
ALBANIAN JOURNAL OF MATHEMATICS
Volume 13, Number 1, Pages 95–106
ISSN: 1930-1235; (2019)

WAVELET ESTIMATION OF A FUNCTION BELONGING TO
LIPSCHITZ CLASS BY FIRST KIND CHEBYSHEV WAVELET

METHOD

SHYAM LAL

Department of Mathematics, Institute of Science,
Banaras Hindu University, Varanasi, India

VIVEK KUMAR SHARMA

Department of Mathematics, Institute of Science,
Banaras Hindu University, Varanasi, India

NEHA PATEL

Department of Mathematics, Institute of Science,
Banaras Hindu University, Varanasi, India

Abstract. In this paper, the function of Lipschitz class and Chebyshev
Wavelet method are studied . Four new wavelet estimations of a function
f belonging to Lipschitz class by Chebyshev Wavelet method are estimated.
The calculated estimators are best possible in Wavelet Analysis.

MSC 2010: 42C40, 65T60, 65L10, 65L60, 65R20.
Keywords: Wavelet estimation, Chebyshev wavelet, function of Lipschitz class.

1. Introduction

There are several integral equations which are concerned with specific problems
of Mathematical Physics. Sometimes these equations convert into ordinary as well
as partial differential equations. The researchers like Razzaghi and Ordokhani[9,10],
Alipanah and Dehghan [2], Hsiao[4], have already used orthogonal basis functions
to approximate /estimate the solution of some integral equations.
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Wavelet Estimation of a function 96

Working in this direction, Akyüz- Dascioglu [1] discussed the Chebyshev polyno-
mial solutions of systems of linear integral equations.There are few known results re-
garding the properties of Chebyshev Wavelet Expansions of a function f ∈ L2[0, 1].
The errors of wavelet estimation of certain functions by wavelet methods have
been determined by several researchers like Bastin[3], Lal and Kumar [6, 7], and
Lal and Sharma[5, 8] etc. The differentiable functions have several applications
in Wavelet Analysis. Sometimes, non differentiable functions have very important
role in Physics and Applied Sciences. The graph of the continuous but nowhere dif-
ferentiable functions is a fractal.The Brownian path, fractional Brownian motion,
typical Feynmann path and turbulent fluid are connected with irregular functions.
The irregular functions are specified at every point by a local Lipschitz exponent
lying between 0 and 1. This fact motivates to consider the approximation of func-
tion belonging to Lipschitz class Lipα(0, 1) by Chebyshev Wavelet Method. But till
now no work seems to have been done for error of wavelet estimation of a function
f ∈ Lipα[0, 1], 0 < α ≤ 1, by Chebyshev Wavelet method. An attempt to make an
advance study, in this direction, one of the objectives of this research paper is to
estimate the error of wavelet estimation of a function f belonging to Lipschitz class
by Chebyshev Wavelet Method. The estimates of this paper are new, sharper and
best possible in Wavelet Analysis.

Acknowledgements Authors are grateful to the referee for his valuable comments
and suggestions for the improvement of this paper.

2. Preliminaries

ChebyshevWavelet ψn,m(t) = ψ(k, n,m, t) have four arguments, n = 1, 2, ...2k−1,
k is any positive integer, m is degree of Chebyshev polynomial of first kind and t is
the normalised time. The first kind Chebyshev Wavelets on the interval [0, 1) are
defined by

ψn,m(t) =

{
2
k
2 T̃m(2kt− n̂), n̂−1

2k
≤ t < n̂+1

2k
;

0, otherwise,

where

T̃m(t) =

{ 1√
π
, m = 0;√

2
πTm(t), m ≥ 1,

In the definition, the polynomials Tm are Chebyshev Polynomials of degree m over
the interval [−1, 1] which are defined as,

T0(t) = 1, T1(t) = t, and Tm(t) = cos(m cos−1(t)), m = 1, 2, 3, ....

The set of Chebyshev Wavelets {ψn,m} are an orthonormal set with respect to
weight function wk,n(t) = w(2kt− 2n+ 1),where w(t) = 1√

1−t2 .

2.1. Chebyshev Wavelet Expansion. A function f ∈ L2[0, 1) is expanded as
Chebyshev Wavelet series in the form of

(1) f(t) =

∞∑
n=1

∞∑
m=0

cn,mψn,m(t) (Razzaghi et.al [11]).
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where cn,m = 〈f, ψn,m〉wk,n(t) =
∞∫
−∞

f(t)ψn,m(t)wk,n(t)dt.

If the above infinite series is truncated then (1) is written as

(2) S2k−1,M (t) =

2k−1∑
n=1

M−1∑
m=0

cn,mψn,m(t) = CTψ(t),

where C = [c1,0c1,1...c1,M−1...c2k−1,0c2k−1,1...c2k−1,M−1]
T and

ψ(t) = [ψ1,0ψ1,1...ψ1,M−1...ψ2k−1,0ψ2k−1,1...ψ2k−1,M−1]
T .

2.2. Wavelet Approximation. We define ‖f‖1 =
1∫
0

|f(x)|dx

and ‖f‖2 =

{
1∫
0

|f(x)|2dx
} 1

2

. The Wavelet Approximation E2k−1,M of f by S2k−1,M

of its Chebyshev wavelet expansion under the norm ‖.‖2 is defined by

E2k−1,M (f) = inf
S
2k−1,M

‖f − S2k−1,M‖2, (Zygmund [13], pp. 114).

If E2k−1,M (f) → 0 as k → ∞,M → ∞ then E2k−1,M (f) is called the best wavelet
approximation of f (Zygmund [13], pp. 114) .
Similarly we can define the wavelet approximation under the norm ‖.‖1.

2.3. A function of Lipα0, 1] class. A function f ∈ Lipα[0, 1], 0 < α ≤ 1 if

|f(x)− f(y)| = O(|(x− y)|α)∀x, y ∈ [0, 1], (Titchmarsh, [12], p.406).

If 0 < α < β≤1, then Lipβ [0, 1](Lipα[0, 1].

Example 1. Let α = 1
3 , β = 1

2 and f(x) = x
1
3 , g(x) = x

1
2 , for all x ∈ [0, 1]. Then

g ∈ Lipβ [0, 1]⇒ g ∈ Lipα[0, 1].

Therefore, f ∈ Lip 1
3
[0, 1] but f /∈ Lip 1

2
[0, 1]. Hence, Lip 1

2
[0, 1] ( Lip 1

3
[0, 1].

3. Main results

In this paper, Chebyshev wavelet estimations have been determined in the fol-
lowing forms:

Theorem 1. If f ∈ Lipα[0, 1], 0 < α ≤ 1 and its Chebyshev wavelet series for
m = 0 is given by

f(t) =

∞∑
n=1

cn,0ψn,0(t),

then Chebyshev wavelet estimation E
(1)

2k−1,0
(f) of f by its (2k−1, 0)th partial sums

S2k−1,0(t) =
2k−1∑
n=1

cn,0ψn,0(t) of Chebyshev wavelet series under the norm ‖ .‖2 is

given by

E
(1)

2k−1,0
(f) = inf

S
2k−1,0

‖f − S2k−1,0‖2 = O

(
1

2αk+
1
2

)
, 0 < α ≤ 1.
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Proof. We start by

cn,0 =

n

2k−1∫
n−1

2k−1

f(t)ψn,0(t)
1√

1− (2kt− n̂)2
dt, n̂ = 2n− 1

=
1√
π2k

π∫
0

(
f

(
cos θ + n̂

2k

)
− f

(
n̂

2k

))
dθ +

1√
π2k

π∫
0

f

(
n̂

2k

)
dθ.

Therefore

|cn,0| ≤
1√
π2k

π∫
0

A
|cos θ|α

2αk
dθ +

√
π

2k

∣∣∣∣f ( n̂

2k

)∣∣∣∣ ,
for f ∈ Lipα[0, 1). Hence we have

|cn,0|2 ≤
π

2k

(
A2

22αk
+

∣∣∣∣f ( n̂

2k

)∣∣∣∣2 + 2A

2αk

∣∣∣∣f ( n̂

2k

)∣∣∣∣
)
.

Thus

(3) − |cn,0|2 ≤ −
π

2k

∣∣∣∣f ( n̂

2k

)∣∣∣∣2 − 2πA

2k(α+1)

∣∣∣∣f ( n̂

2k

)∣∣∣∣ .
So we have
(4)

‖f‖22 =

π∫
0

∣∣∣∣f (cos θ + n̂

2k

)∣∣∣∣2 dθ2k ≤ π

2k
A2

22αk
+

π

2k

∣∣∣∣f ( n̂

2k

)∣∣∣∣2 + 2πA

2k

∣∣∣∣f ( n̂

2k

)∣∣∣∣ 1

2αk
.

Since, en(t) = cn,0ψn,0(t)− fχ[ n−1

2k−1 ,
n

2k−1 )
, then

e2n(t) = c2n,0ψ
2
n,0 + f2 − 2cn,0ψn,0fχ[ n−1

2k−1 ,
n

2k−1 )
.

Hence

(5) ‖en‖22 =

n

2k−1∫
n−1

2k−1

|en(t)|2 wk,n(t)dt = ‖f‖22 − c2n,0.
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By (3), (4), and (5), we have

‖en‖22 = O

(
1

2k(2α+1)

)

S2k−1,0(t)− f(t) =
2k−1∑
n=1

en(t)

(S2k−1,0(t)− f(t))2 =

2k−1∑
n=1

en(t)

2

=

2k−1∑
n=1

e2n(t) +
∑∑

1≤n 6=n′≤2k−1

en(t)en′(t)

(E
(1)

2k−1,0
(f))2 = ‖S2k−1,0 − f‖22 =

1∫
0

∣∣(S2k−1,0(t)− f(t)
∣∣2 wk,n(t)dt = 2k−1∑

n=1

‖en‖22.

(6)

By equations (6) we have

(E
(1)

2k−1,0
(f)) = O

(
1

2kα+
1
2

)
.

This completes the proof of the theorem.
�

Theorem 2. Let f ∈ Lipα[0, 1], 0 < α ≤ 1 and its Chebyshev wavelet series is
given by

f(t) =

∞∑
n=1

∞∑
m=0

cn,mψn,m(t)

with (2k−1,M)th partial sums

S2k−1,M (t) =

2k−1∑
n−1

M−1∑
m=0

cn,mψn,m(t).

Then the Chebyshev wavelet estimation under ‖·‖2 of f by (2k−1,M)th partial sums
of its Chebyshev wavelet series satisfies

E
(2)

2k−1,M
= inf
S
2k−1,M

‖f − S2k−1,M‖2 =


O
(

1

M
3
2 2αk

)
, 0 < α < 1,M ≥ 1;

O

(
1

(M−1)
1
2 2k

)
, α = 1,M > 1.
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Proof.

cn,m = 〈f, ψn,m〉wk,n(t) =

n

2k−1∫
n−1

2k−1

f(t)ψn,m(t)wk,n(t)dt

= 2
k
2

√
2

π

n

2k−1∫
n−1

2k−1

{
f(t)− f

(
2n− 1

2k

)}
Tm(2kt− 2n+ 1)wk,n(t)dt

+ 2
k
2

√
2

π

n

2k−1∫
n−1

2k−1

f

(
2n− 1

2k

)
Tm(2kt− 2n+ 1)wk,n(t)dt.

and

|cn,m| ≤ 2
k
2

√
2

π

∣∣∣∣∣∣∣∣
n

2k−1∫
n−1

2k−1

{
f(t)− f

(
2n− 1

2k

)}
Tm(2kt− 2n+ 1)wk,n(t)dt

∣∣∣∣∣∣∣∣
+ 2

k
2

√
2

π

∣∣∣∣f (2n− 1

2k

)∣∣∣∣
∣∣∣∣∣∣∣∣

n

2k−1∫
n−1

2k−1

Tm(2kt− 2n+ 1)wk,n(t)dt

∣∣∣∣∣∣∣∣ = I1 + I2.(7)

Thus,

I1 ≤
2
k
2

2αk

√
2

π

π∫
0

|cos θ|α
∣∣∣∣Tm(cos θ)

1√
1− cos2 θ

− sin θdθ

2k

∣∣∣∣ ,
=

1

2
2αk+k

2

√
2

π

π∫
0

|cos θ|α |cosmθ| dθ.(8)

For α = 1,

I1 ≤
1

2
3k
2

√
2

π

π∫
0

|cos θ cosmθ| dθ.(9)

Since,
π∫

0

cos θ cosmθdθ ≤ m| cosmπ|| sinmπ|+ | sinπ|| cosmπ|
m2 − 1

(π − 0)

=
(m+ 1)π

m2 − 1
=

π

m− 1
.

(10)

By equations (9) and (10),

I1 ≤
√
2π

2
3k
2 (m− 1)

.(11)
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For 0 < α < 1, since |cos θ| ≤eθ ∀θ ∈ [0, π], using this in the equation (8) we
have

I1 ≤
1

2
2αk+k

2

√
2

π

π∫
0

∣∣eαθ cosmθ∣∣ dθ.
J =

π∫
0

eαθ cosmθdθ =
α(eαπ cos(mπ)− 1)

m2 + α2
.

π∫
0

|eαθ cosmθ|dθ ≤ απ(eαπ + 1)

m2 + α2
.

(12)

By equations above we have we have

I1 ≤
1

2
2αk+k

2

√
2

π

απ(eαπ + 1)

m2 + α2
,

I2 = 2
k
2

√
2

π

∣∣∣∣f (2n− 1

2k

)∣∣∣∣
∣∣∣∣∣∣
π∫

0

Tm(cos θ)
1

2k
dθ

∣∣∣∣∣∣ = 0

(13)

Collecting equations above we get

|cn,m| ≤
√
2π

2
3k
2 (m− 1)

, for α = 1

|cn,m| ≤
1

2
(2α+1)k

2

√
2

π

απ(eαπ + 1)

m2 + α2
, for 0 < α < 1.

(14)

Therefore,

(f(t)− S2k−1,M (t))2 =

2k−1∑
n=1

∞∑
m=M

c2n,mψ
2
n,m(t)

+

2k−1∑
n=1

∑∑
M≤m 6=m′<∞

cn,mcn,m′ψn,m(t)ψn,m′(t)

+
∑∑

1≤n 6=n′≤2k−1

∞∑
m=m′=M

cn,mcn′,m′ψn,m(t)ψn′,m′(t)

+
∑∑

1≤n 6=n′≤2k−1

∑∑
M≤m6=m′<∞

cn,mcn′,m′ψn,m(t)ψn′,m′(t).

Hence,

‖f − S2k−1,M‖22 =

1∫
0

∣∣f(t)− S2k−1,M (t)
∣∣2 wk,n(t)dt = 2k−1∑

n=1

∞∑
m=M

|cn,m|2.

By equations above

‖f − S2k−1,M‖22 ≤
2k−1∑
n=1

∞∑
m=M

2π

23k(m− 1)2
≤ 2π

22k

(
1

M − 1

)
,M > 1, α = 1.
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Therefore,

(15) E
(2)

2k−1,M
(f) = inf

S
2k−1,M

‖f − S2k−1,M‖2 = O

(
1

2k
1

(M − 1)
1
2

)
,

for M > 1 and α = 1. Also by equations above

E
(2)

2k−1,M
(f) = inf

S
2k−1,M

‖f − S2k−1,M‖2 = O

(
1

2αkM
3
2

)
,

for M ≥ 1 and 0 < α < 1. This completes the proof.
�

Theorem 3. If f ∈ Lipα[0, 1], 0 < α ≤ 1 then Chebyshev wavelet estimation
E

(3)

2k−1,0
(f) of a function f by S2k−1,0(t), for m = 0 under the norm ‖.‖1 is given by

E
(3)

2k−1,0
(f) = inf

S
2k−1,0

‖f − S2k−1,0‖1 = O

(
1

2α(k−1)

)
, 0 < α ≤ 1.

Proof. By Mean Value Theorem of integral calculus we have

cn,0 =

√
π

2k
f

(
cos θn + n̂

2k

)
,

for θn ∈ [0, π). Since en(t) = cn,0ψn,0(t)− f(t), then

‖en‖1 =

n

2k−1∫
n−1

2k−1

|cn,0ψn,0(t)− f(t)|wk,n(t)dt = O

(
1

2k2α(k−1)

)
.

Hence,

E
(3)

2k−1,0
=

2k−1∑
n=1

‖en‖1 = O

(
1

2α(k−1)

)
.

This completes the proof. �

Theorem 4. If a function f ∈ Lipα[0, 1], for 0 < α ≤ 1 then Chebyshev Wavelet
estimation of f by (2k−1,M)th partial sums , S2k−1,M of its Chebyshev wavelet
series under the norm ‖·‖1 is given by

E
(4)

2k−1,M
= inf
S
2k−1,M

‖f − S2k−1,M‖1 = O

(
1

M2αk

)
,M ≥ 1, 0 < α ≤ 1.

Proof. Following the proof of the Theorem 1

‖f − S2k−1,M‖1 ≤
2k−1∑
n=1

∞∑
m=M

|cn,m|‖ψn,m‖1

≤ 2
k
2

√
2

π

2k−1∑
n=1

∞∑
m=M

|cn,m|

n

2k−1∫
n−1

2k−1

1dt,= 2
k
2

√
2

π

∞∑
m=M

|cn,m|,

because |Tm(2kt− 2n+ 1)| ≤ 1, for all t ∈ [0, 1). Now we have

‖f − S2k−1,M‖1 ≤
2α(eαπ + 1)

2αk
2

M
=

4α(eαπ + 1)

2αk
1

M
, 0 < α < 1.
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Thus,

E
(4)

2k−1,M
(f) = inf

S
2k−1,M

‖f − S2k−1,M‖1 = O

(
1

2αk
1

M

)
, M ≥ 1, 0 < α ≤ 1.

This completes the proof.
�

4. Numerical Examples of Wavelet Approximation

In this section Chebyshev wavelet approximation of function

f(t) =

{√
1− t, ∀t ∈ [0, 1]

0, otherwise.

for m = 0 has been explained by graphs of concerned function and corresponding
approximations Ek−12 (f).
S2k−1,0 for m = 0 and k = 1, 2, 3, 4 are calculated and are given as

S20,0(t) =

{
2
π , 0 ≤ t < 1,

0, otherwise.
S21,0(t) =


1.52403968√

π
, 0 ≤ t < 1

2 ,
0.79788456√

π
, 1

2 ≤ t < 1,

0, otherwise.

S22,0(t) =



1.655853816√
π

, 0 ≤ t < 1
4 ,

1.39771223√
π

, 1
4 ≤ t <

1
2 ,

1.077658793√
π

, 1
2 ≤ t <

3
4 ,

0.564190157√
π

, 3
4 ≤ t < 1,

0, otherwise.

S23,0(t) =



1.71570052√
π

, 0 ≤ t < 1
8 ,

1.59707966√
π

, 1
8 ≤ t <

2
8 ,

1.468881684√
π

, 2
8 ≤ t <

3
8 ,

1.328311028√
π

, 3
8 ≤ t <

4
8 ,

1.17086546√
π

, 4
8 ≤ t <

5
8 ,

.988331796√
π

, 5
8 ≤ t <

6
8 ,

0.76201984√
π

, 6
8 ≤ t <

7
8 ,

0.398938452√
π

, 7
8 ≤ t < 1,

0, otherwise.

The errors ‖en‖22 and (E2k−1f)2 are calculated for k = 1, 2, 3, 4, 5 and also the graph
of S2k−1,0 and f(t) has been plotted for k = 1, 2, 3, 4.

Figure 1. *
Graph of S20,0 and the function f(t)

Figure 2. *
Graph of S21,0 and the function f(t)
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Figure 3. *
Graph of S22,0 and the function f(t)

Figure 4. *
Graph of S23,0 and the function f(t)

‖en‖22 (Ek−12 f)2

k= 1 n=1 0.14877893 0.14877893

k= 2
n=1 0.008374386
n=2 0.037194597 0.04556893

k= 3

n=1 0.000880215
n=2 0.001237026 0.013509406
n=3 0.002093596
n=4 0.009298569

k=4

n=1 0.000100927
n=2 0.000117536
n=3 0.000139472
n=4 0.000170979 0.003906621
n=5 0.000220054
n=6 0.000309401
n=7 0.000523399
n=8 0.002324853

k =5

n=1 0.000012479
n=2 0.000013612
n=3 0.00001415
n=4 0.000015266
n=5 0.000016383
n=6 0.000018671
n=7 0.000020302
n=8 0.000022693 0.00110127
n=9 0.000025232
n=10 0.000029384
n=11 0.000034868
n=12 0.000042745
n=13 0.000055014
n=14 0.000077312
n=15 0.00013085
n=16 .000581166

Table 1. *

Wavelet approximation errors for different values of k
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Remark 1. Let f ∈ L2[0, 1]∫ 1

0

|f(x)|dx ≤
(∫ 1

0

|f(x)|2dx
) 1

2
(∫ 1

0

dx

) 1
2

, by Hölder’s inequality

= ||f ||2 <∞

therefore, f ∈ L1[0, 1]. Hence L2[0, 1] ⊆ L1[0, 1]. Let

f1(t) =

{
1√
t
, ∀t ∈ (0, 1)

0, otherwise.

Then
∫ 1

0
f1dx =

∫ 1

0
1√
x
dx = 2 and

∫ 1

0
f21 dx =

∫ 1

0
1
xdx =∞. Thus f1 ∈ L1[0, 1) and

f1 /∈ L2[0, 1). Therefore, L2[0, 1)  L1[0, 1).

Remark 2. Lipschitz regularity has been used in the evaluation of following part
of the estimators:

(i) cn,0, ||f ||2 for the estimator E(1)

2k−1,0
(f) of Theorem 1.

(ii) cn,m for the estimator E(2)

2k−1,M
(f) of Theorem 2.

(iii) cn,0 for the estimator E(3)

2k−1,0
(f) of Theorem 3.

(iv) cn,m for the estimator E(4)

2k−1,M
(f) of Theorem 4.

Lipschitz regularity is already mentioned in the manuscript where it is applied.
Thus, Lipschitz regularity has major role in obtaining the estimators E(1)

2k−1,0
(f),

E
(2)

2k−1,M
(f), E(3)

2k−1,0
(f), E(4)

2k−1,M
(f).

Remark 3. The following are worth noting:
(i) E(1)

2k−1,0
(f) = O

(
1

2αk+
1
2

)
, and E(3)

2k−1,0
(f) = O

(
1

2α(k−1)

)
, for 0 < α ≤ 1. Since

1

2αk+
1
2

≤ 1

2α(k−1)
,

therefore, E(1)

2k−1,0
(f) is sharper than E(3)

2k−1,0
(f).

(ii) E(2)

2k−1,M
= O

(
1

M
3
2 2αk

)
, for 0 < α < 1, and M ≥ 1. Also, E(4)

2k−1,M
=

O
(

1
M2αk

)
, for M ≥ 1 and 0 < α ≤ 1. Since

1

M
3
2 2αk

≤ 1

M2αk
,

therefore, E(2)

2k−1,M
(f) is sharper than E(4)

2k−1,M
(f). Hence, the estimator E(1)

2k−1,0
(f)

and E(2)

2k−1,M
(f) of L2[0, 1) are sharper than estimator E(3)

2k−1,0
(f) and E(4)

2k−1,M
(f)

respectively of L1[0, 1).

5. Final remarks

By the estimates of the Theorems 1, 2, 3 and 4,

E
(1)

2k−1,0
, E

(2)

2k−1,M
, E

(3)

2k−1,0
and E(4)

2k−1,M
→ 0 as M →∞, k →∞

Therefore the estimates E(1)

2k−1,0
, E

(2)

2k−1,M
, E

(3)

2k−1,0
and E

(4)

2k−1,M
calculated in this

research paper are best possible.
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Since
M

3
2 2αk ≥M2αk

implies
1

M
3
2 2αk

≤ 1

M2αk
,

for 0 < α < 1, and M ≥ 1 therefore the estimator E(2)

2k−1,M
is sharper and better

than the estimator E(4)

2k−1,M
. Thus, the estimators are obtained generally in ‖.‖2

norm. The main importance of these estimators is that they depend on 0 < α ≤ 1

if the function f ∈ Lipα[0, 1]. The estimate E(2)

2k−1,M
for α = 1, can not be obtained

from the estimate E(2)

2k−1,M
for 0 < α < 1 taking α = 1 in this case. Thus the

estimate for α = 1 is independent of the estimate for 0 < α < 1.
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