full circle
with the portraits of Atiyah and Mumford ([2, 25]). Everything is extended to
higher genus, which, however, appears to be topologically less interesting in the
sense that in this case one arrives at a trivial Kane-Mele type invariant, in con-
trast to the genus one case. Nevertheless, spin theoretic ideas could be relevant in
investigating possible metric (actually complex structure) dependent physical phe-
nomena. At the same time, a topological insulator perspective may cast further
light on a celebrated classical theory.

The paper is organized as follows. In Section 2 we briefly review basic facts and
terminology on Bloch bundle theory, together with spin structures on Riemann
surfaces and their relationship to theta function theory, in view of the formulation
of the result presented in Section 3 and extended to higher genus in Section 4. The
final section summarizes the discussion and points out further research directions.
The two appendices aim at adding a few details to the main text discussion and in
particular at recording the explicit eigenspinors in the torus case.

2. Preliminaries

In this section, split into several smaller ones, we collect miscellaneous mathemat-
ical and physical background, referring to the cited literature for full information,
and at the same time we develop the necessary calculations leading to the main
result.

2.1. Bloch bundles. In the present section Bloch bundles associated to time-
reversal (T ) invariant spin 1/2-systems are considered (see e.g. [17, 20, 21, 22, 12,
13, 24, 11]). In the literature, they are known as topological insulators in class AII.
These are vector bundles

B→ B
on the so-called Brillouin (or spectral) manifold B (yielding the admissible wave
vectors k) whose fibres are eigenspaces of Bloch Hamiltonians. The Kramers degen-
eracy theorem states that the energy levels in such a system are doubly degenerate,
i.e. the (finite dimensional) eigenspaces are even-dimensional. The T -action on B
(concisely reading k 7→ −k) prompts the existence of an antiunitary operator Θ on
sections of B such that Θ2 = −I, leading to a topological isomorphism B ∼= B (the
conjugate bundle) and thus to the Chern class identities

ci(B) = (−1)ici(B), i = 1, 2 . . .

If the base manifold is two-dimensional, we just have

c1(B) = c1(detB) = 0,
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that is, the determinant line bundle detB is topologically trivial. The fixed points
of the T -action on B play a special role. In Section 2.3 below we are going to
exhibit an example based on Riemann surface theory explicitly featuring the typical
characteristics of topological insulators.

2.2. Dirac operators and harmonic spinors on Riemann surfaces. In this
section we succinctly collect, in order to establish notation and for the reader’s
benefit, well known facts concerning the spin geometry of a compact Riemann
surface Σg of genus g ≥ 1 (see e.g. [16, 4, 2, 18, 10] for background).

Let E → Σg be a holomorphic vector bundle over Σg, with rank rk(E) and

degree deg(E), and let ∂E be the ∂-operator attached to it, with h0(E) being the
dimension of the space of its holomorphic sections. Let K → Σg be the canonical
bundle, having degree degK = −χ(Σg) = 2g − 2 and h0(K) = g, its holomorphic
sections being the Abelian differentials. Then the Riemann-Roch theorem reads
(combined with Serre duality)

ind(∂E) = h0(E)− h1(E) = h0(E)− h0(K ⊗ E∗) = deg(E) + rk(E)(1− g)

(E∗ → Σg is the dual bundle). A crucial fact is now that the spin structures on

Σg precisely correspond to the possible (indeed, 22g) holomorphic square roots K
1
2

of the canonical bundle. The (Spinc) Dirac operator DE pertaining to E coincides,

after twisting with a holomorphic square root of K, with
√

2(∂E + ∂
†
E). The chiral

Dirac operator D+ is then ∂E . The full Dirac operator is (up to a constant)

DE =

[
0 D−

D+ 0

]
,

with D− = (D+)
†
, the (formal) adjoint of D+. An application of Riemann-Roch to

E = L = K
1
2 yields, since deg(L) = g − 1 and ind(∂L) = 0, h0(L) ≡ h0 = h1(L) ≡

h1.
The space H of harmonic spinors, consisting of the solutions of the Dirac equa-

tion DLψ ≡ Dψ = 0 decomposes as H = H+⊕H− (positive and negative harmonic
spinors) and has dimension

h = h+ + h− = h0 + h1 = 2h0.

In general, a spin structure α is called even (resp. odd) if its corresponding
h0
α = dimH0(Lα) is even (respectively odd): in our case 2g−1(2g ± 1) of them are

even resp. odd. We denote by A the set of all spin structures and by A± the set
of the even and odd ones, respectively. In the torus case Σ1 the canonical bundle
K is topologically trivial and one has four spin structures, of which three are even
and one odd, with the properties h = h+ + h− = 2h+ = 2 for the single odd spin
structure, and h = 0 for the even ones. The bundles Lα, α ∈ A are, of course,
topologically trivial as well (therefore, in physical parlance, no magnetic field is
present); see [18, 10] for complete details.

2.3. The torus case. This subsection is devoted to a quite explicit discussion of
the genus one case, where more clear-cut and, in a sense to be made precise below,
more interesting results can be obtained. Take as B→ B the trivial vector bundle
over the Jacobian J(Σ1) - identified with Σ1 and with Pic0(Σ1), the group of degree
zero holomorphic line bundles - whose fibre at each point is the full spinor space,
identified in turn with L2(Σ1,C2) - Σ1 being equipped with the standard area form
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- with the following family of Spinc operators Da (Landau-Bloch Hamiltonians)
acting thereon:

Da =

[
0 D−a
D+
a 0

]
,

with a = a1 + ia2 ∈ J(Σ1) = C/Λ ∼= Σ1 (Λ being the Jacobian lattice generated,
for simplicity, by 1 and i), parametrized, for instance, by the fundamental region
[0, 2π)× [0, 2π). The operators D±a read, explicitly:

D+
a =

∂

∂z̄
+ a, D−a = (D+

a )† = − ∂

∂z
+ a,

the same (periodic) boundary conditions being employed for all operators. In par-
ticular, for a = 0, D±0 ≡ D±, or D0 ≡ D. This operator corresponds to the only
odd spin structure (the (P, P ) spin structure in the notation of [1]). The symmetric
points on J(Σ1), namely those z satisfying

z = −zmod Λ ⇐⇒ 2z ∈ Λ

provide the four T -invariant points in the Brillouin manifold J(Σ1) = Σ1 = Pic0(Σ1)
and correspond, in turn, to the four spin structures. The latter will be selected upon
enforcement of time-reversal invariance within the chosen family of Hamiltonians.

Upon denoting a generic spinor (later to be taken in the domain of the operators
involved) by

ψ =

[
ξ
η

]
one can write down the standard anti-unitary time-reversal operator Θ, satisfying
Θ2 = −I, reading

Θψ = iσy

[
ξ
η

]
=

[
0 1
−1 0

][
ξ
η

]
=

[
η

−ξ

]
.

A straightforward computation shows that the T -invariance property

Da ◦Θ = Θ ◦ Da
holds if and only if

2a ∈ Λ,

namely, for a fixed point for the T -action and, correspondingly, for a genuine spin
structure on Σ1. Indeed, we have

D+
a ξ = −D−−aξ, D−a η = −D+

−aη.

Therefore, on the one hand

ΘDa
[
ξ
η

]
=

[
D+
a ξ

−D−a η

]
and, on the other hand:

Da Θ

[
ξ
η

]
=

[
−D−a ξ
D+
a η

]
=

[
D+
−aξ

−D−−aη

]
,

whence our conclusion follows. This immediately yields Kramers’ degeneracy: if
ψ is an eigenfunction of Dα (the Dirac operator associated to the spin structure
α ∈ A) corresponding to an eigenvalue ε, so is Θψ, which is orthogonal to ψ.
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2.4. Band structure. Pursuing the computation (see Appendix B for more de-
tails) one finds, from

D+
a D
−
a = D−a D

+
a = − ∂2

∂z∂z
+ a

∂

∂z
− a ∂

∂z
+ aa = −∆

4
+ i(a1

∂

∂y
− a2

∂

∂x
) + a2

1 + a2
2,

the following spectrum of D2
a (band structure):

[εm1m2(a)]2 =
m2

1 +m2
2

4
+m1a2 −m2a1 + a2

1 + a2
2 =‖ m

2
− ã ‖2 m1,m2 ∈ Z

(with m = (m1,m2) and ã = (a2,−a1)), also cf. [33]. Therefore εm1m2(a) = εF = 0
(“Fermi energy”) if and only if a1 = a2 = m1 = m2 = 0. This vividly confirms the
absence of harmonic spinors for the even spin structures and the emergence of a
Dirac cone structure for D0 = D (signalling a crossing of the Fermi energy εF = 0).
Indeed, for m = 0, one has

[ε00(a)]2 =‖ ã ‖2= a2
1 + a2

2

and we have two natural (actually artificial!) “conduction” and “valence” families
of bands given by a 7→ ±|εm1m2

(a)|, respectively. The bands a 7→ ±|ε00(a)| =

±
√
a2

1 + a2
2 intersect at a = 0.

In general, the parity of the number of Dirac cones (coinciding with the pairs of
Majorana zero modes) yields (a version of) the so-called Kane-Mele invariant KM
([19, 17, 20, 21, 22, 12, 13, 23]) which is then Z2-valued. A topological insulator
has KM = −1. This is exactly what happens here: the Majorana zero modes are
the harmonic spinors. This point will be further elaborated on in Section 3.

Remark. The previous calculation shows the non trivial Pic0-dependence of the
spectrum of D+, typical of the degree zero case. In fact, for a positive degree
(holomorphic) line bundle (thus possessing non trivial holomorphic sections) one
would have isospectrality (see [33] and also [30]).

2.5. Determinant line bundles on Riemann surfaces. Dan Quillen intro-
duced, in [29], the determinant line bundle associated to a family of Cauchy-
Riemann operators D on a Riemann surface Σ and developed its geometry. Refer-
ring to that paper or to [14], and also to [1] for complete details, we just recall here
that the Ray-Singer ζ-regularized determinant of the family admits the following
representation:

detζ(D
†D) = e−q(D)|det(D;D0)|2,

where

q(D) =‖ D −D0 ‖2=
i

2π

∫
Σ

trE [(D −D0)†(D −D0)],

D0 being a fixed operator in the family, and det(D;D0) is a holomorphic section
vanishing precisely when a specific operator D has a non trivial kernel. Quillen’s
result has been vastly generalized (see e.g. [5, 6, 7, 8, 9]).

2.6. Theta functions. Recall that any holomorphic line bundle over the torus Σ1

is a multiple of the so-called theta line bundle, possessing - by Riemann-Roch - a
single holomorphic section (up to a scalar), pulling back to the well-known theta

function on C. The theta functions with real characteristics â, b̂, in the g = 1 case
read

ϑ

[
â

b̂

]
(z, τ) =

∑
n∈Z

exp
[
πi(n+ â) τ(n+ â) + 2πi(n+ â)(z + b̂)

]
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For â = b̂ = 0 one gets the standard theta function ϑ. In the present paper we take
τ = i, see [26, 16, 1] for complete details.

3. The main result (genus one case)

Application of the above considerations to the family D+ := {D+
a }, a ∈ J(Σ1)

shows that detζ((D+)
†D+) = 0 precisely for a = 0, the zero is simple and the

kernel is 1-dimensional. Consequently, taking D0 = D+
0 , the section det(D;D0) is

proportional to a theta section: specifically, the theta-null formula

ϑ

[
â

b̂

]
(0|i) = e−πâ

2

e2πi âb̂ ϑ(iâ+ b̂, i) ≡ c(â, b̂)ϑ(u, i)

shows that, up to the elementary factor c(â, b̂), the l.h.s. is a standard theta

function, so it depends holomorphically on u := ib̂ + â, and this matches with

deg(detD+) = 1. In particular det(D0;D0) = 0 corresponds to ϑ
[ 1/2

1/2

]
(0|i) =

ϑ(1/2 + (1/2)i, i) = 0, see also [1].
Also notice that

detD = detD+ ⊗ detD− = 1 (♦)

(i.e. the trivial line bundle, cf. Section 2.1).

Let us now relate the above considerations to the original approach of Kane-Mele
[19] together with its revisitation and enhancement in the papers [20, 21, 22]. The
determinant line bundle detD+ =: Pf D may be read as a holomorphic Pfaffian, in
the sense that (♦) becomes the factorization

detD = Pf D ⊗ (Pf D)∗.

The fibre detD|0 at the odd spin structure (corresponding to a = 0) is generated
by e+ ∧Θe+ = −e+ ∧ e− in the notation of Appendix A. As a genuine square root
thereof, denoted as Pf D|0 ∼= (Pf D|0)∗, we can take the line generated by e+ or,
equivalently, the one generated by Θe+and we get the Majorana zero-mode portrait
hinted at above.

The full discussion may now be summarized via the following

Theorem 3.1. The above Bloch bundle features a single “Dirac cone”, correspond-

ing to the unique odd spin structure, signalled by ϑ

[
1/2
1/2

]
(0|i) = 0, thus yielding a

topological insulator, with a two-dimensional space of harmonic spinors (a mani-
festation of Kramers degeneracy).

Remark. A possible spin version of the (Z2) Kane-Mele invariant ([19, 17]) would
read

KMspin :=
∏
α∈S

(−1)h
0
α =

∏
α∈S−

(−1)h
0
α

Thus the above result yields, for our system, the non trivial outcome

KMspin = −1.
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4. Extension to higher genus

Since the line bundles L = Lα are now topologically non trivial (deg(Lα) = g−1),
we have to distinguish L from its dual L−1. The complex conjugation is to be
replaced by the antilinear map (cf. [2])

ĥ : ξ 7→ hξ

(h being a hermitian metric on L) sending sections of L to sections of L−1. The
adjoint of the ∂-operator pertaining to an initial spin structure, when acting on
sections of L−1, then reads locally

∂
† ≡ D− = − ∂

∂z
+
∂ log h

∂z

whence

ĥ ◦D+ = −D− ◦ ĥ
and the same holds for the extension to {Da}, reading, explicitly, and locally (ob-
vious notation, as in [16])

D+
a =

∂

∂z̄
+

g∑
i=1

ai
[
ωi
dz

]
≡ ∂

∂z̄
+ a ·

[
ω

dz

]
where the {ωi} are a basis of Abelian differentials and a belongs to the Jacobian
J(Σg) = Cg/Λ:

ĥ ◦D±a = −D∓−a ◦ ĥ.
Therefore, upon defining the time-reversal operator Θ via

Θ = iσy ◦ ĥ = ĥ ◦ iσy,

enforcement of the condition

Θ ◦ Da = Da ◦Θ

again leads to 2a = 0 in J(Σg), selecting the 22g bona fide spin structures. We

explicitly notice that, in the latter situation, the operator ĥ ◦ D+
a = −D−−a ◦ ĥ is

essentially Atiyah’s operator P of [2], with Z2-index equal to (−1)h
0
α (α being the

spin structure corresponding to a), see [3, 2]. Also cf. [20, 21, 22] for a related
Atiyah-Singer interpretation of the KM invariant.

Thus, proceeding exactly as before (in particular, following [1, 26] for the connec-
tion with theta function theory) we would obtain in this case, for the hypothetical
KM-spin invariant detecting the parity of the number of Dirac cones introduced in
the previous section

KMspin = 1.

Indeed for g ≥ 2 there is an even number of odd spin structures, while h0
α is odd,

whence, from a strictly topological point of view, the net result is trivial in higher
genus. Nevertheless, the fact that, in general the space of harmonic spinors varies
with the metric ([18, 1, 10]) hints at the possibility of physical models reflecting
this characteristic. In particular, the quite different behaviours of hyperelliptic and
non hyperelliptic Riemann surfaces (the latter existing for g ≥ 3) might explicitly
show up. Also, the band structure could be described upon suitably adapting the
methods employed in [33] to our specific case. However, it is a priori clear that the
spectrum varies, since already h0

α varies with the spin structure α.
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5. Concluding remarks and outlook

The structure described in this work is in a sense archetypical, in that it possibly
exhibits the simplest model of topological insulator, albeit a purely mathematical
one. The presence of the Picard variety (Brillouin manifold), also parametrizing flat
connections modulo gauge equivalence, clearly shows that, in genus one, in contrast
to the Quantum Hall Effect, no magnetic field (curvature) is needed (the latter
would indeed break time-reversal invariance). The extension to Riemann surfaces
of genus g ≥ 2 apparently does not add further strictly topological insights, as we
have seen. Nevertheless, experimentalists may possibly devise materials exhibiting
the above (in principle unstable for higher genus) Dirac cone structures. However,
further elaboration of harmonic spinor ideas may be useful for investigation of
higher dimensional topological insulators as well and for additional, metric (or,
better, complex structure) dependent, exotic properties of matter. At the same
time, we have offered a topological insulator reinterpretation of a small part of a
venerable classical theory, which might deserve further investigation.

Appendix A

Here we briefly review the simplest instance of the Fock representation of the
CAR and Clifford algebras, closely following [32, 15], with a few minor modifica-
tions, in order to complement the discussion given in the main text.

Let F = C2, with its canonical basis (e+, e−):

e+ :=

[
1
0

]
, e− :=

[
0
1

]
.

Also set F± = 〈e±〉. Then one has

F = C2 ∼= Λ∗(C) = Λ0C⊕ Λ1C = F+ ⊕ F−

This is the usual explicit realization of the space of complex spinors associated to
R2 with the standard Euclidean metric. Fix, in H ∼= R2, an orthonormal basis
(f1, f2).

We consider the following representation ψ of the (real) Clifford algebra C(H) ∼=
C(R2)

ψ(f1) =

[
0 i
i 0

]
, ψ(f2) =

[
0 1
−1 0

]
Indeed, one easily checks that ( the suffix “+” denoting anticommutation):

[ψ(f1), ψ(f1)]+ = [ψ(f2), ψ(f2)]+ = −2I, [ψ(f1), ψ(f2)]+ = 0

The complex Clifford algebra

C(H)⊗R C ∼= C(R2)⊗R C ∼= A(W )

i.e. the Canonical Anticommutation Relations (CAR) algebra A(W ) associated to
the “one-particle space” W := 〈e−〉 ∼= C generated inside F by e−. This is an
explicit realization of the so-called Fock representation, with vacuum vector e+.
The CAR algebra A(W ) is generated by the annihilation and creation operators
given, respectively, by:

a = a(e−) =

[
0 1
0 0

]
a† = a(e−)† =

[
0 0
1 0

]
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and they are related to the Clifford generators via:

ψ(f1) + iψ(f2) = 2ia(e−), ψ(f1)− iψ(f2) = 2ia(e−)†

Adapting the general formalism developed in [31] to our present case we find

detD|0 = C(e+ ∧ e−) ∼= Ce+ ⊗ Ce− ∼= Ce+ ⊗ Ce+ = PfD|0 ⊗ PfD|0.

Appendix B

In this Appendix we record, again for completeness, the eigenfunctions of the
operators {Da}, in the genus one case. It is clearly enough to treat the case a = 0.
The equation

Dψ =

[
D−η
D+ξ

]
= ε

[
ξ
η

]
= εψ

entails

D2ψ = ε2ψ

i.e.

D−D+ξ = ε2ξ, D+D−η = ε2η

whence ε2 = 1
4 (m2

1 +m2
2) = 1

4 (n2
1 + n2

2), ε = ± 1
2

√
m2

1 +m2
2,

ξ = c1 exp [i(m1x+m2y)], η = c2 exp [i(n1x+ n2y)], x, y ∈ [0, 2π]

and moreover, after substitution into the original equation, we have mj = nj ,
j = 1, 2, the latter stemming from m · n = m ·m = n · n. Moreover, for, say,
c2 6= 0, we find c1/c2 = ∓ 1√

n2
1+n2

2

(n2 + in1). The harmonic spinors build up the

two dimensional space

C2 = span(e+, e−).
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