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ABSTRACT. Lou v. d. Dries proves in [ | that the elementary theory Th(Z)
of the ring Z of all algebraic integers is decidable. For a prime number p, let

—

Fp(t) be the algebraic closure of Fy,(¢) and denote the integral closure of Fy[t]
in Fp(¢t) by Fp[t]. Lou v. d. Dries and Angus Macintyre prove in | ] that

Th(Fp[t]) is decidable. One of the main results of this work states that both
Th(Z) and Th(m) are primitive recursive.

Moreover, let @ be the field of all algebraic numbers and let Gal(Q) =
Gal(Q/Q) be the absolute Galois group of Q. For each positive integer e we
equip the group Gal(Q)¢ with its unique normalized Haar measure. For each
o= (01,...,0¢) € Gal(Q)¢ let @(a) be the fixed field of o1, ..., 0 in Q and
let Z(o) be the ring of integers of Q(o). Given a sentence 6 in the language of
rings, we let o be the Haar measure of the set of all o € Gal(Q)¢ for which 6
holds in Z(o’) We prove that « is a rational number which can be effectively
computed in a primitive recursive way. We prove a similar result also in the
function field case.

MSC 2010: Primary: 12E30;
KEYWORDS: Primitive recursive decidability, PAC field over a subring, Galois stratification

INTRODUCTION

Let O be a Dedekind domain with a trivial Jacobson radical and with a global
field of quotients K. Denote the absolute Galois group of K by Gal(K). For each
non-negative integer e and each e-tuple o = (04,...,0.) € Gal(K)¢ let K(o) be
the fixed field of o1, . .., 0. in K and let O(c) be the integral closure of O in K (o).
In particular, for e = 0, O is the integral closure of O in K. Denote the language
of rings extended with constant symbol for each element of O by L(ring, ©). In
each ring that contains a homomorphic image of O we interpret these constant
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symbols as the residues of the appropriate elements of . Consider a sentence
0 in L(ring, ©) and let a be the Haar measure of all o € Gal(K)¢ such that 6
holds in (5(0'). If e = 0, and 0 is true in (5, then @ = 1, otherwise @ = 0. The
purpose of this work is to prove that for each e, « is a rational number which
can be effectively computed (i.e., in a primitive recursive way) if O is an effective
computability domain (Definition 1.4). The latter condition holds in particular
for O = Oy, where Oy = Z or Oy = F,[t] and also for O = 561007 where Sy is
a presented multiplicative subset of Oy and either Sy = Op {0} (in which case
O = K) or S is relatively prime to infinitely many irreducible elements of Oy.

In | ], v.d. Dries extends L(ring, O) with “radical relations” to a language
L124(0) (§2.1) and establishes a recursive elimination of quantifiers procedure for
7 in this language. In particular, he proves that 7 is decidable. This is the case
where e = 0 and O = Z. The case where e > 1 and O = K is | , p- 726, Thm.
30.7.2]. We combine the methods of proof of both cases to get the general result.

After a section of preparations, the work is divided into two sections. The first
three subsections in Section 2 are an elaboration of the first two sections of | ]
The key to the elimination procedure of v.d. Dries is Rumely’s density theorem
[ ]. In order to apply the later tool, one has to decompose algebraic sets
defined over an integral domain R which contain K into absolutely irreducible
varieties, and to do it uniformly with respect to all homomorphisms of R into K.
v.d. Dries applies here a compactness argument from model theory. We replace the
compactness argument by an application of the Bertini-Noether theorem. Then we
establish a primitive recursive procedure for an elimination of existential quantifiers
(in the language L£,,4(O)) on Zariski open subsets of K-varieties. The elimination
works over each ring of integers Oy, of a perfect algebraic extension M of K which
is PAC over Oy | ]. In particular it works over almost all rings O(o).

The Galois Stratification of | , §30] assumes in addition that M is e-free,
i.e., that Gal(M) = F,. In particular, M is a Frobenius field. Subsection 3.1 ex-
tends this notion to a Frobenius field over O;;, which means that M is PAC over
Oy and Gal(M) has the embedding property. In addition we generalize | ,
p. 564, Prop. 24.1.4] by using Rumely’s local-global principle for absolutely irre-
ducible varieties over M | , Thm. 1.5]. Subsections 2-5 in Section 3 extend
the Galois Stratification to Radical Galois Stratification. The latter allows us to
eliminate quantifiers from formulas of the language £,,q(O). The elimination pro-
cedure requires more general formulas which we call radical Galois formulas. They
include data for a stratification of the affine space A™ into K-normal basic sets A:
each coordinate ring K[A] is equipped with a Galois ring cover C such that for each
subextension L of K(C)/K(A), (CNL)/K[A] is a ring cover. Moreover, to each
L with rank(Gal(K(C)/L)) < e we associate a “ring of integers” O[C' N L] and a
quantifier free sentence 0, in L;4q(O[C N L]). In each consequent elimination of a
quantifier we code the data of the eliminated quantifier in a new set of ring covers
and sentences, till there are no more quantifiers. Finally, Subsection 3.6 concludes
the proof on the primitive recursive decidability for large rings of algebraic integers.

Among others we have to factor an ideal in the ring of integers of a global field
into prime ideals. We describe a procedure for this factorization in Appendix A.

Another auxiliary tool that the procedure applies is a local elimination procedure.
More precisely, it uses elimination of quantifiers for the theory of valuation domains
which are not fields but with algebraically closed quotient field in the language of
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rings augmented by a binary relation symbol which stands for divisibility. Appendix
B is an elaboration of Weispfening’s primitive recursive procedure [ ] for this
theory.

In a forthcoming paper we use Corollary 3.29 of this work to prove the follow-
ing result: Let Qsymm (resp. Fp(t)symm,ins) be the compositum of all symmetric
extensions of Q (resp. the purely inseparable extension of the compositum of all
symmetric extensions of F,(t)). Then, the theory of the ring of integers of Qsymm

and the theory of the ring of integers of Fj(t)symm,ins are primitive recursively
decidable.

Acknowledgements: I wish to thank Professor Moshe Jarden for his stimulating
guidance and for the values he has taught me, both by setting high and challenging
demands and by exposing me to his image of a mathematician. I also thank Joachim
Schmid for useful remarks and Dan Haran for helpful discussions.

1. PREPARATIONS

1.1. Notations and the Explicit Case. The Jacobson radical of a commutative
ring with a unit is the intersection of all maximal ideals of the ring. In particular,
the Jacobson radical of a field is zero.

We shall use the following notations throughout this work.

Notation 1.1.

a) O is a Dedekind domain with Jacobson radical 0 and with global quotient
field K.

b) Pk is the set of all non-zero prime ideals of O.
Since O is a Dedekind domain, each p € Pk is maximal, and since K is
global, the residue field K, = O/p is finite. To each p € Pk corresponds a
valuation v, of K.

¢) For each algebraic extension L of K, let Op, be the integral closure of O in
L and let Py, be the set of all maximal ideals of Oy, (which is in fact the set
of all non-zero prime ideals of Or,). In particular O = O. Note that the
Jacobson radical of O, is zero. To each p € P, corresponds a valuation v, of
L which extends vpnx; for a positive integer n and a = (aq,...,a,) € L™
we denote vp(a) = 12111gn vp(a;). If L is a normal extension of K and

o € Aut(L/K), then o acts naturally on Py, by vy-(a”) = vp(a) for each
p € P and a € L. We denote the localization of O, at p by O ,. That is
Orp ={x € L| vy(z) > 0}. Then O, is a valuation ring. If [L : K] < oo,
then Oy, is a Dedekind domain. In the general case, O = ﬂ Orp-

pePL

d) K is the algebraic closure of K.
0= Og, P= Py, and (5«;3 = Of(,qs’ for 9 € P.

e) In order that the results of this work will be accomplished also for the case
O = K we define in this case, for each algebraic extension L of K, Op = L,
Pr, = {0} and, for p € Pr, vy(x) = 0 for each x € L* and Opp, = L. In
particular O = K and 633 =K for P e P.

Definition 1.2. We are talking on the explicit case if O is presented in K | ,
p. 404, the paragraph after Def. 19.1.1]. Since K is global, it has elimination theory
[ , p. 410, Def. 19.2.8).
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In the explicit case we have in particular that K is a presented field with elim-
ination theory [ , p. 413, Lemma 19.4.1]. Also, O is presented in K since for
each 2 € K we can compute f(X) = irr(z, K) and check if all its coefficients belong
to O; if so then z € O, otherwise ¢ 0.

1.2. Effective Computability Domain.

Definition 1.3. A commutative domain R is called Euclidean ring if there exists
a function
0: R~{0} = N

which satisfies that for each a,b € R {0}, §(ab) = 6(a)d(b) and there exist ¢,r € R
such that a = bec+ r and §(r) < §(b) or = 0. We also define 6(0) = 0.

If in addition R satisfies that for each n € N, the set {a € R| §(a) < n} is finite,
then R is called Euclidean ring of finite type.

For example, Z with §(a) = |a| and F,[t] with §(g(t)) = c1°8(9) where 2 < c€ N
is any constant, are Fuclidean rings of finite type.

An Euclidean ring is in particular a principal ideal domain and hence is a unique
factorization domain.

An Euclidean ring of finite type R is called presented if the following four
properties are satisfied:

(1) R is a presented ring [ , p. 404, Definition 19.1.1].

(2) For each n € N, the finite set {a € R|d§(a) < n} is given explicitly.

Note that {a € R|d(a) = 1} is the set of invertible elements of R. Indeed,
let @ € R. Tt follows from the equality §(1) = 6(1-1) = §(1) - 6(1) that
0(1) = 1; hence, if ab = 1, then §(a)d(b) = 6(ab) = 1 and therefore §(a) = 1.
On the other hand, there exist ¢, € R such that 1 = ac+r and §(r) < d(a).
Hence, if 6(a) = 1, then r = 0 and ac = 1.

(3) The set of the irreducible elements of R is a primitive recursive subset of R
which is given explicitly. Also, each element of R can be written effectively
as a product of irreducible elements of R (up to an invertible element of
R).

(4) The function ¢ is presented and we can effectively perform division with a
remainder as above.

In particular we can effectively find, using Euclid’s algorithm, a greatest common
divisor of two elements in R.

Definition 1.4. We say that the ring O is an effective computability domain
(i.e., we can effectively perform in it calculations), if O is presented in K and
0=_5; 1®y, where Oy is an Euclidean domain of finite type and Sy is a presented
multiplicative subset of Qg (Sy is presented by a set of generators which contains
irreducible elements of Oy given explicitly). Note that for Sy = Oy “{0} we get
O = K. Also, the Jacobson radical of O is zero if and only if O = K or Sy is
disjoint from an infinite subset of the irreducible elements of Oy.

1.3. Pseudo Algebraic Closed Fields over Rings of Integers. Recall that
a field M is pseudo algebraically closed (PAC) if every absolutely irreducible
variety V defined over M has an M-rational point. If R is a subring of M, then M
may have a stronger property | ]:

Definition 1.5. Let R be a subset of a field M. We say that M is PAC over
R if for every absolutely irreducible variety V' of dimension r > 0 and for each
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dominating separable rational map ¢: V' — A" over M there exists a € V(M) such
that ¢(a) € R".

Note that if S is a subring of M which contains R, then M is also PAC over S.
As in the case of PAC fields, it suffices to check the condition of Definition 1.5
only for plane curves | , Lemma 1.3]:
Let R be a subring of a field M. A necessary and sufficient condition for M to be
PAC over R is:
For each absolutely irreducible polynomial f € M[T, X] such that g—){, # 0 and for
each 0 # g € M[T] there exists (a,b) € R x M such that f(a,b) =0 and g(a) # 0.
We denote the separable closure of K by K, and the absolute Galois group,
Gal(Kgep/K), of K by Gal(K). Recall that if o1,...,0. € Gal(K), then Ky (o)
is the fixed field in Kp of 01,...,0.. We denote its maximal purely inseparable
extension by K (o). The following result follows from [ , Prop. 3.1]:

Proposition 1.6. Let e be a positive integer. Then, for almost all o € Gal(K)¢,
the fields Ksep(o) and K(o) are PAC over O.

We denote the integral closure, Oy, of O in K(o) by O(c). Then, it follows
from Proposition 1.6, in particular, that

Proposition 1.7. Let e be a positive integer. Then, for almost all o € Gal(K)®,
the field K (o) is PAC over O(o).

This property of the field K (o) that it is PAC over O(o) is responsible for the
next three results which we shall use in this work. The first result is a conse-
quence from the weak approximation theorem for absolutely irreducible varieties
over K (o), the second result is a consequence from Rumely’s local global principle
for absolutely irreducible varieties over K (o), and the third result is that O(o) is
a Bezout domain. We shall prove these properties in general for a perfect algebraic
extension M of K which is PAC over @y,. In particular this includes M = K since
K is perfect and PAC over o.

Lemma 1.8. Assume that O # K and let M be a perfect algebraic extension of K
which is PAC over Opp. Let ¢y, ..., cq be nonunits in Opr. Then there are distinct
ni,...,0q € Py such that ¢; € n; for all i.

Proof. Let L be a finite subextension of M/K which contains c,...,¢,. Since
C1,...,Cq are nonunits in Oy, there exist my,...,m, € P such that ¢; € m,,
i=1,...,q.

Let S = {my,...,my}. For each m € S, let Ly, be the maximal Galois extension
of L in which m totally splits. If L,, is a Henselian closure of L with respect to vy,
then Lim = m L7. Then Ly s = ﬂ Ly is the maximal Galois extension

o€Gal(L) mes
of L in which each m € S totally splits. By [ , Lemma 1.4], M} = M N Lo s is
weakly PSC over O,y,: for each absolutely irreducible polynomial h € M;[T,Y]
which is monic in ¥ such that the roots of h(0,Y) are distinct and in L5, and
for each g € M;[T] such that g(0) # O there exists (a,b) € Oy, x M such that
h(a,b) =0 and g(a) # 0.

Since Oy, has a trivial Jacobson radical, it follows that Py, is infinite. In particular
PSS #(. If me Pp~S and v is an extension of vy, to a valuation of Mj, then
the Henselian closure of My at v is Lep | , Prop. 1.9(a)]. If Ly is a finite
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subextension of M7 /L, then L, is a global field and the Henselization of Ly at v|f,
is not separably closed. Hence M N Lo, s/L is an infinite extension. Therefore
each m € § factors in Ojy.

Conclude that there exist distinct nq,...,n, € Pp such that m; C n; (hence
ceENn),i=1,...,q a

Theorem 1.9. Let M be a perfect algebraic extension of K which is PAC over
Opr- Let 'V obe an absolutely irreducible closed variety in A™ which is defined over
M, let f € Om[Xy,...,Xn] and define Vy == {x € V| f(x) # 0}. Suppose that
Vf(6q3) # 0 for every P € P. Let ky, ..., k, be polynomials in On[X] with ¢ =0

if O = K. Assume that for each j between 1 and q there exists *'B; € P and ay, €

Vf(@gj) such that kj(ay,) is a nonunit in (5qg]., Then there exists a € Vi(Op)
such that k;(a) is a nonunit in O for all j.

Proof. If ¢ = 0, the theorem follows from Rumely’s local-global principle for abso-
lutely irreducible affine varieties over M | , Thm. 1.5]. So assume that ¢ > 1
(hence O # K).

For each p € Py we choose a Henselian closure M, of M at v, and extend
vp to a valuation of M,. We denote the ring of integers {x € M, |v,(z) > 0}
of My by Oy, p. Since M is PAC, it follows that M, = K | , p- 205, Cor.
11.5.5]. Hence, for each p € Py, there exists P € P such that vp = vy (and
therefore Ony, p = (5:;3) Thus Vi (O, p) # 0 for every p € Pps. Also, for each j
between 1 and ¢, we can replace B; and ag; by PB7 and a%j, respectively, for some
o € Gal(M), to assume that vy, = vy, where p; = B; N M.

Let j € {1,...,q}. Denote v; = vp,(f(agp,)). Then 0 < v; < co. Let W; =
{(x, f(x),k;(x)) |x € V}. Then W; is an absolutely irreducible closed variety in
A™F2 which is defined over M such that W;(Oyy, ) # 0 for every p € Pyy. It follows
from the weak approximation theorem for affine absolutely irreducible varieties over
M | , Thm. 1.8(a)] that there exists (a;, f(a;), k;(a;)) € W;(Oar) such that

ve, (a5, (@), kj(a))) — (asp, . f(as;), kj(ag,)) > ;-

In particular, v, (f(a;)) = 7; < oo (hence f(a;) # 0). Therefore a; € Vi(Ou).
Moreover, since k;(ag, ) is a nonunit in 6qgj, vy, (kj(ag,)) > 0. Hence vy, (kj(a;)) >
0 and, therefore, k;(a;) is a nonunit in Oy;.

By Lemma 1.8, there exist distinct ny,...,n4 € P such that kj(a;) € n; for all
j. Let

W =A{(x, f(x),k1(x),...,ke(x)) |x € V}.

Then W is an absolutely irreducible closed variety in A™*+4 which is defined over
M. Let v = vy, (f(a1)). Then 0 < v < co. By the weak approximation theorem

for affine absolutely irreducible varieties over M | , Thm. 1.8(a)], again, there
exists (a, f(a), k1(a),...,kq(a)) € W(Our) such that

Un; ((av f(a)a kl(a)v cee kq(a)) - (aja f(aj)» kl(aj)a BERE) kq(aj))) >,
j=1,...,q. In particular f(a) # 0; hence a € V;(Oxs). Also, for each j between 1
and g, vy, (kj(a)) > 0 (since vy, (kj(a;)) > 0); hence kj(a) is a nonunit in Oy, O

Theorem 1.10. Let M be a perfect algebraic extension of K which is PAC over
On, let V.C A™ be an absolutely irreducible variety defined over M, and let a =
(a1,...,an) € V(K). Then there exists b = (by1,...,b,) € V(M) such that, for
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each i between 1 and n, we get that, if a; € M, then % is an wnvertible element

of Onr, and if a; = 0, then b; € Oy

Proof. We denote the set of all natural numbers between 1 and n such that a; # 0
(resp., a; € M) by I (resp., Ip). Let 0 # a € O be such that aa; € O for each i €
I~ Iy and let x = (21,...,x,) be a generic point of V. Denote I1 = {i+n|i € Iy}
and let

% 1€ Iy 1 1€ Iy
di 1€l 1 i€l
yi=4q % and ci = '
ar; 1€ 1IN aa; 1€ IN1Iy
z, 1e€{l,...,n}1T 0 de{l,...,n}1I

Let W C A"*lol be the M-variety generated by the point y = (y1,.. S YntlLo])-
Since M(y) = M(x), W is an absolutely irreducible variety over M, and since
c e W(O), W(O) # 0. Then, since Oy satisfies Rumely’s local global principle, it
follows that W(Ous) # 0 | , Cor. 1.7 (for N = K)]. Suppose that d € W (Oy).
In particular, d; - d;y,, = 1 for each i € Iy. Let

a;d; 1€ Iy
bi=< % jeIN
d; iE{l,...,n}\I

Then b = (by,...,b,) € V(M) and it satisfies that Z—L = d; is an invertible element
of Oy for each i € Iy, and b; = d; € Oy for each i € {1,...,n} 1. O

An integral domain R is called a Bezout domain if each finitely generated ideal
of R is principal.
Lemma 1.11. Let M be an algebraic extension of K which is PAC over Onr. Let
0#a€ Oyp andlet o € O and n € N be such that o™ = a. Then there exists
B € Op such that g is an invertible element of O.

Proof. Let 0 # b € Oy and consider 8 € O which satisfies B" +abf —a = 0. Then
(g)" + ba - g —1=0and 1+ ba- (%)"‘1 —(3)" = 0. Therefore %,g € O and
hence g is invertible in O.

Consider now the absolutely irreducible polynomial f(7,X) = X" +aTX —a €
MIT, X] which satisfies g—)f( # 0. Since M is PAC over Oy, it follows that there
exists (b, 8) € Op x M such that g™ + abf — a = f(b,5) = 0 and, by the above

discussion, it follows that g is an invertible element of O. ([l

Theorem 1.12. Let M be an algebraic extension of K which is PAC over Oy, let
K be a finite subextension of M/K and let a be an ideal of O,. Then there exist
a finite subextension L of M/Ky and ¢ € O such that aOp, = ¢cOp. Hence Oy is
a Bezout domain.

Proof. Since K is a global field, O, has a finite class number A > 0. Hence there
exists a € O, such that a® = aOk,. Let a € O be such that o = a. Then, it

follows from Lemma 1.11 that there exists ¢ € O such that € = £ is invertible in

O. Therefore eh = % is an invertible element of Ops. Let L = K (c). Then
(CIOL)h = ahOL = (IOL = (g)hOL = (COL)h.
Thus, since O, is a Dedekind domain, aOr, = cOp.. O

albanian-j-math.com/archives/2019-01.pdf
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1.4. Rings Covers and Decomposition Groups. Recall the definitions of a

discriminant and a ring cover | , Section 6.1]:

Let R be an integrally closed integral domain with a quotient field E.
n

Definition 1.13. Let f be a monic polynomial in R[X] and suppose that H(X — ;)
i=1

is the decomposition of f into linear factors. The discriminant of f is, up to a

sign,

Disc(f) = [ [(xi =) = [] /().
i j=1
Then, Disc(f) € R and Disc(f) # 0 if and only if the z;’s are distinct.
Suppose that f is irreducible. In this case

Disc(f) = Ng(ay)/e(f'(21)) -
We call Ng(z,)/e(f'(21)) the discriminant of x; over E.

Remark 1.14. Let E’ be a subextension of E(z1)/E and let R’ be the integral
closure of R in E’. Since each root of the polynomial irr(xy, E’) is also a root of
the polynomial irr(z1, E), it follows that the discriminant, d’, of 21 over E’ divides
the discriminant, d, of x1 over E in R’. In particular, if d is an invertible element
of R, then d’ is an invertible element of R’.

Definition 1.15. | , p- 109, Def. 6.1.3]. Consider two integrally closed integral
domains R C S with their respective quotient fields E C F such that F/FE is
finite and separable. Suppose that S = R|[z], where z is integral over R and the
discriminant of z over E is a unit of R (that is, an invertible element in R). In
this set up we say that S/R is a ring cover and that F/E is the corresponding
field cover. In this case [ , p- 109, Lemma 6.1.2] implies that S is the integral
closure of R in F'. We call the element z a primitive element for the cover. If
in addition F/E is Galois, then S/R is called a Galois ring cover.

Remark 1.16. In the explicit case, if R = K[xy,...,2,] is a finitely generated
extension of K, but not necessarily integrally closed, then we can find, effectively if
R is presented over K, z,41 € E = K(x1,...,z,) such that R’ = K[z1,...,Zn41]
is integrally closed | , Section 19.7]. Suppose that z is a primitive element for
the extension F'/E and that f € R[Z] is an irreducible polynomial over E such that
f(z) = 0. Multiply x,,4+1 by the inverse of the product of the leading coefficient and
the discriminant of f. Then S’ = R'[z] is a ring cover of R’ with a primitive element
z. If R and z are presented over K, then the discriminant Disc(f) = Nr/p(f'(2))
can be effectively computed | , Section 19.2].

Recall the definition of a normal basic set | , Section 19.6]:

Definition 1.17. Let L be a field.

a) An L-constructible subset A of A™ is called L-basic if A = V ~\V(g),
where V.=V (f1,..., fm) with f1,..., fin,g € L[X1,..., X,] is an L-variety
on which g does not vanish. If x is a generic point of V, then we call
L[A] = L[x,g(x)"!] the coordinate ring of A and L(A) = L(x) the
function field of A. The dimension of A is the transcendence degree
of L(A)/L. Furthermore, the basic set A is normal if L[A] is integrally
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closed, and A is presented if the polynomials fi,..., f;,g and the ring
L[A] are presented.

b) Let P be a property of constructible sets (e.g., basic, normal, nonsingular,
etc.). A P-stratification of a constructible set A is a finite collection
{A;| © € I} of disjoint constructible sets having property P such that A =
U A;. We refer to A; as a P-set, i € I.

il

¢) Let A be an L-normal basic set and let C be an integral domain extending
L[A] such that C/L[A] is a (Galois) ring cover. We call C/A a (Galois)
ring/set cover over L.

As a result from Remark 1.16 we get

Remark 1.18. In the explicit case, suppose that A is a presented K-normal set
and that F is a presented finite separable extension of K(A). Then [ , p- 426,
Lemma 19.7.2] effectively produces an integral domain C' with these properties: the
quotient field, K(C), of C is F'; and there is a presented K-basic set A’, open in
A, with C/A’ a ring/set cover over K. Also, we can effectively find a primitive
element z for the ring cover C'/K[A'].

The next lemma | , D. 424, Lemma 19.6.6] is the key lemma in the stratifi-
cation procedure of Chapter II.

Lemma 1.19. (The stratification lemma). Let P be a property of constructible sets.
Suppose that for each presented L-basic set A we can effectively compute an L-basic
P-set B, open in A. Then we can effectively produce a P-stratification of each
presented constructible set.

Now, Recall the definition of a decomposition group of a homomorphism and the
definition of an Artin symbol | , Section 30.1]:

Definition 1.20. Let C'/A be a Galois ring/set cover over a field L with
LAl = L[zy, ..., %0, 9(x)7Y]

and let z be a primitive element for the ring cover C/L[A]. We denote the Galois
group Gal(L(C)/L(A)) by Gal(C/A) and consider a field M which contains L.
If (a1,...,a,) € A(M), then the L-specialization x — a uniquely extends to a
homomorphism ¢ of L[A] into M. We extend g further to a homomorphism ¢
from C into a Galois extension N = M (¢(z)) of M. Then
a) D(p) = {o € Gal(C/A)| (Vu € O)[p(u) = 0 = ¢(ou) = 0]}
is the decomposition group of ¢,
b)) Dule) = {o € Gal(C/A)| (Yu € C)[p(u) € M = p(ou) = w(u)]}
is a subgroup of D(p). If we want to emphasize that Dys(¢) is a subgroup
of Gal(C//A) we shall also write Das(p) 1(a) instead of Dys(ep).
c¢) As p ranges over all possible extensions of ¢q to C, the group Dy () ranges
over a conjugacy class of subgroups of Gal(C/A). We refer to this class as
the Artin symbol of a in Gal(C/A) and we denote it by Ar(C/A, M, a).
Whenever there can be no confusion, we omit reference to the cover from
the Artin symbol and write it as Ar(A, M,a). If H € Ar(A, M,a), then
Ar(A,M,a) ={H?| o € Gal(C/A)}.

Ifemark 1.21. We continue to hold the notations in Definition 1.20 and let E and
F be the quotient fields of p(L[A]) and ¢(C), respectively. Then
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2)

b)
c)

Each o € D(yp) induces an element & of Gal(F'/E) by the formula & (p(u)) =
p(ou) for each u € C. From | , p. 109, Lemma 6.1.4], the map
¢’ D(p) — Gal(F/E) that maps o to & is an isomorphism. Furthermore,
¢’ maps the subgroup Dy () of D(p) onto Gal(F/FNM). Thus, the com-
position of the isomorphism resz : Gal(N/M) — Gal(F/FNM) with (¢')~!
gives an isomorphism ¢* : Gal(N/M) — Dy(p), where p(¢*(0)(u)) =
o(¢(u)) for each o € Gal(N/M) and each u € C.
If M = L, then Dj/(¢) = D(y).
If D/A is another Galois ring/set cover such that C C D and ¢ is an L-
homomorphism of D into M, then rescyDum(¢) = Du(respcyyp) and
hence, for a € A(M), we get that

Ar(C/A,M,a) = respc)Ar(D/A, M, a)
[ , page 709].
Replacement of A by an open subset A’ does not affect the Artin symbol.
Indeed, let h € L[Xy,...,X,] be a polynomial that does not vanish on A
and let A’ = ANV(h), and C' = C[h(x)~!], where x is a generic point
of A. Then C'/A’ is also a Galois ring/set cover. If a € A'(M), then
Ar(A',M,a) = Ar(A, M, a).
More generally, if A’ is an L-normal basic set contained in A with a
generic point x’, then the specialization x — x’ uniquely extends to an
L-homomorphism, 79, of L[A] into L[A'] [ , D- 424, Remark 19.6.4].
We further extend 79 to a homomorphism 7 from C onto a Galois exten-
sion L(C’) of L(A"), where C' = 7(C). Then C'/A’ is a Galois ring/set
cover and 7 induces an isomorphism 7* : Gal(C'/A’) — D(r) such that
7(7*(0)(u)) = o(r(u)) for each o € Gal(C’/A") and each u € C (this fol-
lows from a) and b) for L(A’) instead of L and M). If a € A'(M), then
7*(Ar(A’, M,a)) C Ar(A, M,a) | , page 710].

2. ELIMINATION BY PARTS OF QUANTIFIERS FROM EXISTENTIAL FORMULAS

2.1. Radical Relations.

Notation 2.1. Let R be a commutative ring with a unit.

a)

b)

c)

d)

For ay,...,a, € R we denote the ideal of R which is generated by a1, ..., a,
by (a1,...,a,)R; ie., (a1,...,a,)R = a1R + --- + a,R. We omit the
reference to R if it is clear from the context.
Let a,b be two ideals of R. We denote the ideal

{z € R| zb Ca}
by a:b. Note that bCa<a:b=R.
We denote the collection of all maximal ideals by Max(R) and the collection
of all nonzero prime ideals of R by Spec(R). For p € Spec(R) we denote
the localization of R at p by R,.

For an ideal a of R we denote the Jacobson radical of a by Radgra =
ﬂ m if a # R and by Radra = R if a = R (we omit the reference
meMax(R)
m2a

to R if it is clear from the context). If Max(R) = Spec(R) and a # 0 this
is also the nilradical

va = {z € R|there exists n € N such that 2™ € a}
of a| , page 3]. If R is a field, then Radz0 = 0 = /0.
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e) Suppose that R is a Bezout domain. For z,y € R we denote a generator of
the ideal (x,y)R (which is determined up to a unit of R) by ged(z,y). We
denote

wdey Y70

(z:y) =

1 y=0
Then (z : y) is a generator of the ideal R : yR = {z € R | zy € zR}.
Indeed, it is clear that (z :y) € zR: yR and if y = 0 then zR : {0} = {z €
R| 0 € xR} = R. Therefore, suppose that y # 0 and let z € R be such that
yz € xR. That is, there exists a € R such that yz = ax. Then % =z €R.
Let d = ged(x, y). Then d # 0 and there exist 2/, 3y’ € R such that x = 2'd,
y =y'd, and ged(a’,y’') = 1. Hence, since “yg”,' = %% =z € R, it follows that
y'la in R. Therefore - € R and z = o’ = G = w(@:y). Thatis

v ; ged(x,y)
z € (x:y)R. Thus 2R : yR = (z: y)R.

Remark 2.2. Let R be a commutative ring with a unit.
a) For each z,y € R and each p € Spec(R),
Ry Ealy < (@R :yR) Cp.

Indeed, (zR : yR) € p if and only if there exists z € R\ p such that
zy € xR iff y € xR, iff x|y in R,.

b) Let a and b be ideals of R. Then

a C Radgb < (Vm € Max(R)) [b Cm=a C m].
c¢) Let a and b be ideals of R. Then
a CRadrb< (Vze€R)[l€ca+2zR=1€b+zR].

Indeed, if b = R, then the claim is clear. Also, if R is a field and b = 0, then
Radrb = 0 and the claim is clear. Therefore, assume that R is not a field
and b # R. If a C Radgrb, then a is contained in each m € Max(R) which
contains b. Let z € R satisfies a + zR = R and assume, on the contrary,
that b + zR # R. Then there exists m € Max(R) which contains b + zR
(and in particular contains b). Since a C m, m + zR = R. But this is a
contradiction to zR C m. Conversely, let a be an ideal of R such that for
eachz€ R, b+2R = Ror a+zR # R. Let m € Max(R) which contains b.
We need to show that a C m. Indeed, each z € m satisfies b+ 2R C m # R
and hence it follows from the assumption that also a + zR # R. Therefore
a+m# R and thus a C m.

d) Let z,y1,...,y € R. Then

z € Rad(y1,...,y1) & (Vz € R)[l € (z,2) = 1€ (2,91,..-,y)] -

Remark 2.3. If L is an algebraic extension of K, then Max(Op) = Spec(Opr) = Py,
and hence, for each ideal a of Oy,
Radp,a = ﬂ p = {x € O | there exists n € N such that =™ € a}.

pEPL
p2a

Note that if a = 0 then, since the Jacobson radical of Oy, is zero, it follows that
Rad@La =0= \/E

Forp e Pp, Max(Or,) = {pOr,} = Spec(Opr ).
Definition 2.4. Let R be a commutative ring with a unit. For any two positive

integers k,l we introduce a (2k + 2I)-place relation Rady,; on R as follows: Let
a=(ay,...,a;),b=(b1,...,bx) € R¥, c=(c1,...,¢),d = (di,...,d;) € R'; then
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k l
R = Radi(a,b,c,d) & [[(@R:bR) C RadR(Z ¢jR: d;R) )
i=1 j=1
Remark 2.5. Let R be a commutative ring with a unit.
a) By Remark 2.2 c), the relations Rady,; are definable in the ring R in the
language of rings.
b) Let a € R. Then a=0<« Radi1(1,1,0,a).
Indeed, let 0 be the zero ideal in R. Then
a=0aRC0«< (0:aR)=R< Radr(0:aR)=R
< 1R :1R C Radg(0R : aR) < Rad; 1(1,1,0,a).
¢) If R is a field, then, for each a,b € R, aR: bR = R or aR : bR = 0 and we
have
aR:bDR=0&a=0Ab#0 and aR:bDR=R<a#0Vb=0.
Also, for each two ideals a and b of R,
ab=R<a=RAb=R (ab=0<a=0VvVb=0),
a+b=R<a=RVb=R (a+b=0<a=0Ab=0), and
aCRadrb<=a=0Vb=R
(since Radpb = b). Hence, in this case, we can replace the relations Rady ;
by a disjunction of conjunctions of equalities and inequalities.

Remark 2.6. Let R be a Bezout domain. Then

a) For a,b € R* and ¢,d € R' we have
k

l
R = Rady(a,b,c,d) & [J(ai: b) € RadR<Z(cj : dj)R) .

i=1 j=1
b) For a,by,...,b; € R,
a€ (by,...,0)Re1€((by:a),...,(by:a))R
< R ): Radl,l(l,l,bl,...,bl,a,...,a).
That is, we can get a quantifier-free definition of ideal membership using
the relation Rad; ;.
¢) Diophantine problems on O can be reduced to (decidable) ideal membership
questions and hence, by b), to questions of the form @) E Radg,(a,b,c,d)
(Note that O is a Bezout domain). Here are two examples:

(1) Skolem | ]: A polynomial agX"+a; X" 1+ -+a, € (5[X] repre-
sents a unit of O (i.e., there exists z € O such that apz” + a1z 1+ +a,
is a unit of (5) if and only if 1 € (ay, - . an)é

(2) Birch | J: If the polynomial aUXlYJ € O[X, Y] is homogeneous and
be (9 then: there exist z,y € O such that > a;jz'y’ = b if and only if b
belongs to the ideal generated by the a;;’s.

Remark 2.7. Let M be an algebraic extension of K.
a) Let L be a finite subextension of M/K and let a,b be two ideals of Op.
Then
(1) For each p € Pr, and each B € Py which lies above p, P D aOy &
p2a.
Every torsion-free module M over a Dedekind domain A (i.e., 0 # a € A,
0#meM= am#0) is flat | , Ex. 11.8, p. 86]. In particular, Oy
is a flat Op-module and it follows from | , Thm. 7.4] that
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(2) (aﬂb)(’)M = a0 NbOy, and
(3) (Cl : b)OM = CIOM : bOM .
Over a there are only finitely many prime ideals. Hence, by (2) and (1),

(4 (Rado,a)Om =( () P)Ou = () (#Owm)

peEPL peEPL
p2a p2a
N () ¥= ()] %=Rado,(aOun).
peEPr, PEPM PPy
pRa POpOm P2aOm
Also, by (1),
(5)  (Rado,, (aOx))NOL =[] BNOL)= (] p=Rado,a.
PPy pEPL
P2aOnm p2a
Then, it follows from (4) and (5) that
(6) bOn C Radp,, (aOy) < b C Radp, a
Suppose that a = H p®) and b = H p/®) | where e(p) and f(p)
pePL pEPL

are non-negative integers and almost all of them are zero. Then
(7) Foreachp e P, e(p)> f(p) < adpbsa:bCp.

Thus
a:b= H peP)=F ()

pePL
e(p)>f(p)

b) Let a,b € O%, and c¢,d € O}, and suppose that all the coordinates of
a,b,c,d are in Oy, for a finite extension L of K. It follows from (3) that
for each z,y € Or, (2O : yOL)On = 2O : yOpy. Hence, it follows from
(6) that

(8) Om ': Radkl(a b C d)
1
= H (ai01 : b;01) € Rado, (D (e;01 : d;01))

i=1 j=1
< Or, = Radyg,(a,b,c,d) . J
Since the cogrdinates of a,b,c,d belong to 57 it follows that (8) is
satisfied also for O instead of Op;. Thus
O k= Rady,(a,b,c,d) < Oy = Radg(a, b, ¢, d) .
c¢) Let a,b € 0%, and ¢,d € O},. Then

OumE= Radg,(a, b, c,d) &
l

(v € Pan)[( A mle) > on(d)) = (

j=1 =1
Indeed, it follows from (8) that
Oy ERadg(a,b,c,d) &

v (a;) > vgp( ))}

.

k l

[T(a:0r ::01) € Rado, (Y (¢;01 : d;01))

i=1 j=1
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where L is a finite subextension of M/K such that a,b € O% and ¢,d € O}
Denote a; = (ai(’)L : biOL)7 1= 17. . .,k7 bj = (CjOL : djOL), ] = 1,. .. ,l,
a= Hle a; and b = 22:1 b;. Then, it follows from (7) that

O]u ): Radk,l(a,bm, d) S aC RadoLb
l

@(VpePL)[bgp:agp}@(VpePL)[ bj§p=>\k/aigp]
i=1

J

vp(as) > vn(b))|

1

>~

@(VPGPL)K vp(cj) >vp(dj)) = (

.
Il <w
-

<.

>- -
/N

vy (cj) > ”‘B(dj)> = (\V vp(a) > vm(bi))} ;

j=1 i=1

< (VP € Py) [(

as required.

Proposition 2.8. When O is an effective computability domain, then the relation
Rady,; on O is primitive recursive.

Proof. Let a,b € O and c,de€ O!. Then it follows from (8) that
9) O E Rady,(a,b,c,d) & Op = Rady,(a, b, c,d),

where L is a finite extension of K such that a,b € O% and ¢,d € O,. If p =
charK > 0 we (effectively) find a power ¢ of p such that L? is a separable extension
of K. Then, it follows from Remark 2.7 ¢) that
Ork Rady,(a, b, c,d)
1
& (Vpe Py [( A vplcy) > up(dj)) = (
Jj=1 i
l
& (vp € Pra) | ( A\ vp(e) > vp(d)) = (

j=1 7

< Opg |= Radk’l(aq, bq7cq7dq) .

Hence we can assume in (9), without loss, that L is a finite separable extension of
K

PSS

vp(a) > vp(b1) )|

vp(af) > vp(81) )|

1

Now, by Remark 2.7 c¢), we can check whether the ideal inclusion in (8) holds
by prime ideal factorization in Op: any p € P, that divides each c¢;Oyp, to higher
multiplicity than it divides the corresponding d;Or,, 7 = 1,...,1, must divide some
a;Or, (i between 1 and k) to higher multiplicity than it does the corresponding
b;Or,. That is, in order to show that the relation Rady; on Ois primitive recursive,
we need to know how to (effectively) factor, for every finite separable extension
L of K and each = € Op, the ideal O into a product of prime ideals. The
factorization procedure is written in Appendix A for the case that O = Oy is
a presented Euclidean domain of finite type. In the general case O = Sy 10y,
where Sy is a presented multiplicative subset of Oy. We find s € Sy such that
5+ Np/k(x) € Op. Then sz € Op,r.. We factor the ideal sxOp 1, into a product of
prime ideals of Oy r.:

szQ 1, = Hp.

pel
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For each p € I we find an irreducible element p of Oy such that pOy = p N Op. If

p € Sy then Salp =0 = Sal(’)o’L and if p ¢ Sy then S’alp is a proper prime ideal

of S5 00, = Or. We denote I' = {p € I |p N Oy = pOy for some p ¢ Sy}. Then
201, = 255" O = S5 (s200.0) = 55 (TT») = TT (S5'%) -

pel pel’

Thus, 20 = H (So_lp) is the factorization of the ideal 2O, into a product of

pel’
prime ideals of Oyp,. U

2.2. The Languages L4y and L;.q4.
Definition 2.9. Let £ =1{0,1,+, —,-} be the language of rings.

a) Laiv =10,1,4,—,-,] } is the language of rings augmented by the symbol |
of a binary relation which is interpreted in any ring as divisibility: x|y <
Iz[zz = y.

Liag = {0,1,+, —, -, (Radk,)k,>1} is the language of rings augmented by
the extra predicates Rady ;.

b) Let R be a commutative ring with a unit. We denote the languages L,
Laiv, and L,.,q augmented by a constant symbol for each element of R
by L(R), Laiv(R), and L;,4(R), respectively. In any ring which contains
an homomorphic image R of R, these symbols are interpreted as elements
of R which satisfy the additive and multiplicative tables of corresponding
elements in R.

Note that each formula in the language £(Z) (resp., Laiv(Z), Lrad(Z))
can be translated into a formula in the language £ (resp., Laiv, Lrad)-

Remark 2.10.

a) An atomic formula in the language Lgiv(R) is a formula of the form alb,
where a and b are terms in the language L£(R). Note that equalities can be
replaced by divisibilities using a = 0 < 0la.

b) An atomic formula in the language L,54(R) is of the form Rady;(a, b, c,d)
where a;,b;, 7 =1,...,k, and ¢;,d;, j = 1,...,[, are terms in the language
L(R). Note that, by Remark 2.5 b), we can replace equalities using the
equivalence @ =0 Rad;1(1,1,0,a).

¢) If E is a field, then by Remark 2.5 ¢), for each quantifier-free formula
o(Xq,...,X,) in the language L,,q(FE) corresponds a quantifier-free for-
mula (X1, ..., X,) in the language £(E) such that for each field F' which
contains E and each a € F™ we have

FE @) e F ).
By Remark 2.7 b) we get

Proposition 2.11. Let ¢(Y3,...,Y,) be quantifier-free L.0q(O)-formula. Then,
for every algebraic extension M of K and each a € O}, we have

O k= d(a) & Ou = ¥(a).

We shall use the following definition and the lemma after it in the beginning of
Section 3.

Definition 2.12.
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a) Let R be a commutative ring with a unit and let § be a quantifier-free
sentence in the language L,,q(R). We define the definition set Dy of §
in R by an induction on the structure of 6:

If 0 is the atomic formula Rady (a, b, c,d) where a,b € R* and c¢,d €
R!, we denote I = {1,...,k}, J={1,...,1} and define

Ia:{iEI|CLi7éO}, Ib:{iEI“)i?éO}, and
Je={je€J|e; #0}, Ja={je€ J|d;#0}.
Then Dy is defined to be the set
{ai7bi/,cj7dj/ |Z € I, i€ Ib, j € Je, j’ S Jd}

If 6 is the formula 0 = 6; V 03 and Dy, , Dy, have already been defined,
then Dy = Dy, U Dy,. And if 6 is the formula -y and D, has already been
defined, then Dy = D,.

b) Let R be an integrally closed integral domain with quotient field F, let
F' be a finite separable extension of E and let z be a primitive element
for the extension F/FE which is integral over R. Let 6 be a quantifier-free
formula in the language L.,q(R][z]); that is, to 6 corresponds a quantifier-
free formula ¢(Z) in the language L,4(R) such that § = ¢(z). Then Dy is
a finite subset of R[z] ~{0}. Let

Co :NF/E( H d)

deDg

Then cg is a nonzero element of R. If Dy = () we denote cg = 1. We call cg
the content of 0 in R.

Suppose that R is presented in E and F has elimination theory.
Then, if 0 is a presented sentence, that is, irr(z, E) and p(Z) are given,
then we can effectively find Dy and cg.

Lemma 2.13. Let R be an integrally closed integral domain with a quotient field
E. Let F be a finite separable extension of E with a primitive element z which
is integral over R. Let 0 be a quantifier-free sentence in the language Laq(R[z]).
Let Dy be the definition set of 0 in R[z] and let cy be the content of 8 in R. Let
M be an algebraic extension of K and suppose that there exists a homomorphism
T : R[z] = M which satisfies T(cg) # 0, 7(0) € L12a(Onr), and Opn = 7(0).

Let 7' : R[z] — M be a homomorphism which satisfies that # is an invertible

element of Oy for each d € Dg. Then 7'(0) € L12a(Onr) and Oy = 7/(0).

Proof. Let (Z) be a quantifier-free formula in the language L,,4(R) which satisfies
0 = o(z). It suffices to prove the lemma under the assumption that ¢(Z) is an
atomic formula. Therefore, suppose that ¢(Z) is the formula

Radi,(a(Z),b(Z),c(2),d(2)),
where a(Z),b(Z) € R[Z]* and ¢(Z),d(Z) € R[Z]!. Then 7(0) is the sentence
Rady,(7(a(2)), 7(b(2)), 7(c(2)), 7(d(2))) -

Let ¢ be a positive integer between 1 and k. If a;(z) = 0, then 7(a;(2)) =0 =
7'(a;(2)). If a;(2) # 0, then a;(z) € Dy (in particular, 7(a;(z)) # 0) and hence

TT/((;;((;)))) is an invertible element of Oys. In any case, 7(a;(2))On = 7'(a;(2))Opr.

Similarly, 7(b;(2))On = 7'(bi(2))Onr for each i between 1 and k and 7(¢;(2))On =
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7'(¢j(2))Owm, 7(dj(2))On = 7'(d;(2))On for each j between 1 and I. Thus 7/(0) €
Erad(OM) and

O |= 7(0) © Onr = Radg i (7(a(2)), 7(b(2)), 7(c(2)), 7(d(2)))
k
=

3

(T(ai(2))Onr = 7(bi(2))Onr)
1

C Rado,, (

l
(7(€5(2))On : 7(d;(2))On) )

<
—

k
& H (7'(a;(2))On = 7' (bi(2))Onr)
!

C Rado,, (Z (7' (¢;

—

<.

()0 : 7' (d5(2))Onr))
o OM ': Radk’l(’r/(a Z)),T (b(z))7T/(c(z))”r/(d(z))) =1 O]\/[ ': 7"(9) .

d

Remark 2.14.

a) If O = K, then Oypy = M. Assume that there exists a homomorphism
7: R[z] — M which satisfies 7(cg) # 0, 7(0) € Lyaa(M), and M = 7(6).
Then, for any homomorphism 7’ : R[z] — M which satisfies 7/(cg) # 0 we

have that TT/((;)) is an invertible element of Oy for each d € Dy. Therefore,

for each such homomorphism 7/, M | 7/(0).

b) If R = Klx1,...,xy], then to # corresponds a quantifier-free formula (X, Z)
in L,q(K) such that 6 = ¥ (x, z). Suppose there is a K-homomorphism,
7: K[x,2] — K, which satisfies 7(cy) # 0 and K |= 7(6). Then, for every
algebraic extension M of K and each K-homomorphism, 7’: K[x,z] — M,
which satisfies 7/(cg) # 0 we have M = 7/(0).
Indeed, it follows from a) that K |= 7/(6). That is,

K ¢(r'(x),7'(2).
Hence, it follows from Proposition 2.11 that M = ¢(7/(x),7'(2)). Thus,
M = 7'(9).
The next theorem is proved in Appendix B.

Theorem 2.15. For each formula o(Y),Y = (Y1,...,Ys), in the language L4y (O)
there exists a quantifier-free formula B(Y) in the same language, such that o(Y) <>
2(Y) holds in all nontrivial valuation rings (i.e., which are not fields), which con-
tain a homomorphic image of O, with algebraically closed quotient field.

Moreover, if O is a presented ring and ¢(Y) is presented, then we can effectively
(primitive recursively) construct p(Y).

This theorem is corollary 3.4 in | | (for O = Z) which is an improvement of
[ , p- 54]. (See also [ , P- 83]; here, however, the procedure is only
recursive.)

Lemma 2.16. For each formula o(Y), Y = (Y1,...,Y,), in the language Laiv(O)
we can construct, effectively, if O is a presented ring and ¢(Y) is presented, a
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quantifier-free Lyaa(O)-formula ¢’ (Y) such that for every algebraic extension M of
K and for each a € Oy, we have

(7B € P) Oy = ¢(a) & On = ¢/(a).
Moreover, if O = K, then ¢'(Y) is a quantifier-free L(K)-formula, and if O #
K, then ¢'(Y) is a conjunction o1(Y) A -+ A (YY) of atomic Liaa(O)-formulas.

Proof. If O = K, then 5:;; = K for B € P. Then, since the theory of algebraically
closed fields which contain K has an effective procedure of quantifiers elimination
in the language £( ), the claim is clear. Therefore, suppose that O # K. Then,
for each P € P, (933 is not a field. Hence, using Theorem 2.15, we can assume
that ©(Y) is a quantifier-free formula in the language L4y (O). We write ¢(Y) in
conjunctive normal form:

AV oY)V —0i5(Y))
el jed; jeg!

in which ¢;;(Y) is an atomic formula in the language Lq;iv(O). It suffices to prove
the desired result for each of the conjuncts. Hence, we may assume, without loss,
that p(Y) is the formula

l

k
Vest0v V),

=1
where x;(Y) is the formula az( )|8:(Y) and ;(Y) is the formula ~;(Y)|d;(Y),
with o, 8;,7,,9; € O[Y]. That is, we assume that ¢(Y) is the formula

ar(Y) 1 S1(Y) V-V ar(Y) 1 Be(Y) V1 (Y)[6(Y) V- - Vau(Y)[6(Y) .

Hence, it suffices to prove that for every algebraic extension M of K and each
a € O}, we have

(v € P) Oy = p(a) < O = Radyi(e(a), B(a), v(2), 6(a),
where a(a) = («a1(a),...,ax(a)), etc. Indeed, using Remarks 2.2 a) and b) and 2.7
b), we get

(VB € P) Oy = ¢(a)
k

!
& (PeP)(V l(wila )O : Bi(2)0) P v \/ [(+;(2)0 : 3;(a)0) Z B))

l k

& (WpeP)[( A\ 3;(a)0) € B) = (\/(ci(a)O : Bi(a)0) C )]
j=1 i=1
! k

& (VpeP) Z 6))913:»({[@( a)0 : Bi(a)0)) C ¥

<.
Il
el
-
Il
-

54 O ’: Radk,l(a(a)u /B(a)7 V(a)v 5(3.))
& Oy = Rady,(a(a), B(a),y(a),d(a)).
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2.3. Special Existential Formulas.

Definition 2.17. We introduce, for convenience, two auxilary predicates R (binary)
and NU (unary) to be interpreted in any commutative ring with a unit R as follows:
For each a,b € R,

R E aRb < a € Radg(bR) A b #0, and

R = NU(a) < a is not an invertible element of R.

Note that, by Remark 2.2 d), the predicate R can be defined in the language L.
The predicate NU is also definable in the language £: NU(z) <> Vy[zy # 1].

Remark 2.18. We interpret the predicates R and NU for a localization (533 of O at
L e P: it follows from Remark 2.3 that for each a,b € Ox,

(Oy [= aRb) & (3n € N)[a" € bOp] Ab#0, and
(O = NU(a)) & a € POy < vp(a) > 0.

Definition 2.19. A special existential formula ¢(Y), Y = (Y1,...,Y,), is a
formula of the form

IX[F(X,Y)=0Ag(X,Y) #0AR(X,Y) ANU(X,Y)],

with X = (X1,...,Xn), f(X,Y) = (/1(X,Y), ..., fx(X,Y)), R(X,Y) a conjunc-
tion A hi1(X,Y)Rhi2(X,Y) and NU(X, Y) a conjunction  /\ NU(k;(X,Y)),
1<i<p 1<j<q
where fi,..., f&, g, hi1, hiz (1 <@ <p), k; (1 < j < gq) are polynomials in O[X,Y].
If O = K, we require that p = ¢ = 0.
For each a € K™ let Vt.a be the algebraic set

{x e A"| fi(x,a) =0,..., fu(x,a) = 0}.

Proposition 2.20. Let o(Y) be the special existential formula of Definition 2.19.
Then, there exists a quantifier-free formula B(Y) in the language L,,4(O) such that
for every perfect algebraic extension M of K which is PAC over Oy and for each
a € Oy, which satisfies that Vs a is absolutely irreducible we have: Oy = ¢(a) <
Sla).

Moreover, in the explicit case, if p(Y) is presented, then we can effectively con-
struct p(Y).

Proof. Let M be a perfect algebraic extension of K which is PAC over Oy, and let
a € O}, which satisfies that V¢ 5 is absolutely irreducible.
Claim: Oy = ¢(a) if and only if (1) and (2) below are satisfied:
(1) (VP € P) Oy | IX[f(X,a) = 0 A g(X,a) # 0 AR(X,a)],

(2) for each j between 1 and ¢ there is P; € P such that
On, F IX[f(X,a) =0Ag(X,a) # 0AR(X,a) ANU(k;(X,a))].

Indeed, it is clear that if On = ¢(a), then (1) and (2) hold. Conversely, suppose
that (1) and (2) hold. We take maximal ideals P1,...,B, € P as in (2) and points
x;j € (Op,)™ such that
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(3) O, Ef(x;j,a) = 0A g(x;,a) #0A
/\ hi(x;,a) Rhia(x;,a) ANU(k;(x;,a)) .
1<i<p

If follows from Remark 2.18 that there is n € N and there are z;; € (5qu. for
1<3<p,1<75<gq,such that
(4) hﬂ (Xj, a)" = Zij - hiQ(Xj, a) .

We pick a finite extension L of K containing the coordinates of a and of the x;’s and
zij’s. Then there is a finite set S C Pr, such that if p € P, &, then the coordinates
of the x;’s and z;;’s are p-integral, i.e. in Or,. Note that by multiplying (4)
by hﬂ(xj, a)”, we can enlarge n in (4) at will, changing the z;;’s (zi; — 2 -
hii(x;,a)" "), but without changing the x;’s, L, or S.

Let S be the set of all prime ideals in P which lie above the prime ideals in S
and let Sy be a set of representatives of S over L; that is, Sy contains, for each
p € S, exactly one prime ideal P € S which lies over p. Then, for each P’ € S
there exist P € Sy and o € Aut(K /L) such that " = P°.

By (1) there are, for each P € Sy, points xq € (’) and z;p € 6% 1 <i<p,
such that, taking n in (4) large enough, we have:

(5) 6\;3 )Zf(qu,a) =0A g(xm7a) #0
A /\ hit(xsp,a)" = zigp - hio (X, @) A hiz(xp,a) #0) .

1<i<p

Hence, for each B € S there exist points xgp € (5% and zsp € @43, 1 <4 <p,such
that (5) holds.
We consider now the following system of equalities and inequalities in the vari-
ables (X1,...,Xm,Z1,...,2Z,):
(6) f(X,a)=0A g(X,a)#0A

/\ (hil(X7 a)" =7 - hiQ(X, a) A\ hig(X, a) =+ 0) .

1<i<p

Since the extra Z-variables appear linearly and h;2(X, a) # 0 for each i between 1
and p, the equations in (6) define an absolutely irreducible variety in A™*? over
M which is birational equivalent to V¢ a, and (6) defines a nonempty Zariski-open
subset of this variety. Moreover, by (3), (4) and (5), we have a solution to the
system (6) in (5m+p for each P € P, and if P = P;, 1 < j < ¢, then this solution
(x;5,25) can further be taken such that k;(x;,a) is not an invertible element of 5:;3.

It then follows from Theorem 1.9 that (6) has a solution (x,z) € O} such
that k;(x,a) is not an invertible element of Oy for j = 1,...,q. Also, for ¢
between 1 and p, hi1(x,a)™ = z;hia(x,a). Hence, it follows from Remark 2.3 that
hi1(x,a) € Radp,, (hi2(x,a)Op). Thus, O = ¢(a), and we have established our
claim.

Now, by Lemma 2.16, we can put condition (1) (after rewriting it in the language
L(0)) in quantifier-free form; that is, we can construct a quantifier-free formula
¢(Y) in the language £,,4(O) such that for all a € O}, we have

(7) (VP € P) Op = IX[f(X,a) = 0 A g(X,a) # 0 AR(X, a)]

<0um = ¢(a).
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Similarly, we can construct a quantifier-free formula ¢;(Y), j =1,...,¢, in the
language L;.4(O) such that for all a € OF; we have

(VP € P) Oy = ~IX[f(X,a) = 0A g(X,a) # 0 AR(X,a) ANU(k;(X,a))]
< O = vj(a),
and hence
(8)
(3P € P) Oy = IX[f(X,a) = 0 A g(X,a) # 0 AR(X,a) ANU(k;(X, a))]
< On E ~j(a).

Combining (7) and (8) with our established claim we see that for each a € OF,
with absolutely irreducible V¢ , we have

Om |=p(a) & p(a) A (mgr(a) A A —ihy(a))
(]

Lemma 2.21. Let p(Y), with Y = (Y1,...,Y}), be an existential formula in the
language Liaq(O). Then there are special ezistential formulas ¢1(Y),...,@:(Y)
such that for every algebraic extension M of K which satisfies that Oy is a Bezout
domain we have
Oum Ee(Y) < e1(Y) V-V (Y).
Moreover, if ©(Y) is presented, then we can effectively construct
1(Y), ..., (Y).

Proof. We write p(Y) as 3X§(X,Y) with X = (Xy,...,X,,) and 6 a quantifier-
free formula in the language L;,q4(O0). If O = K, then, by Remark 2.10 c), there
exists a quantifier-free £(K)-formula 6'(X,Y) such that M = 6 < ¢’. Therefore
¢’ (Y) := 3X0'(X,Y) is a special existential formula such that M = ¢ < ¢'. So
assume that O # K. We put 6 in disjunctive normal form. We first note that, by
Notation 2.1 e),
9) z=(x:y)< Ja,b,c,dla=br+cyNz=zaNy=da.

It is clear that we can get rid of atoms Rady (- --) occurring (positively) in € in
favor of conditions (- - R - ), extra equations, inequations, and extra existentially
quantified variables. Here the idea is to use (9), Remark 2.6 a), and the following
equivalence which holds in all Bezout domains with Jacobson radical zero:

z € Rad(y1,...,y) © Ja,by,...,b,c1,...,¢
[a=0biy1 + -+ by /\ ac; =y; A ((a =0Az =0)VzRa).
1<i<l

Similarly, negations —Rady (- --) can be eliminated in favor of conditions NU(--):
here the idea is to use (9), Remark 2.6 a), and the following equivalence (which
follows from Remark 2.2 d)):

x ¢ Rad(y1,...,y)e Fz[1 € (x,2) AL € (y1,...,41,2)]
<:>EIzEIa,b,c,dl,...,dl,e,fl,...,fl,g

[l=ax4+bzANU(c)Ac=dyy1 + -+ diyi + ez A /\ cfi =yi Neg = 2]
1<i<l

(it is written in the last line that the greatest common divisor, ¢, of y1,...,y and
z is not invertible).
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After these operations we reduce, without loss, to the case that 6 is a disjunction
of conjunctions of formulas
f(X, Y) =0, g(X, Y) # 0, hi(X, Y) Ry (X, Y)7 and m(k()g Y))7
with f, g, h1,he, k in O[X,Y].
Now we distribute 3X over the disjuncts and end up with a disjunction as desired.
O

2.4. Quantifier Elimination from Existential Formulas on Zariski-Open
Sets. This subsection is the link to the stratification procedure of Section 3. The
connection is done through Proposition 2.26 in which we eliminate quantifiers from
existential formulas in the language L,,4(O) on Zariski-open sets of K-varieties,
modulo every ring of integers Oy, of a perfect algebraic extension M of K which is
PAC over Op;. Lemma 2.21 allows us to reduce to elimination of quantifiers from
special existential formulas. In order to be able to use Proposition 2.20, we show
in Lemma 2.24 how to decompose an algebraic set, defined over a given integral
domain R containing K, into absolutely irreducible varieties, uniformly for each
homomorphism of R into K. To this end we first need an improved version of
Bertini-Noether theorem.

Lemma 2.22. Let R be an integral domain with quotient field F' and let f1, ..., fi €
R[X1,...,X.m]. Suppose that the algebraic set A =V (fi1,..., fr) decomposes into
a union of absolutely irreducible varieties defined over F' by polynomials with coef-
ficients in R. Let A = Vi U---UV; be the decomposition of A into its absolutely
irreducible components and suppose that Vi =V (fi1, ..., fip@)), i =1,...,s, where
fij S R[Xl, . ,Xm}

Then there exists a nonzero element ¢ € R such that if a — a is a homomorphism
of R into a field F with ¢ # 0, then V; =V (fi1, ..., fip(i)) is absolutely irreducible,
dim(V;) = dim(V;), i = 1,...,s, and A = V(f1,....fr) = Vi U--- UV, is the
decomposition of A into its absolutely irreducible components.

Moreover, in the explicit case, i.e. when R is presented in F and F has elimi-
nation theory, we can effectively construct c.

Proof. Let ﬁ(R) be the theory of algebraically closed fields containing a homomor-
phic image of R in the language L£(R). It follows from Bertini-Noether theorem
[ , p. 179, Prop. 10.4.2] that for each 7 between 1 and s there is 0 # ¢; € R,
which can be effectively constructed in the explicit case | , p- 179, the re-
mark after Prop. 10.4.2], such that if @ — @ is a homomorphism of R into a
field F' with ¢ # 0, then V; is absolutely irreducible and dim(V;) = dim(V;).
Also, since A = V4 U --- UV, (resp., V; € V; for each ¢ # j) if and only if
A(E) = Vi(E) U --- U V4(E) (resp., Vi(E) € V;(E) for each i # j) for every
algebraically closed field E containing a homomorphic image of R, it follows that
the statement “A =V, U--- UV and V; € V; for each i # j” is equivalent mod-
ulo ﬁ(R) to a sentence of L£(R). Hence, by | , p. 165, Thm. 9.2.1], there is
0 # ¢o € R, which can be effectively computed in the explicit case | , p. 168,
Thm. 9.3.1], such that if @ + @ is a homomorphism of R into a field F with ¢, # 0,
then A=V U---UV, and V; € VJ for each i # j. Hence ¢ = cpcy -+ - ¢s is the
desired element. (]

Definition 2.23. Let R be an integrally closed integral domain with quotient field
FE, let R be the integral closure of R in F, and let FEj,s be the maximal purely
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inseparable extension of E inside E. Let A be an E-closed Zariski subset of A™
defined by polynomials with coefficients in R N Ejpg.
a) A system (P,q, A} (E C L C P),x) for the pair (A4, R) consists of:
i. a finite Galois extension P of F,
ii. a power ¢ of char(E) (¢ =1 if char(E) = 0) such that A is defined by
polynomials with coefficients in R%,

iii. for each subextension L of P/E, an L-closed subset, A}, of A which is
defined by polynomials with coefficients in RN L and decompose into
absolutely irreducible varieties defined over Li by polynomials with
coefficients in RN Lt:

AEZVLJU"'UVL,SL, and

iv. 0#z € R.
b) We say that the system (P, ¢, A5 (EF C L C P),x) is a solution for the pair
(A, R) if for each z € E which satisfies that Q = E(z) is a Galois extension
of E containing P and for each 0 # z, € R satisfying that R[z; !, 2]/R[z;]
is a ring cover we have for R’ = R[(z,z)~!] and S = R'[2]:
if M is a perfect field and ¢q is a homomorphism of R’ into M, then for
each homomorphism ¢ of S into a Galois extension N = M (p(z)) of M
which extends ¢y we have (here we define cp(u%) = go(u)% for each u € S)
(1) for each subextension L of P/E,

P(AL) = (VL) U---Up(VLs,)
is a decomposition of ¢(A}) into a union of absolutely irreducible
varieties, and
(2) po(A)(M) = ¢(Af,np) (M),
where @ is the fixed field of Das(p) g in Q.

Lemma 2.24. (Uniform Decomposition-Intersection Procedure). Let R be an inte-
grally closed integral domain with quotient field E and let R be the integral closure
of R in E. Let A be an E-closed Zariski subset of A™ defined by polynomials with
coefficients in RN Eiys. Then there exists a system (P,q, A} (E C L C P),x) which
is a solution to the pair (A, R) such that for any two subextensions Ly and Lo of
P/E which are conjugate by an element of Gal(P/E) there exists o € Gal(P/E)
which satisfies Ly = oLy and A}, = o(A}).

Moreover, in the explicit case (when R is presented in E and E has elimination
theory), if A is presented, then we can effectively find P, q, and x and for each
subeztension L of P/E we can effectively construct A; and decompose it into its

absolutely irreducible components over Li.

Proof. We shall prove by induction on the dimension of the algebraic set A that
there exists a system (P,q, A} (E C L C P),z) which is a solution to the pair
(A, R). Then we shall show that we can find such a system such that for any two
subextensions Ly and Lo of P/E which are conjugate by an element of Gal(P/E)
there exists o € Gal(P/E) which satisfies Ly = 0L, and A}, = o(A})).

PART A: Begining of the induction. We decompose A into its absolutely irre-
ducible components, A = U V;, and then construct a finite Galois extension Py of

iel

E and a power gy of char(E) (go = 1 if char(E) = 0) such that A is defined over
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1
E7 and each V; is defined over Py . We multiply the polynomials which define the
Vi’s by a suitable nonzero element of R in order to assume that their coefficients
1

belong to RN PE
Let Eq,.. En be the list of all bubextenblons of Py/E. For each k between 1

and n, we identify Gal(Py/E}) with Gal(Poq" /E}] i ). Then Gal(Py/E}) permutes
the V;’s. Consider a decomposition

(Vilien} = ) {Vil i € I}
JEJk
into Gal(Py/E})-orbits. Foreach j € Jy, Uy; = m V; is invariant under Gal(Py/Ey)

iEIk-j
and is therefore an Ejy-closed subset of A. If Ij; consists of only one element

1
i, then Uy; = V; is an absolutely irreducible variety which is defined over £;°.
Otherwise, dim(V;) = dim(Viy/) and V; # V; for distinct ¢, € Ij; . Hence,

dim(Ux;) < dim(V;) < dim(A) [ , p. 174, Lemma 10.1.2], where i € Ij;.
Let
U Ukj and Bkz U Uk]’.
j€Jk j€Jk
[Trj|=1 [Trj]>1

1
Then Ay is a union of absolutely irreducible varieties which are defined over E;*°
and dim(By) < dim(A).

.4
We find, by Lemma 2.22, 0 # ¢y € RNFP,° such that if a — a is a homomorphism
1

of RN POE into a field M with ¢y # 0, then V; is absolutely irreducible, dim(V;) =

dim(V;), for each ¢ € I, and UVZ is the decomposition of A into its absolutely
icl

irreducible components. Also, we can choose ¢y such that for each k between 1

and n, Uy; = m V;, for each j € Jy, Ay = U Uyj and By, = U Uy;j. Let

ielkj JE€Jk J€Jk
[Irj]=1 [Irj]>1

xo = Np,/p(cl’). Then zy € R.

Now, let z € E be such that Q = E(z) is a Galois extension of E which contains
Py. Then, if L is a subextension of Q/FE such that L N Py = Ej, then Gal(Q/L)
permutes the V;’s in the same way as Gal(Py/Ey). That is, the decomposition
U {Vi | i € It;} is also a decomposition of {V;| ¢ € I'} into Gal(Q/L)-orbits. Let
Jj€Jk
z, be a nonzero element in R which satisfies that R[z;', z]/R[z;'] is a ring cover
and denote R’ = R[(z,79) '] and S = R'[2].

CLAIM: Let M be a perfect field, let g be a homomorphism of R’ into M, and
let ¢ be a homomorphism of S into a Galois extension N = M (p(z)) of M which
extends yg. Then, for each subextension Ej of Py/E,

p(A) = | ¢Uy)
J€Jk
[Trjl=1

is the decomposition of ¢(Ay) into its absolutely irreducible components, and if
the fixed field Qo of Dy () g in Q satisfies that Qo N Py = Ey, then po(A)(M) =
©(A)(M) U @(By)(M).
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Indeed, since @o(zy ') is defined, it follows that ¢(co) # 0 and therefore (V)
is absolutely irreducible and dim(¢(V;)) = dim(V;), for each i € I, and U p(V;) is
i€l
the decomposition of ¢g(A) into its absolutely irreducible components. Let Q be
the quotient field of ¢(S). Consider the isomorphism

¢’ Gal(Q/Qo) = Du(yp).z — Gal(Q/Q N M)

given by o — @, where 7 is defined by the formula 7(p(u)) = p(ou) for each u € S
_ I S
(Remark 1.21 a)). Also, we identify Gal(Q/QN M) with Gal(Q* /Q % NM). Then
Gal(Q/QN M) permutes the ¢(V;)’s and, since U {Vil i € I;;} is a decomposition
Jj€Jk
of {V;| i € I} into Gal(Q/Qp)-orbits (because Ex = Qo N Py), it follows that
U {p(Vi)| i € I);;} is a decomposition of {¢(V;)| i € I'} into Gal(Q/QN M)-orbits,

j€Jk
because oV; = V; if and only if 5(¢(V;)) = ¢(V;). Also, ¢(Uy;) = ﬂ o(V;), for
dS
each j € Ji, p(Ar) = U ©(Uy;), and @o(By) = U ©(Uyg;). It suffices to
J€Jk J€Jk
ks 1=1 s [>1

show that ¢o(A)(M) C @(Ak)(M) U o(By)(M). Let y € ¢(A)(M). Then, there
exist j € Ji and ¢ € Ij; such that y € o(V;)(M). If |I;| = 1, then y € @(Ag)(M).
Otherwise, we consider i’ € Ij;. By the above, there exists & € Gal(Q/Q N M)
such that ¢(Vyr) =5 (p(V;)). Since @/Q N M is a Galois extension, & extends to an
element of Gal(QM/M). Hence, y € ¢(Vi)(M) (because M is perfect). It follows
that y € ¢(Uy;)(M) and therefore y € ¢(By)(M), as was to be shown.

If By is an empty set for each k between 1 and n, then it follows from the claim
that the system (Py, qo, Ax (1 <k <n),xo) is a solution for the pair (A, R).

PArT B: The induction’s assumption. If By is nonempty, we use induction on
the dimension to obtain

ik. a finite Galois extension Pj of Fy,
iik. a power g of char(F) such that By is defined by polynomials with coeffi-
cients in RN E,;%’“,
ili k. for each subextension F of Py/Ej, an F-closed subset, Agc)7 of By which
is defined by polynomials with coefficients in RN F  and decompose into
a union of absolutely irreducible varieties defined over F' O by polynomials
with coefficients in R N Fi:

Agf) = U ngkl) , and
e
ivk. a nonzero element zj, in Ry = RN Ej,

such that the system (Pk,qk,AEf) (Ex C F C Py),z) is a solution for the pair
(Be, R):

For each z € E which satisfies that Ex(z) is a Galois extension of Ej containing P
and for each 0 # x, € Ry which satisfies that Ry[z?, 2]/Rg[z; 1] is a ring cover,
we have, for R} = Ry[(x.z;)!] and S = R} [2], that
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if M is a perfect field and ¢, is a homomorphism of R} into M, then for each
homomorphism ¢ of S into a Galois extension N = M (p(z)) of M which extends
@k we have

(1k) for each subextension F' of Py/Ej,
k k
p(A) = U o)

ielth

is a decomposition of @(A%c)) into a union of absolutely irreducible varieties,
and
k
(2K) e(Br)(M) = (A5 p, ) (M),
where Q) is the fixed field of Dys(p) g, in Ex(2).
PaArT C: Conclusion of the induction. If By is an empty set, we denote P, = Py,

qr = qo, x = 1, and for each subextension F' of Py/F}) let A ) he the empty set.
Let P be a finite Galois extension of F which contains P - - Pn7 let g = max g,

0<k<
and let = Np,g(xox1 ---2,). Then A is defined by polynomials with coefﬁments
in Ra and 0 # 2 € R. For a subextension L of P/E we denote
= A,uAl

where k is a positive integer between 1 and n such that Ey, = LNFPy and F = LN Py.
Then A} is an L-closed subset of A which is defined by polynomials with coefficients
in RN L7 and decompose into a union of absolutely irreducible varieties defined
over L by polynomials with coefficients in RN L

= J oyu Y wH=viiu--uvi, .

J (i)

T el
Now, let z € E satisfies that F(z) is a Galois extension of F containing P and
let 0 # 2, € R be such that Rz !, 2]/R[z;] is a ring cover. We denote R’ =
R[(z.z)"'] and S = R/[z]. Let M be a perfect field, let ¢g be a homomorphism of
R’ into M, and let ¢ be a homomorphism of S into a Galois extension N = M (p(z))

of M which extends (.

We denote 2" = z, - 2. Then 0 # 20 e R (because ;- is an element of E

which is integral over R) satisfies that R[(z> © )7L, 2]/ R[(xzo)) ! is a ring cover and
R = R[(x(o)xo) 1. Let L be a subextension of P/E and let k be a positive integer
between 1 and n such that F, = L N Py. It follows from the claim in Part A that
w(Ag) = U ©(Uy;) is the decomposition of ¢(Ay) into its absolutely irreducible

JE€Jk
[Trj|=1
components, and if the fixed field Qo of Da(¢) g in E(z) satisfies E, = Qo N Py,
then @o(A)(M) = @(Ak)(M) U p(By)(M).
Let Rk = RN Ey, and R}, = Ry[(z.2)"']. We denote e =z, & Then

0 # M e Ry (because i is an element of Ej which is integral over R) satisfies

that Rg[(z> (k) )7L, 2]/ R |2 ))_1] is a ring cover. Also, R}, = Rk[(x(z )xk) 1 and

S = R} [7] (because S is integral over R’ and in particular contains Ry). We denote

F =LnN P It follows by (1k) that <p(A( )) U w(Wékl)) is a decomposition of
eI
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@(Agf)) into a union of absolutely irreducible varieties and hence

p(A1) = p(A) U AW = | o) u [ W)

Jj€Jk ic7(F)
Ty l=1 i€l

=o(Ve1)U---Up(Vs,)

is a decomposition of ¢(A%) into a union of absolutely irreducible varieties.

Now, suppose that the fixed field Qo of D () g in E(z) satisfies E, = Qo N By
and F' = Qo N P,. Consider the isomorphism ¢* : Gal(N/M) — Djs(y) g which
satisfies p(¢*(0)(u)) = o(p(u)) for each ¢ € Gal(N/M) and each u € S (Remark
1.21 a)). Then, for v € R}, C Qo, we have ¢*(0)(u) = u (because ¢*(0) €
Dy (¢) k) and hence p(u) = o(p(u)), for each o € Gal(N/M). Thus ¢(R}) C M.
Let Qg be the fixed field of Dy (¢) g, in E(z) = Ex(z). Since Dy (p) g, is a
subgroup of Dy (¢) g and ¢* is an isomorphism of Gal(N/M) on D () g and also
on Dy(p) g, it follows that Dy(¢) g, = Dum(e) 5. Hence Qr = Qo. Therefore
Qr NP, =QpN P, = F. It follows by (2k) that

P(Br) (M) = (A p, ) (M) = (AR )(M).
In addition, Q¢ N P satisfies (Qo N P) N Py = Ej, and (Qo N P) N P, = F. Hence

0o(A)(M)= o(Ag)(M) U p(By)(M)
= o(Ak) (M) Up(AD) (M) = p(Af,np) (M) ,

as required.

PART D: Construction of the system such that 0 A} = A’ for each subextension
L of P/E and each o € Gal(P/E).  We identify Gal(P/E) with Gal(P1/Eq).
Let L be a subextension of P/E and let ¢ € Gal(P/E). Then A((;’L) =04} is a
o L-closed subset of A which is defined by polynomials with coefficients in RN oL
and decompose into a union of absolutely irreducible varieties defined over oLi by
polynomials with coefficients in R N oLu:

sL
A =t
i=1

where Va(z)l =oV5i, 1 <i<sp.

Let 2’ be an element in £ which satisfies that Q@ = E(2’) is a Galois extension
of E containing P and let x,, be a nonzero element in R which satisfies that
Rz, 2']/R[z.'] is a ring cover. We denote R’ = R[(z,z)"!] and S’ = R'[¢'].
Let M be a perfect field, let g be a homomorphism of R’ into M, and let ¢ be a
homomorphism of S” into a Galois extension N = M (¢’(2’)) of M which extends
$0-

We extend o to an element of Gal(Q/E). We denote z = o712/, x, = z,,
S =0"18" = R'[2], and let  be a homomorphism of S into N = M (p(2)) which is
defined by ¢(u) = ¢'(ou) for each u € S. Then ¢ extends g and R[z;!,2]/R[z;]

z
is a ring cover.
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In these notations, it follows from (1) that
¢(A7)= ¢ (0 A7) = o(A])
Sr, S SL
=UJeve) =Je' Vi) = J v
i=1 i=1 i=1

is the decomposition of @’(Ag?) into a union of absolutely irreducible varieties.
Also, by (2),

2ol A)(M)= p( A5 p) (M)
= ¢(045,np) (M) = ¢ (AT ) (M) = &' (A5 p) (M),

where Qo is the fixed field of Dy(p) g in @ and Qf = 0Qo is the fixed field of
DM(QO/)7E = O’DM(QO)7EO'71 in Q

Now, for each conjugacy class C of Gal(P/FE), we choose a subextension L of
P/E such that Gal(P/L) € C. Let G = Gal(P/L) and H = {0 € G|oL = L}.
Then H < G. Suppose that [G : H] = r and let o1 = 1,09,...,0, be a system
of left coset representatives of G modulo H. We replace, for each ¢ between 2
and r, A7 ; by AE;YL) = 0;A;. In this way we get that the new obtained system
(P,q,A; (E C L C P),x) is a solution for the pair (A, R) such that for any two
subextensions L; and Ly of P/E which are conjugate by an element of Gal(P/FE)
there exists o € Gal(P/E) which satisfies Ly = 0L, and A} = cA7 .

Finally, if F has elimination theory, then Chapter 19 of | | shows how to
make all the above constructions effective. (]

Definition 2.25. Let ¢ be a power of char(K) (¢ = 1 if char(K) = 0) and let
¥(Y1,...,Y,) be a quantifier-free formula in the language Erad((’)%). We define the
formula ¥9(Y) in the language L,4(O) by an induction on the structure of ¢ (Y):
a) if(Y) is the formula Rady ;(a(Y),b(Y),c(Y),d(Y)), wherea,b € O [Y]*
and c,d € O3 [Y]!, then 19(Y) is the formula

Rady i (a?(Y), b*(Y), c!(Y),d*(Y));
b) if ¥(Y) is the disjunction ¢ (Y) V ¢2(Y) and ¥{(Y), ¥3(Y) were already
defined, then 14(Y) is the disjunction ¥¥(Y) vV ¢2(Y);
¢) if ¥(Y) is the negation = (Y) and ¢?(Y) was already defined, then ¢?(Y)
is the negation —¢9(Y).
For every perfect algebraic extension M of K and each a € O}, we have

Oum = 9(at) & O = 9i(a).

Proposition 2.26. Let ¥(Y), Y = (Y1,...,Y,), be an existential formula in the
language L124(O) and let V. C A™ be a K-variety with a generic point'y.

Then, there exist a finite Galois extension P of K(y) and a polynomial hy €
O[Y] which does not vanish on V' such that the pair (v, V') is solvable by the pair
(P, hib):

Let Q be a finite Galois extension of K(y) which contains P and let Do/By be a
Galois ring/set cover such that By = V ~\V(hg), where hg € O[Y] is a polyno-
mial which does not vanish on V and K(Dgy) = Q. Let C be a conjugacy class
of Gal(Q/K(y)) and let L be the fized field in Q of one of the groups in C. Let
zr, be a primitive element for the extension L/K(y) which is integral over Oly],
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let pc € O[Y,Z] be a polynomial which satisfies that pc(y,Z) is a multiple of
irr(zz, K(y)) by an invertible element of K[Bo] = Kly,ho(y)~], and suppose
that the discriminant of zy, over K(y) is invertible in K[Bg]. Then there exists
a quantifier-free formula v.(Y,Z) in the language Laq(O), such that if h € O[Y]
is a common multiple of ho and hy then, for B =V ~V(h) and D = Do[h(y)™'],
the pair (pc,c) is a solution for the triple (v, D/B,C):

For every perfect algebraic extension M of K which is PAC over Oy; and for each
b € B(Oys) which satisfies Ar(D/B, M,b) = C we have

Ou £ ¥(b) = On = 3Z[pe(b, Z) = 0 A Do (b, Z))]
< Oy ': VZ[pc(b, Z) =0— ac(b, Z)] .

Moreover, in the explicit case, if ¥ and V are presented, then we can effectively
construct P and hy and if also C is presented (by pc), then we can effectively

construct he and ..

Proof. CasE I: ¥(Y) is a special existential formula.
B(Y) : IX[E(X,Y) = 0AT(X,Y)]

where X = (X1,..., X,,), f(X,Y) = (f1(X,Y),..., fx(X,Y)) with
fi,- o fr € OX, Y], and T(X,Y) is

9(X,Y) #0A \(ha(X,Y) R hio(X,Y)) A\ NU(K;(X,Y))
el jeJ

with h1, hie,g (1 € I), k; (j € J) polynomials in O[X,Y]. Let
A={xe A" f(x,y) =0}.

Then A is a K(y)-closed Zariski subset of A™ which is defined by polynomials with
coefficients in Oly].

STEP A: Finding P and hy. We denote Ry = [ ] and E = K(y). We find,
by Remark 1.16, 0 # x¢ € Ry such that R = Ro[zg ] is integrally closed and we
denote the integral closure of R in E by R. Then Lemma 2.24 gives, effectively in
the explicit case,

i. a finite Galois extension P of E,

ii. a power ¢ of char(FE),

iii. for each subextension L of P/E, an L-closed subset, A}, of A which is
defined by polynomials with coefficients in RN L7 and decompose into a
union of absolutely irreducible varieties defined over Li by polynomials
with coefficients in & N L7 such that

(3) for any two subextensions Ly and Ly of P/E which are conjugate by
an element of Gal(P/E) there exists ¢ € Gal(P/E) which satisfies
Ly =o0L; and A}, = 0A] , and
iv. 0 £z €R,
such that the system (P, q, A} (E C L C P),z) is a solution for the pair (A4, R).

We find a non-negative integer r such that zjz € Ry = K[y| and then we
find 0 # a9 € O such that 2’ = apxf™ 'z € Ofy]. Then 2/ # 0 and it satisfies
that Ro[(z')~!] = Ro[zy'][z~!] = Rlz~']. We find a polynomial 0 # hy € O[Y]
such that hy(y) = 2’. In particular, h, does not vanish on V and R[z~!] =
Ky, hy(y)~]-
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Now, let @ be a finite Galois extension of K (y) which contains P and let Dy/By
be a Galois ring/set cover such that By = V' ~\V(hg), where hy € O[Y] is a poly-
nomial which does not vanish on V and K (D) = Q. Let C be a conjugacy domain
of Gal(Q/K(y)) and let L be the fixed field in @ of one of the groups in C. Let
zr, be a primitive element for the extension L/K(y) which is integral over Oly],
let pc € O]Y,Z] be a polynomial which satisfies that pc(y,Z) is a multiple of
irr(z,, K(y)) by an invertible element of K[By], and suppose that the discriminant
of zr, over K(y) is invertible in K[By].

STEP B: Finding ¢)o. The algebraic set A%, decompose into a union of abso-

lutely irreducible varieties which are defined over (L N P)% (and hence over L%):
Asz:%U..'UVQ-
Suppose that

V= {x € A™[fi(x,y5,28) =0}, i=1,....s,
where £(X,Y', 2') = (fu(X, Y, Z'), ..., fi pity(X, Y, Z')) with
fi €OTX, Y, Z), j=1,....p(i), i=1,....s.
For each i between 1 and s,llet Yi(Y’', Z") be the following special existential
formula in the language L£;.q4(07):
IX[E(X, Y, Z') = 0 AT (X, Y'7)].
It follows from Proposition 2.20, with Y replaced by (Y’, Z’), that there exists,

for each i between 1 and s, a quantifier-free formula wj(Y’ ,Z') in the language

£rad(0%), which can be effectively constructed in the explicit case, such that for
every perfect algebraic extension M of K which is PAC over Oy; and for each
(b,c) € O%" which satisfies that

Vi be) = {x € A™| f;(x,b7,ci) = 0}
is an absolutely irreducible variety, we have
Ow = IX[E(X, b1, c1) =0 AT(X,b)] & ¢(bt,c1).
For each i between 1 and s, let ¥,(Y, Z) be the quantifier-free formula @/}7(1 (Y, 2)
in the language L,,4(0). We denote
V(Y. Z) =1 (Y,Z) V- Vi (Y, Z).

Note that 1. depends indeed only on C, by pc, and not on L, because if L' is
another fixed field of one of the groups in C, then there exists 7 € Gal(Q/F) such
that L' = 7L. In particular, LNP and L'NP are conjugate by resp(7) € Gal(P/E).
Hence, it follows from (3) that there exists ¢ € Gal(P/E) such that L'NP = o(LNP)
and A}, p = 0 A} 1 p. Extend o to an element of Gal(Q/E). Then

Apnp =0ViU--UaV, = | J{x € A™| fi(x,y7,02]) = 0} .
i=1
Hence, the formula i(Y’,Z’) : IX[£;(X,Y’,Z") = 0 A T(X,Y'?)] depends only
on the choice of the polynomial pc(y,Z), i = 1,...,s, and therefore 1), does not
depend on L.
Let h € O[Y] be a common multiple of hy and hy, and let B = V ~\V(h) and
D = Do[h(y)~"].
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StEP C: The pair (pc,c) is a solution for the triple (¢, D/B,C). Let M
be a perfect algebraic extension of K which is PAC over Oy, and let b be an
element in B(Ojs) which satisfies Ar(D/B, M,b) = C. We denote R’ = K[B] =
Kly,h(y)™!] and let ¢o be the K-homomorphism of R’ into M which is defined
by the specialization y +— b. Then po(A) = {x € A™| f(x,b) = 0}. Let ¢
be a K-homomorphism of D into a Galois extension N = M (p(D)) of M which
extends g such that L is the fixed field, E,, of Dy () g in Q. Consider the
isomorphism ¢* : Gal(N/M) — Dy () g which satisfies ¢(¢*(0)(u)) = o(p(u)),
for each o € Gal(N/M) and each u € D (Remark 1.21 a)). Then, for each u € DNL,
we have ¢*(0)(u) = u (because ¢*(0) € Dy (p) g) and hence p(u) = o(p(u)) for
each 0 € Gal(N/M). Thus, p(DNL) C M. In particular, ¢ = p(z1) € M. Also,
c is integral over O[b] (because zy, is integral over Oly]) and hence ¢ € Oy. It
follows from Lemma 2.24, for S = D, that

P(ALap) = (Vi) U---Up(V5)
is a decomposition of p(A}~p) into a union of absolutely irreducible varieties, and
po(A)(M) = p(ALnp)(M) = (Vi)(M)U--- U p(V5)(M).
Thus, V; (b,c) = ¢(Vi) is an absolutely irreducible variety, for each i between 1 and

s, and

{x € 0% f(x,b) = 0} = | J{x € OF fi(x,b7,c7) = 0}.

i=1

Hence
Ou = ¢(b) & Oy = IX[F(X,b) = 0AT(X,b)]
& Oy F 3IX[\/ £(X,b7,c7) = 0 AT(X,b)]
=1
© Oy E \/ 3X[£(X, b7, c7) = 0AT(X, b))
=1
& On =\ ¥l(b7,c) & On = \/ ¥y(b,0)
=1 =1
< OM ':@C(bvc)'
That is,

Ow [= 9(b) © Onr = 3Z[pe(b, Z) = 0 A e (b, Z)].

It is left to show that Oy = ¥(b) & O = VZ[pe(b,Z) = 0 — (b, Z)].
To this end, let d = degy, pc and let ¢1,...,¢cq € O be the roots of the polynomial
pe(b, Z). Since the discriminant of zy, over K(y) is invertible in K[B], it follows
that

[1(ci = ¢j) = Disc(po(irr(z1, K(y)))) = po(Disc(irr(zr, K (y)))) # 0

i#£]
and hence ¢; # ¢; for i # j. Now, let i be a positive integer between 1 and
d such that ¢; € Oy and extend the specialization (y,zr) — (b,¢;) to a K-
homomorphism, ¢;, of D. Then, for each o € Da(p;) g we have p;(0zr) = ¢i(zL)
(because @;(z1,) = ¢; € M) and hence oz, = z;, (because z;, and oz, are different
roots of the polynomial pe(y,Z) if and only if ¢;(z1) and @;(ozy) are different
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roots of the polynomial pc(b, Z)). Therefore 21, € E,, (and hence L C E,,,), where
E,, is the fixed field of Dys(¢;) g in Q. But, there exists 7 € Gal(Q/E) such that
7L = E,,; hence L = E,,. Therefore, returning on the argument of the previous
pharagraph for ¢; instead of ¢, we get

On [ Y(b) & On = Ye(b,ci) .
Thus
Owm = ¢(b) & On E VZ[pe(b, Z) = 0 — ¢ (b, Z)].
CASE II: The general case. By Theorem 1.12 and Lemma 2.21 we can find,
effectively if ¥(Y) is presented, special existential formulas

1Y), (YY)
such that for every perfect algebraic extension M of K which is PAC over Oy, we
have
(4) Om EU(Y) < i (Y) V- Vi (Y).
By case I, we find, for each i between 1 and ¢, a finite Galois extension P; of K(y)
and a polynomial hy, € O[Y] which does not vanish on V such that the pair (¢;, V')
is solvable by the pair (P;, hy,). We denote P = Py --- P, and hy = hy, - hy,.

Let @ be a finite Galois extension of K (y) which contains P and let Dy/By be a
Galois ring/set cover such that By =V \V (hg), where hg € O[Y] is a polynomial
which does not vanish on V and K(Dg) = Q. Let C be a conjugacy class of
Gal(Q/K(y)) and let L be the fixed field in @ of one of the fields in C. Let
zr, be a primitive element for the extension L/K (y) which is integral over Oly],
let pc € O[Y,Z] be a polynomial which satisfies that pe(y,Z) is a multiple of
irr(z,, K(y)) by an invertible element of K[By], and suppose that the discriminant
of zp, over K(y) is invertible in K[By]. Let h € O[Y] be a common multiple of kg
and hy and denote B =V N V(h) and D = Dy[h(y)™'].

Let ¢ be a positive integer between 1 and ¢. Since the pair (¢;, V) is solvable by
the pair (P, hy,), it follows that there exists a quantifier-free formula v;.(Y, Z),
in the language L;aq(O), such that the pair (pc,v;c) is a solution for the triple
(v;, D/B,C). That is, for every perfect algebraic extension M of K which is PAC
over Oy and for each b € B(O,y) which satisfies Ar(D/B, M,b) = C we have

(5)  Ou b ti(b) & O F 3Zlpe(b, Z) = 0 Aie(b, 2)
© Oy EVZ[pe(b, Z) =0 = ic(b, Z)] .

We denote

Ve(Y,Z) i p1c(Y, Z2)V - VoY, Z).
Then, for every perfect algebraic extension M of K which is PAC over Oy, and for
each b € B(O)s) which satisfies Ar(D/B, M,b) = C we have, using (4) and (5),
that

Om ': ’(/J(b) < Op ): ’le(b) \/"'\/’L/)t(b)

& On |\ 3Z[pe(b,2) = 0 A Pic(b, Z)]

=1
t
& Oy =3Z[pe(b,Z) =0 A \/

& Oun E3Z[pe(b, Z) = 0AYe(b, Z))].
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Similarly, O E (b)) & On = VZ[pe(b, Z) = 0 — (b, Z)]. O

3. RADICAL GALOIS STRATIFICATION

Introduction. In this section we shall prove the theorem that was formulated
in the introduction (Theorem 3.33): Let e be a non-negative integer. For each
o = (01,...,0.) € Gal(K)® let K(o) be the fixed field in K of o4, ...,0. and let
O(o) be the integral closure of O in K (o). Let 6 be a sentence in the language
L(ring, O) and let o be the Haar measure of all o € Gal(K)¢ such that 6 is true
in (5(0’). Then, « is a rational number which can be effectively computed in a
primitive recursive way when O is an effective computability domain.

For the convenience of the reader, we shall describe in this introduction to Section
3, in general lines, the primitive recursive procedure of quantifiers elimination in
the stratification procedure.

We rewrite 6 in a disjunctive normal form:

ko1
(@1 X1) - (Qan)[\/ /\ fi(X) = 0N gi5(X) #0],

i=1j=1
where X = (X1,...,X,), Q; is the existential quantifier 3 or the universal quantifier
V, and fij, g;; € O[X]. The formula in the brackets defines a K-constructible set
A C A". Now, we stratify the affine space A" into a finite union of disjoint K-
normal basic sets

A" = U A,

iel,

such that for each 7 € I,,, A; C A or A; C A"\ A, where each A; is of the form
Vi NV (g;) with g; € K[X], V; is a K-variety on which g; does not vanish, and the
ring K[A;] = K[x;, g(x;)7!] is integrally closed, where x; is a generic point of V;.
For each ¢ € I, we choose a quantifier-free sentence 6; in the language L;.q4(O)
such that 6; is true if A; C A and 6; is false if A; C A"~ A. We denote by
A, (O) the system (A", A;,60;|i € I,,) and by Sen(A,(O)) the system of sentences
(0;|i € I,). For an algebraic extension M of K and for a € A™"(O)y) we write
(Ap, M,a) = Sen(A,(0)) if Op = 6; for the unique i € I,, such that a € A;. In
these notations we have that for every algebraic extension M of K,

Om =0 & (Q1X1) - (QnXn)[(An, M, (X1, Xn)) |= Sen(An(O))]-

This is the situation at the starting point of the elimination procedure. At the
general stage of this procedure we are dealing with objects that have also “height”.

Suppose that we have eliminated the quantifiers @y, ..., Qm+1, in order, where
m is a positive integer between 1 and n. In this stage A™ is stratified into a union

of disjoint K-normal basic sets, A™ = U A;, and for each ¢ € I, we build the
i€l

following complex structure over A;: C; is an integral domain which extends K[A;]
such that C;/K[A;] is a Galois ring cover with Galois group Gal(K (C;)/K(4;)) =
Gal(C;/A;). Here K(A;) = K(x;), where x; = (2;1,...,Zn) i a generic point of
A;. In addition, for each subextension L of K(C;)/K(4;), (C;NL)/K[A;] is a ring
cover.

Let H be the family of all finite groups H such that rank(H) < e and let
Conj(C;/A;, H) be the set of all conjugacy classes of subgroups of Gal(C;/A;) which
belong to H. Note that when e = 0, H = {1}; hence Conj(C;/A;,H) contains
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only one conjugacy class, which is {Gal(C;/C;)}. For each C € Conj(C;/A;, H)
we denote the set of all fixed fields in K (C;) of groups in C by Fix(C). For each
L € Fix(C) we choose a primitive element zy, for the extension L/K (A;) such that:
for every L1, Lo € Fix(C) there exists o € Gal(C;/A;) which satisfies Ly = o4
and zr, = ozL,, 21, is integral over O[x;], and the discriminant of zj, over K(4;) is
invertible in K[A;] (recall that (C;NL)/K[A;] is aring cover). Let p; ¢ € O[X, Z] be
such that p; ¢(x;, Z) is a multiple of irr(zy,, K (4;)) by an invertible element of K[A4;],
for L € Fix(C). For each L € Fix(C) we attach a quantifier-free sentence 6; 1, in the
language Laa(O[xi,z1]), such that 0; .1, = 06, 1, for each o € Gal(C;/A;) which
satisfles z,1, = ozp. That is, there is a quantifier-free formula ¢; ¢(X1, ..., X, Z)
in the language L£,,q4(O) such that 6; 1 = ¢; ¢(xi, z) for each L € Fix(C). Let 0,
be the system of sentences (6; 1| L € Fix(C), C € Conj(C;/A;, H)). We say that
0;1 is a quantifier-free sentence in the language £,.q(0[C;/A;, H)]).

Let M be one of the fields K (), chosen at random. Then Oy = O(e) is the
integral closure of O in M. For almost all (with respect to the Haar measure)
o € Gal(K)®, K(o) is a perfect field and is PAC over O(o) (Proposition 1.7)
which satisfies Gal(K (o)) 2 F, | , p- 379, Thm. 18.5.6]. We denote the set of
all fields M such that M is a perfect algebraic extension of K which is PAC over
Oy and Gal(M) = F, by F.(O). Note that Gal(M) = F, iff Im(Gal(M)) = H
[ , . 360, Lemma 17.7.1]. If M € F.(O), then Gal(M) has in particular the
embedding property | , D- 568, Lemma 24.3.3] and M is a Frobenius field over
On (Subsection 3.1).

Let M € F.(0), a € A;(Oy). Denote the Artin symbol, Ar(C;/A;, M,a), of a
in Gal(C;/A;) (Definition 1.20 c)) by C. We write (C;/A;, M,a) = 60, 3 iff

Oum E3Zpica,Z) =0Ag;c(a,2)].
We say that the pair (C;/A;, 0, ) is compatible iff
a) for each C € Conj(C;/A;,H), the content of 0; , in K[A;] (Definition 2.12
b)), for L € Fix(C), is an invertible element of K[A;]; and
b) for every M € F.(O) and a € A;(Oyr) we have, for C = Ar(A;, M, a), that
Oum EIZpic(a,Z) =0 g c(a, Z)]
< O ': VZ[pi,C(a, Z) =0— gaiyc(a7 Z)] .
We assume that all the sentences 8, 3, are compatible with the cover C;/A;. (For
each C € Conj(C;/A;,H) and each L € Fix(C), the discriminant of z, over K(4;) is
invertible in K[A;]; this assumption will allow us, using Proposition 2.26, to build
in each stage of the elimination procedure such a quantifier-free sentence 6; 4 .)

In the starting point of the elimination procedure, when m = n, we take, for
each i € I,,, C; = K[A;] and hence Gal(C;/A;) = 1. In particular, Gal(C;/A;) has
only one conjugacy class C = {1} which belongs, of course, to Conj(C;/A;, H). We
attach to it a quantifier-free formula 6; in the language L,.q(O) such that 6; is true
or false according to if 4; C A or A; C A" N A.

We call the system

Am(O,H) = <Am, Ci/Ai, 01"7{ |’L S Im>
a radical Galois stratification (with respect to H) of A™ over O and the system
Ap, = (A™,C;/A; |i € I,,) the normal stratification under A,,(O,#). Let

Sen(Am (O, H)) = (0,3 | i € In)

Albanian J. Math. 13 (2019), no. 1, 3 - 93.


http://albanian-j-math.com/vol-13.html

AHARON RAZON 37

be the system of sentences of A,,(O,H). For M € F.(O) and a € A™(Oypr), we
write (A, M,a) = Sen(A,, (O, H)) if (C;/A;, M,a) = ;3 for the unique i € I,
such that a € A;.

If O = K, we denote, for each i € I,,, by Con(A;,H) the conjugacy domain
of Gal(C;/A;) which contains all the subgroups G that belong to H and satisty,
for C = {G7 |0 € Gal(Ci/A;)}, that there exists (a,2) € A;(K) x K such that
pic(@,2)=0and K = p;c(a,2). Let M € F.(K) and a € A;(M). Then

Ar(A;,M,a) C Con(4;,H) & (C;/A;, M,a) =0, .
Indeed, let C = Ar(A;, M,a) and L € Fix(C). Then there exists a K-homomorphism,
7't K[x;,21] — M, such that 7/(x;) = a. Also, the content of §; 1 in K[A4,] is
an invertible element of K[A;]. Note that C C Con(A4;,H) iff there exists a K-
homomorphism, 7: K[x;,z5] — K, which satisfies that K |= 7(6; ). Hence, by
Remark 2.14 b),
CCCon(A;,H) e MET0;L) e MEIZpicla,Z) =0Ap;c(a, Z)]

< (Ci/Ai, M,a) = 0; 5.
In this way we can replace the radical Galois stratification A,,(O,H) of A™ by the
usual Galois stratification | , Chapter 30]

Am(H) = (Am,Ci/Ai,Con(Ai,"H) |’L € Im>

of A™.
Now, let 7 : A™ — A™~! be the projection defined by

T(Z1, .y Tm) = (L1, oy Tp—1) -

If Q,, is the existential quantifier 3, we build a radical Galois stratification
Am_1(O,H) of Am~! over O, such that for every M € F,(O) and each b €
A" Y (Ow), (Am—1,M,b) = Sen(A,,—1(O,H)) iff there exists a € A™(O)) such
that m(a) = b and (A, M, a) = Sen(A,,(O,H)). In this way, we code the infor-
mation on the existential quantifier in the formula

AX o [(Am, M, (X1, oo, X1, X)) | Sen( A, (O, H))]

inside a new radical Galois stratification A,,_1(O, H).
If @,y is the universal quantifier V, we build the complement to A, (O, H):

A (O,H) = (A™,C;/Ai, 8.3 |i € In) .

Note that since the pair (C;/A;, 6, %) is compatible, for each i € I, it follows that
for every M € F.(O) and each a € A™(Oyy),

(A, M, a) F Sen(An (O, H)) < (AS,, M, a) = Sen(AS, (O, H)) .

Now, we find a radical Galois stratification A, _;(O,H) of A"~ over O such that
for every M € F.(O) and each b € A™~1(Oy), (A%, _1, M,b) = Sen(AS, (O, H))
iff there exists a € A™(Oyy) such that w(a) = b and (A%,, M, a) = Sen(AS, (O, H)).
The complementary radical Galois stratification to A, _;(O,H) satisfies, for every
M € F.(O) and each b € A™~1(Oy), that (A1, M,b) = Sen(A,,_1(0,H)) iff
(A, M,a) | Sen(A,,(O,H)) for all a € A™(O)) such that w(a) = b.

In any case, for every M € F,(O) and each (a1,...,am_1) € A" HOy), we
have

(.Amfl, M, (ah . ,amfl)) ': Sen(Am,l((’), H))
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if and only if Qman € Op such that (A, M,a) = Sen(An,(O,H)), where a =
(al, . 7am).

In this way we eliminate the quantifiers @, ..., Q1 from 6, in order. In the final
stage we get a radical Galois stratification (with respect to H) Ag(O,H) of A over
O such that, for every M € F.(O),

< (Ao, M, 0) = Sen(Ao(O, H)),
where O is the only point in A®. The normal stratification Ay under Ay (O, H) is
trivial: Ag = (A% Cy/Ag), where Ag = A = {O}. In this case K(Ag) = K, Co = L
is a finite Galois extension of K, and, for every algebraic extension M of K,

Ar(Ag, M,0) ={Gal(L/LNM)°|o € Gal(L/K)}.
In addition, Sen(Ag (O, H)) contains only one system of sentences x,, = (xx’ | K’ €
Field(L/K,H)), where Field(L/K,H) is the set of all subextensions K’ of L/K
such that Gal(L/K') € H, and xk- is a quantifier-free sentence in the language
Lraa(Ok+) such that if K| and K} are two subextensions of L/K which are con-
jugate by an element of Gal(L/K), then there exists o € Gal(L/K) which satis-
fies K3 = oK} and xg; = oxk;. Hence, for every M € F.(O), the condition
(Ao, M, 0) = Sen(Ao(O, H)) reduces to Gal(L/L N M) € H and On = xrnm- It
follows from Proposition 2.11 that Oy = xpnm iff O | xpanm. We denote

Cong(H) = {Gal(L/K') € H| K’ is a subextension of L/K s.t. O = xx: }.

Then, Cong(H) is a conjugacy domain of subgroups of Gal(L/K) which belong to
H. Moreover, when O is an effective computability domain, if e is given and @ is
presented, then we can effectively find it (because, by Proposition 2.8, the relation

Rady,; on O is primitive recursive). We arrive, then, to the conclusion that, for
every M € F.(O),

Ou E6< Gal(L/LN M) € Cong(H).
Let k& be the number of oy € Gal(L/K)® such that (og) € Cong(H). Then, it

follows from above that o =

LK) is the desired rational number; that is, o is

the Haar measure of all & € Gal(K)¢ such that 6 is true in O(o).

3.1. Frobenius Fields over Rings of Integers. Recall that a field M is a Frobe-
nius field if M is PAC and Gal(M) has the embedding property | , p. 564,
Def. 24.1.3].

Definition 3.1. Let R be a subring of a field M. We say that M is a Frobenius
field over R if M is PAC over R and Gal(M) has the embedding property.

A Frobenius field satisfies the decomposition group’s property | , p. 564,
Prop. 24.1.4]. We shall prove here a similar proposition for a Frobenius field over
a subring for the special case which we are interested in this work:

Proposition 3.2. Let M be a perfect algebraic extension of K and suppose that
M is Frobenius over Op. Let y be a transcendental element over M and denote
E = M(y). Let F be a finite Galois extension of E and let S/R be a ring cover
over M with a field cover F/E, where R = M|y, g(y)~!] with a nonzero polynomial
g in M[Y]. Let N be the algebraic closure of M in F and let H be a subgroup
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of Gal(F/E) such that H € Im(Gal(M)) and resy(H) = Gal(N/M). Let E' be
the fized field of H in F and let z be a primitive element for the extension E'/E
which is integral over Oply]. Let 0 be a quantifier-free sentence in the language
Lraa(Only, 2]) and suppose that there exists an M-homomorphism 7: S — K which
satisfies that T(y),7(z) € On, T(co) # 0, and Opp = 7(0), where ¢y is the content
of 0 in R.

Then, there exists an M-homomorphism v: S — K which satisfies that
UV(y),w(z) € On, On E(0), and Dy (v) = H, where

Dy () = {o € Gal(F/E)| (Vu € S)[ip(u) € M = ¢(ou) = (u)]}.

Proof. The fixed field E' = F(H) of H in F satisfies that N N E' = M. Hence
res: Gal(F/E") — Gal(N/M) is surjective. We apply the embedding property of
Gal(M) on the diagram

Gal(M)

Gal(F/E') == Gal(N/M).

This gives a Galois extension N’ of M which contains N and an isomorphism
j: Gal(N'/M) — Gal(F/E") with resy(j(0)) = resy (o) for each o € Gal(N'/M).
In particular, N'E'NF = NE'. Let I/ = N'F. Then

Gal(F'/E") = {(01,02) € Gal(N'/M) x Gal(F/E")| resn(c1) = resn(02)} -

Let A = {(0,j(0))| o € Gal(N’'/M)} and let D be the fixed field of A in F’. Then,
it follows from the field crossing argument (which appears, for example, in Part A
of the proof of | , p- 431, Lemma 20.2.2] and, of course, in the proof of | ,
p. 564, Prop. 24.1.4]) that DN’ = DF = F', FND =FE', and NNND =M. In
particular, D is a regular extension of M of transcendence degree 1.

The integral closure U of R in D is finitely generated over R [ , p. 120]:

U= Rlai,...,z0] = Mly,g(y) ™" a1, ., 2]

Let Dy be the definition set of 6 in Opsly, z]. Since z belongs to E’ and is integral
over Oyly], it follows that z € U and hence Dy C U. Suppose, without loss, that
Dy C {x1,...,z,} and let W be an M-variety which is generated by the point
(y,9(y)~1,x). Since M is perfect and PAC over Oy, it follows from Theorem 1.10
(applied to W instead of to V') that there exists an M-epimorphism ¢y : U — M

such that Yy (y),Yu(z) € Op and wTU(Ef)l) is an invertible element of Oy for each
d € Dy (because 7(cg) # 0 and hence 7(d) # 0). Hence, since Oy = 7(6), it follows
from Lemma 2.13 that Ops |= 1y (0). Let 2’ be a primitive element for the extension
N'/M. Then, since D is linearly disjoint from N’ over M, it follows from [ . p-
110, Remark 6.1.7] that the integral closure V of U in F' is N'U = U[2']| = N'@pu U.
In particular, S C V. Hence 9y extends to an N’-epimorphism ’: V' — N’. Since

[F': D] = [N': M], it follows that the decomposition group
D) ={o € Gal(F'/E')| (Vv € V)[{(v) = 0 = ¢'(ov) = 0]}

is A [ , p- 109, Lemma 6.1.4] (Note that D(¢') = D(Ker(¢')) in the notations
of | , §6.1]). Let ¢ be the restriction of ¢’ to S and let

D(y) ={o € Gal(F/E)| (Yu € S)[¢(u) =0 = ¥(ou) =0]}.

Then, Gal(F/E") = respD(¢') < D(¢) < Gal(F/E’) and hence D(¢p) = H. Fi-
nally, by Remark 1.21 b), Dy (¢)) = D(¢) = H. O
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3.2. Cover-Sentence Pairs.
Notation 3.3. Let A be a K-normal basic subset of A™ with
K[A] = Klxy,... ,xn,g(x)_l] ,

where g is a polynomial in O[X7, ..., X,], and let C/A be a Galois ring/set cover
over K. Also, let H be a family of finite groups.

a) A is the Zariski closure of A in A™. That is, A is the K-variety generated
by x = (1,...,%pn).

b) O[A] = O[x] is called the ring of integers of A.

c¢) Conj(C/A) is the set of all conjugacy classes of subgroups of Gal(C/A).
Conj(C/A, H) is the set of all the conjugacy classes of subgroups of Gal(C/A)
which belong to H.

d) For each C € Conj(C/A), Fix(C) is the set of all the fixed fields in K(C) of
subgroups in C.

e) Field(C/A) is the set of all subextensions of K(C)/K(A).

Field(C/A,H) = {L € Field(C/A) | Gal(K(C)/L) € H} .

f) For each L € Field(C/A) we choose a primitive element zj, for the extension
L/K(A) which is integral over K[A] such that for each C € Conj(C/A) and
every Ly, Ly € Fix(C) there exists o € Gal(C/A) which satisfies Ly = 0Ly
and zr, = ozr,. (First choose, for each C € Conj(C/A), L € Fix(C) and
fix such zy. Denote G = Gal(K(C)/L) and H = {0 € G|oL = L}. Then
H < G. Suppose that [G : H] = r and let 01 = 1,03,...,0, be a system
of left coset representatives of G modulo H. Now define z,,;, = 0;2r,
i =2,...,7.) We multiply g by a suitable element of O[X] in order to
assume that the discriminant of zy, over K(A) is invertible in K[A]. Then,
(CNL)/Ais a ring/set cover over K with a field cover L/K(A) and with
a primitive element z;. Now, we multiply z; by an invertible element of
K[A] in order to assume that zj is integral over O[x]. (Note that the
discriminant of zj, over K(A) remains invertible in K[A].)

We say that C'/A is a complete Galois ring/set cover over K. That
is,

for each L € Field(C/A), (CNL)/A is a ring/set cover over K.

We call z;, an O[A]-integral primitive element for the ring/set cover
(CnL)/A.

We call the system of primitive elements z = (21, |L € Field(C/A)) an
O|A]-integral primitive element for C/A.

O[C N L] = O[x, z1] is called the ring of integers of C'N L.

We call the system of rings of integers O[C'/A] = (O[CNL]| L € Field(C/A))
the ring of integers of C'/A, and we denote O[C/A,H]| = (O][CNL]|L €
Field(C/A, H)).

g) For each L € Field(C/A,H), let 01, be a quantifier-free sentence in the
language L,q(O[C' N L]) such that 0,;, = of for each o € Gal(C/A)
which satisfies z,7, = 0zr. That is, for each C € Conj(C/A,H) there exists
a quantifier-free formula ¢ (Xy,...,X,,Z) in the language L.q(O) such
that 01, = ¢¢(x, z1,) for each L € Fix(C).

We call the system of sentences 8z = (6r, | L € Field(C'/A,H)) a quantifier-
free sentence in the language L£,,q4(O[C/A, H]).
h) Let 04, x4, be quantifier-free sentences in the language L£,.q4(O[C/A, H]).
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=03, = (-0 | L € Field(C/A,H)) is the negation of 64,

01V xy = 0LV xo|L € Field(C/A, H)) is the disjunction of 84 with
X7, and

01 AN xy = (0 A xr|L € Field(C/A, H)) is the conjunction of 84, with

X

i) For each C € Conj(C/A,H), let cg, := cp, be the content of 0, in K[A]
(Definition 2.12 b)), for L € Fix(C).
We call cq,, = H cg. the content of O in K[A].

CeConj(C/AH)

Let hg,, € O[X] be such that hg,, (x) is a multiply of cg,, by an invertible
element of K[A]. Then, hg,, is a polynomial in O[X] which satisfies that
he,, (x) # 0 and for every K-homomorphism, 75: K[A] — K, and for each
L € Field(C/A, H) we have

he,, (T0(x)) # 0 = 79(ca,) # 0.

Such a polynomial is called a content polynomial of 64.

j) For a profinite group G we denote the set of all finite quotients of G by
Im(G).
We denote the set of all fields M such that M is a perfect algebraic extension
of K which is Frobenius over Oy and Im(Gal(M)) = H by F(O).

3.4. Compatible Cover-Sentence.
Definition 3.5. Let C/A be the complete Galois ring/set cover over K of Notation

3.3 and let H be a family of finite groups. Let z be an O[A]-integral primitive
element for the cover C/A, let O[C/A] be the corresponding ring of integers of
C/A, and let 84 be a quantifier-free sentence in the language L..q(O[C/A, H)).
For each C € Conj(C/A,H), let pc be a polynomial in O[X, Z] which satisfies
that pe(x, Z) is a multiple of irr(zy, K(x)) by an invertible element of K[A] and
let ¢c(X,Z) be a quantifier-free formula in the language L;,4(O) which satisfies
we(x,21) = 0r, for each L € Fix(C).
a) Let M € Fy(O) and a € A(Oyp) and denote C = Ar(A, M,a). Since
H = Im(Gal(M)), we have C € Conj(C/A, H). It follows from Remark 1.21
a) that for every K-homomorphism, 7: C' — K, such that 7(x) = a we have
7(21) € M, where L is the fixed field of Dps(7) in K(C). Also, 7(z1) is
integral over Ola] (because zy, is integral over O[x]); hence 7(z1) € Oy and
7(01) = pc(a, 7(z)) is a quantifier-free formula in the language Lyaq(Opr).
In particular, it follows from the assumption C = Ar(A4, M, a) that
On = 3Z[pc(a, Z) = 0].
We write (C/A, M, a) |= 04 iff there exists a K-homomorphism, 7: C' —
K, which extends the specialization x +— a such that Oy = 7(61), where
L is the fixed field of Dps(7) in K(C).
Alternatively, (C'/A, M,a) |= 04 iff Oy = 3Z[pe(a, Z) =0 A ge(a, Z)).
b) We say that the cover-sentence pair (C/A, 04) is compatible iff the fol-
lowing two conditions are satisfied:
1. the content, cg,,, of 83 in K[A] is invertible in K[A], and
2. for every M € Fy(O) and each a € A(O)s) we have that if there
exists a K-homomorphism, 7: C' — K, such that 7(x) = a and Oy =
7(01), where L is the fixed field of Dy (7) in K(C), then for every
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K-homomorphism, 7/': ¢ — K, such that 7/(x) = a we have Oy =
7/(0/), where L' is the fixed field of Dy (') in K(C).
Alternatively, (C'/A, 04) is compatible iff cg,, is invertible in K[A] and for
every M € F4(O) and each a € A(O)) we have, for C = Ar(A, M, a), that
Oum ': ElZ[pC(aa Z) =0 /\(pc(a,Z)]
= Oum ’: VZ[pC(a7Z) =0— @C(av Z)] :
(Alternatively, Oy | ne(a), where ne(X) is the formula
Z[pe(X, Z) =0 N pe(X, Z)] = VZ[pe(X, Z) = 0 = pe(X, Z)] )

Remark 3.6. If (C'/A, 04) is a compatible cover-sentence pair, then for every M €
Fx(O) and each a € A(Oys) we have
(C/A,M,a) -0y < (C/A, M,a) |E -0y .
Indeed, Let C = Ar(A, M,a). Then, in the notations of Definition 3.5,
(C/A7M7a) F& 07—[ < Oun l7é HZ[pC(awZ) =0A @C(aa Z)]

< Oy EVZpe(a, Z) =0— ¢c(a, Z)]

= OM ': EIZ[pC(a7 Z) =0A ﬁ(pc(&, Z)]

< (C/A, M,a) = -0y .
Remark 3.7. We interpret the notations in Notation 3.3 and Definition 3.5 in the
case n = 0. That is, when A = A consists of one point, O, the origin. In this
case K(A) = K, C = L is a finite Galois extension of K, and for every algebraic
extension M of K,

Ar(A, M,0) = {Gal(L/LNM)?|c € Gal(L/K)} .

Hence, O[A] = O and, for each K’ € Field(L/K,H), zx is a primitive element
for the extension K'/K which is integral over O (therefore zx € Og/) such that
for each C € Conj(L/K,H) and every K1, K} € Fix(C) there exists 0 € Gal(L/K)
which satisfies Ky = oK{ and zx; = ozg;, O[C N K'| = Ok, and 0 is a
quantifier-free sentence in the language L£.q(Ok+) such that 0, = o0k for each
o € Gal(L/K) which satisfies z,x = ozks. For each C € Conj(L/K,H), pc is
a monic polynomial in O[Z] which satisfies pc(Z) = irr(zg+, K) and ¢c(Z) is a
quantifier-free formula in the language £,,q(O) which satisfies pc(zx/) = 0k, for
each K’ € Fix(C).
Let M € Fx(O) and let C = {Gal(L/LNM)°|o € Gal(L/K)}. Then

(C/A,M,O) ): 04 < Oy ': HZ[pc(Z) =0A (pc(Z)] .
Let 21,...,2n be all the roots of pe(Z) in Opr. Then, if the pair (C/A,0y) is
compatible, then
m m
Oum =\ ¢e(z) & Om = )\ pe(z) -
i=1 i=1
3.8. Induced Cover-Sentence.

Definition 3.9. We continue to hold the notations of Notation 3.3 and Definition
3.5.

Let A’ be a K-normal basic set contained in A with a generic point x’. Then,
the specialization x — x’ extends uniquely to a K-homomorphism, 7, of K[A] into
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K[A']. We extend 7 further to a homomorphism 7 from C into a Galois extension
K(C") of K(A"), where C' = 7(C). Then, C'/A’ is a Galois ring/set cover and 7
induces an isomorphism 7*: Gal(C’/A’) — D(r) such that 7(7*(o)(u)) = o(7(u))
for each o € Gal(C’/A’) and each v € C' (Remark 1.21 e)). Let E. be the fixed
field of D(7) in K(C).

For each subextension L’ of K(C")/K(A’), there is a unique subextension L of
K(C)/E; such that 7*(Gal(K(C")/L")) = Gal(K(C)/L) (hence 7(CNL)=C'NL’
and [L' : K(A')] = [L : E;]). We denote 2}, = 7(z1) and, if L’ € Field(C'/A', H),
we denote 07, = 7(0r) (L' € Field(C'/A', H) implies L € Field(C/A,H)). Then,
27, is integral over O[A’] = O[x'] (because zy, is integral over O[x]),

C'NL =7(CNL)=1(K[x,z]) = K[x,21,] = K[A[2],],

pe(x’,27,) =0 and, if L' € Field(C'/A’,H), then 07, = pc(x’, 21,), where C is the
conjugacy class of Gal(C'/A) which satisfies L € Fix(C).

Since the discriminant, dy,, of zp, over K(A) is invertible in K[A], it follows that
the discriminant, d}, of z;, over E; is invertible in C' N E,; (Remark 1.14). Hence,
the discriminant, d, = 7(d}), of 27, over K(A’) is invertible in K[A']. Therefore,
2%, is an O[A’]-integral primitive element for the ring/set cover (C’ N L')/A’.

Let O[C' N L'] = O[x/,2},] be the ring of integers of C' N L’. Then, if L' €
Field(C'/A’, H), then 6}, is a quantifier-free sentence in the language L,2q(O[C' N
).

Let C" be the conjugacy class of Gal(C’/A’) which satisfies that L' € Fix(C')
(hence 7*(C") C C). We say that €’ is induced by 7 from C. Note that if
LY, L} € Fix(C’'), then the corresponding Li,Ls € Fix(C) are conjugate by an
element of D(7). Thus, there exists o € Gal(C’/A’) which satisfies Ly = 7*(0) L1
and zp, = 7*(0)zr,,. Therefore L, = oL} and

Sy = Ay = (o) = 7(30) = (7 (0)(21,)) = 0(7(30,)) = 02
since 7(7*(¢)(CNLy)) = o(r(CNLy)) = o(C'NL}). Hence, if C' € Conj(C'/A’, H),
then also H/L/Z = UH/L/I.

Let p;, be a polynomial in O[X, Z] which satisfies that pg, (x/, Z) is a multiple
of irr(z},, K(x')) by an invertible element of K[A’]. Then, since p¢(x’,27,) =0, it
follows that p(, (x’, Z)| pe(x’, Z) in K[A'][Z] (because irr(zr, K(x)) € K[A][Z] and
irr(z7,, K(x")) € K[A'][Z]). If C" C H, we let ¢p, (X, Z) be the formula ¢ (X, Z)
(note that if C' C H, then C C H).

We get, in particular, that C’/A’ is a complete Galois ring/set cover over K
with an O[A’]-integral primitive element z’ = (2}, | L’ € Field(C’/A")), O[C'JA"] =
(O]C" N L']| L’ € Field(C’/A")) is the corresponding ring of integers, and 0%, =
(0%, | L' € Field(C' /A, H)) is a quantifier-free sentence in £,,q4(O[C"/A’, H]), where
O|C' /A", H] = (O[C"'NL'|| L' € Field(C"/A', H)).

For each C" € Conj(C" /A", H), let cg;, := cg, be the content of 67, in K[A'], for
L' € Fix(C'). Then cq;,, = H cor, is the content of 05, in K[A".

C'eConj(C’ /A’ H)
For every M € F4(O) and each a € A'(Oys) we write
(C'/A M,2) = 8, = Onr = 37 [ (2, 7) = 0 A ¢l (2, 2)]
for C' = Ar(A’, M, a).

We say that the cover-sentence (C’/A’,0%,) is induced by 7 from (C/A, 0%).

Also, we say that a cover-sentence (C’/A’, 0%,) is induced from (C/A, 6y) if there
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exists a K-homomorphism, 7: C' — C’, such that (C’/A’,67,) is the cover-sentence
which is induced by 7 from (C/A, 04).

Remark 3.10. Suppose that the cover-sentence pair (C'/A, 83) is compatible; that
is, ce,, is invertible in K[A] and, for every M € F3(O) and each a € A(Oyr), we
have, for C = Ar(A, M, a), that Oy |= ne(a), where

ne(X) : 3Z[pe(X,Z) =0 A pe(X, Z)] = VZ[pe(X, Z) =0 = pc(X, Z)] .

Then
a)

)

cey,, is invertible in K[A'].

Indeed, let €’ € Conj(C’/A’,H). We shall show that cg/, is invertible
in K[A']. Let C be the conjugacy class of Gal(C'/A) which satisfies that C’
is induced by 7 from C, and let ¢y, be the content of 0, in K[A], for L €
Fix(C). Let L' € Fix(C') and L € Fix(C) be such that 7(L) = L’. Since cg,
is invertible in K[A], it follows that 7(cg.) is invertible in K[A'] = 7(K[A])
and, in particular, that 7(cg.) # 0. Hence, since 6}, = 7(6), it follows
that co;, = T(cg, ) is invertible in K[A'].

The induced cover-sentence (by ), (C'/A’,07%,), is also compatible.

Indeed, it follows from a) that cg, is invertible in K[A’]. In addition,
let M € Fy(O) and a € A’'(Oypr) and denote ¢’ = Ar(A’, M, a) and

e (X):

AZ[pe/ (X, Z) = 0N 0o/ (X, Z)] = VZ[pp (X, Z) = 0 = ¢i (X, Z)].

We have to show that Oy = n(/(a). Indeed, the conjugacy class C =
Ar(A, M,a) of Gal(C/A) satisfies that 7*(C') C C (Remark 1.21 €)); hence
C’ is the conjugacy class of Gal(C'/A’) which is induced by 7 from C.

Therefore, g, (X, Z) is the formula ¢¢ (X, Z).
Suppose that Oy = 3Z[pp(a, Z) = 0 A pe(a, Z)]. Then, since

per(a, Z)|pe(a, Z) in M[Z]

(because pp, (%', Z)|pe(x’,Z) in K[A'][Z]), it follows that we have also
Oyp = 3Z[pc(a,Z) = 0 A ¢pc(a, Z)]. Hence, since (C/A,0y) is compat-
ible, it follows that O = VZ[pe(a, Z) = 0 — pc(a, Z)]. Therefore, again,
since pl.(a, Z)|pc(a, Z) in M[Z], it follows that Oy = VZ[pLi(a,Z) =0 —
@c(a, Z)]. Thus, On =1/ (a), as required.

Let M € F3(0O) and a € A'(Oypr). Then

(C'JA',M,a) E 0%, < (C/A, M,a) = 64 .
Indeed, let ¢’ = Ar(A’, M,a) and C = Ar(A, M,a). Then
(C'"JA',M,a) =05 < Oy = 3Z[pe(a,Z) =0 A ¢c(a, Z))
= Ou = 3Z[pe(a, Z) =0 A pe(a, Z)]
& (C/A, M, a) = 0.
Conversely, since the pair (C/A, ) is compatible and
Owm = 3Z[pei(a, Z) = 0]
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(see Definition 3.5 a)),
(C/A,M,a) = 0y < Oy = 3Z[pe(a, Z) = 0N ¢c(a, Z)]
= On =VZ[pc(a, Z) =0 — ¢c(a, Z)]
= Oum EVZ[pe(a, Z) = 0 — ¢c(a, Z)]
= Om = 3Z[pe(a, Z) = 0N pe(a, Z)]
& (C'JA',M,a) = 07,

3.3. Cover-Sentence under Projection. We continue the conventions of Sub-
section 3.2. Let n > 0 and let m : A"*! — A" be the projection into the first n
coordinates. If n = 0, then 7 maps each point of A' onto the point, O, of A°.

Suppose that A C A" and B C A" are two K-normal basic sets such that
m(A) = B. Suppose also that C/A is a complete Galois ring/set cover over K
and 04 is a quantifier-free sentence in the language L;2q(O[C/A, H]), where H is
a family of finite groups. We shall now construct nonempty K-open subsets A’, B’
and C’ of A, B and C, respectively, a complete Galois ring/set cover D/B’ over K,
and a quantifier-free sentence x4, in the language L;.q(O[D/B’, H]) such that the
pair (D/B’, x4,) is compatible and, for every M € Fy(O) and each b € B’ (Ou),
the following holds: (D/B’,M,b) = x4 if and only if there exists a € A'(Own)
such that w(a) = b and (C'/A’, M,a) = 04;. There are two cases: either dim(A) =
dim(B)+1 or dim(A) = dim(B). Lemmas 3.12 and 3.15 treat the first case, Lemma
3.17 the second.

Notation 3.11. Let A C A"t and B C A™ be two K-normal basic sets such that
7(A) = B. Let C/A be a complete Galois ring/set cover over K with an O[A]-
integral primitive element z and with a corresponding ring of integers O[C/A], and
let @3 be a quantifier-free sentence in the language L;,q4(O[C/A, H]) with a content
polynomial hg,, € O[Xq,...,X,,Y], where X is a family of finite groups. We as-
sume that K(A) = K(B)(y), where y is a transcendental element over K(B). Let L
be the algebraic closure of K (B) in K(C). Also, let z be a primitive element for the
ring cover C'/K[A], let x be a generic point for B, and let B be the K-variety gener-
ated by x. We assume that K[B] = K[x,¢1(x)7!] and K[A] = K[x,y, g2(x,y) "],
where g1 € O[Xy,...,X,] and g2 € O[Xy,...,X,,Y]. We assume, in addition,
that hg,, (x,y) (hence also cg,,) is invertible in K[A].

Lemma 3.12. In addition to the notations in Notation 3.11, suppose that D/B
is a Galois ring/set cover over K such that L C K(D). Then, there exists a
polynomial hp € O[X,...,X,], not vanishing on B, such that if h is a multiple
of hp in O[X], then for C'" = C[h(x)71], A’ = ANV(h), D' = D[h(x)" '] and
B’ = BNV(h), we have that the pair (C'/A’,D'/B’) of Galois ring/set covers is
specialization compatible. That is:

(l1a) (D'NL)/K[B'] is a ring cover;

(1b) w(A") = B’; and

(lc) Let M be a field extension of K, let y' be a transcendental element over

—_~

M and let p: C' — M(y’) be a K-homomorphism such that o(x) € B'(M)
and o(y) = y'. Let N = M[p(D' N L)] and F = M(y',9(z)). Then,
[K(C): L(y)]=[F: N(y')] and N is the algebraic closure of M in F.
Moreover, in the explicit case, when A, B, C and D are presented, hp can be
computed effectively.
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Proof. | , p- 711, Lemma 30.2.1]. Let S = L N D and find a polynomial
f € S[Y, Z], irreducible over L, such that f(y,z) = 0. Since L(y,z) = K(C) is
a regular extension of L, f(Y,Z) is absolutely irreducible. The Bertini-Noether
theorem | , p- 179, Prop. 10.4.2] produces a nonzero element v € S with
this property: if ¥ is a homomorphism of S into a field and ¥ (u) # 0, then the
polynomial f¥(Y,Z) is absolutely irreducible and has the same degree in Z as
f(Y,Z). Choose hp € O[X1,...,X,] so that hp(x) = agi(x)* Ny, k() (uv) € O[]
for some 0 # a € O and some integer k£ > 0. Further, a multiplication of hp
by an appropriate polynomial in O[X] assures that, with D’ and B’ given in the
statement of the lemma, D' N L/K[B'] is a ring cover (Remark 1.18).

In order to prove that the pair (C'/A’, D'/B’) of Galois ring/set covers satisfies
(1a)—(1c) we have only to check (1c). Indeed, hp(p(x)) # 0. Hence, ¢(u) # 0 and
f#(Y,Z) is absolutely irreducible. Therefore, N is the algebraic closure of M in
F and f¥(y', Z) is irreducible over N(y'). Thus, [F : N(y')] = deg, f¥(y',Z) =
degy (4, Z) = [K(C) : L(y)]. 0

Definition 3.13. Let (C/A,0%) and (D/B,Xx4) be two cover-sentence pairs, in
which A C A”™! and B C A", C/A and D/B are complete Galois ring/set covers
over K with rings of integers O[C/A] and O[D/B], respectively, and 04 and x,, are
quantifier-free sentences in the languages L£,,4(O[C/A, H]) and L;.q(O[D/B,H)),
respectively. We say that the quadruple

(C/A, 03D/ B, x)
is compatible if the following three conditions are satisfied:
(2a) w(A) = B;
(2b) the cover-sentence pair (D/B,X4,) is compatible; and

(2¢) for every M € F5(O) and each b € B(O)y;) we have
(D/B, M,b) = x4 iff there exists a € A(Op) such that w(a) = b and
(C/Av Mv a) ): 07—[

Notation 3.14. Let F/E be a Galois extension and let L’ be a subfield of F' which
satisfies that L'/L' N E is a Galois extension. For a collection D of subgroups of
Gal(F/E) we denote the collection of all groups obtained by restricting elements
of D to L' by resy, D.

Lemma 3.15. Let (C'/A,04) and B be as in the notations of Notation 3.11. Then,
there exists a finite seperable extension P of K(B) such that, for any finite Galois
extension Q of K(B) which contains P, for every complete Galois ring/set cover
Dy/By over K in which By = B~V (hg) (ho € O[X]) is a nonempty K-open
subset of B and K(Dy) = Q, and for each O[B]-integral primitive element w for
the ring/set cover Do/By with a corresponding ring of integers O[Dy/ By, there
exist

(3a) a quantifier-free sentence x4, in the language Laq(O[Do/Bo, H]), and

(3b) a multiple h of hg in O[X] such that h(x) # 0,
and for B'= BNV (h), A’ = ANV/(h), C" = C[h(x)71] and D = Dy[h(x)7!], the
quadruple (C'/A’,04; D/B’, x4,) of two cover-sentence pairs is compatible.

Moreover, in the explicit case, when A, B, C, H and Oy are presented, P can
be effectively computed, and if also QQ and w are presented, then x4 and h can be
also computed effectively.
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Proof. For each conjugacy class C in Conj(C/A, H), let pc(X,Y, Z) be the quantifier-
free formula in the language £,,4(O) which satisfies that 01, = ¢ (X, y, z1/) and let
pe € O[X,Y, Z] be a polynomial such that p¢(x,y, Z) is a multiple of irr(zr., K (x,y))
by an invertible element of K[A], for each L’ € Fix(C). Let ¢¢(X) be the formula

WY3IZ[go(X,Y) £ 0 A pe(X,Y, Z) =0 A (X, Y, Z)] .

Let L be field as in Notation 3.11. For each conjugacy class Dy, in Conj(L/K(B))
we denote
Conjp, (C/A,H) = {C € Conj(C/A,H)|res.C = DL}
and
¥p, (X) = \V be(X).
CEConjDL (C/AH)
If Conjp, (C/A,H) = 0, we let ¥p, = tp,(X) be some false sentence in the
language L;2q(0). Then, Proposition 2.26 gives a finite Galois extension Pp, of
K(x) and a polynomial hy, , which does not vanish on B, such that the pair
(¢p, , B) is solvable by the pair (Pp, , hyp, ). This proposition allows us to eliminate
the quantifiers 3Y 37 and to replace them by an “algebraic” quantifier 3W in the
following way.

Let P be the compositum of L with all the Pp,’s and let hy be a common
multiple of all the hy, ’s in O[X], for D, € Conj(L/K(B)). Now, let @ be a
finite Galois extension of K (B) which contains P and let Dy/By be a complete
Galois ring/set cover such that By = BV (hg), where hg € O[X] is a polynomial
which does not vanish on B, and K (D) = Q. Let w be an O[x]-integral primitive
element for the ring/set cover Dy/By and let O[Dy/By] be the corresponding ring
of integers. For each conjugacy class D in Conj(Dy/By, H), let gp € O[X, W] be
a polynomial which satisfies that ¢p(x, W) is a multiple of irr(wr/, K(x)) by an
invertible element of K[By], for each L' € Fix(D). By assumption, Dg/By is a
complete Galois ring/set cover over K; in particular, the discriminant of wy, over
K(By) is invertible in K[By].

For each D € Conj(Dy/By, H), Proposition 2.26 gives a quantifier-free formula
(X, W) in the language L,.q(O) such that, if h € O[X] is a common multiple of
ho and hg, then, for B = BNV/(h) and D = Dylh(x)~!], the pair (¢p,9p) is a
solution for the triple (¢p,,D/B’, D), where Dy = res;D. For each L' € Fix(D)
we denote the quantifier-free sentence v (x, wz/) in the language L;aq(O[Do N L'])
by xr:. Then x4 = (xz/ | L' € Field(Do/By,H)) is a quantifier-free sentence in
the language L;.4(O[Do/Bo, H]). Let hy, € O[X] be a content polynomial of x4,,
let hp, € O[X] be the polynomial that Lemma 3.12 gives, and let h € O[X] be
a common multiple of hg, hy, hy,, and hp,. We denote B’ = BN\V/(h), D =
Dolh(x)™'], A = ANV(h) and C" = C[h(x)"']. Then, in particular, hy,, (x)
(hence also ¢y, ) is invertible in K'[B’] and the pair (C'/A’, D/B’) is specialization
compatible. Also, for every M € Fx(O) and each b € B'(Oys), we have, for
D = Ar(D/B’, M, b), that

(4) Oum E ¢p,(b) & Oy = IW([gp(b, W) = 0 Atpp (b, W)]
Ang (D/BlvMab) ‘: XH

and Oy = IW[gp(b,W) = 0 A Yp(b,W)] & Oun = VW(gp(b,W) = 0 —
Yp(b, W)|. In particular, the pair (D/B’,x4,) is compatible. It remains to check
that (2c) is satisfied for the pairs (C'/A’,04) and (D/B’, x4)-
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Let M € Fx(0O) and b € B’ (Ou).
Suppose first that there is a € A’(O)) such that

m(a) =b and (C'/A’,M,a) = 04 .

That is, for C = Ar(A’, M,a), we have Oy = 3Z[pc(a,Z) = 0 A gc(a, Z)]. In
particular,
(5) O = e (b).

Let ¢ be a K-homomorphism of C’ into M such that o(x,y) = a. By Remark
1.21 c), resp(y)(Dan(w)) = Dar(respy)e). Also, for S = DN L, S- K[A]/K[A']
is a Galois ring cover and L(y) is the quotient field of S - K[A']. Since Mp(S -
K[A')] = M[p(9)], it follows, by comparing degrees, that resy(Das(resy(y)p)) =
Dyy(resrp). Thus, resy(Da(¢)) = Da(respp). Since p(x) = b, this implies that
res;,C C Ar(S/B’, M,b). Since the left hand side of the inclusion is a conjugacy
domain (i.e. closed under a conjugation by elements of Gal(L/K(B’))) and the
right hand side is a conjugacy class of subgroups of Gal(L/K (B’)), they are equal.
It follows that res,C = res;D, where D = Ar(B’,M,b). If G € D, then G €
Im(Gal(M)) = H. Hence D € Conj(D/B’,H). We denote Dy, = res;D. Then,
since C € Conjp, (C'/A’, H), it follows from (5) that O = ¢p, (b) and, therefore,
by (4)7 that (D/B/aMa b) ': XH-

Now, suppose that (D/B’,M,b) E x4. That is, Oy E IW[gp(b,W) =
0 A p(b,W)], for D = Ar(B’, M,b). In particular, it follows from (4) that there
exists C € Conj(C’/A’,H) such that res;C = res;, D and Op; = ¢e(b).

The existence of a € A’(Oyy) such that w(a) = b and (C'/A’, M, a) |= 64 hold
falls into two parts.

PART A: Specialization of (x,y) to a point of transcendence degree 1 over M.
Without loss assume that K (D) = L. Take a transcendental element y’ over M and
extend the specialization x — b to a K-homomorphism ¢ of C’ into the algebraic
closure of M (y') such that p(y) = 3. Recall that K[A'] = K[x,y, (h(x)g2(x,9))71].
Since w(A’) = B’, we have h(b)ga(b,y’) # 0. Let 2’ = p(z), N = M - (D),
R=Mly',g2(b,y') "] = M[p(K[A])], E = M(y') and F = E(2'). Then, R[2']/R
is a Galois ring cover over M with F/E the corresponding field cover. By the
specialization compatibility assumption on (C'/A’,D/B’), [F : N(y')] = [K(C) :
L(y)]. Conclude from this that, in the following commutative diagram,

1 — Gal(K(C")/L(y)) — Gal(C'/4) == Gal(D/B) — 1
T e o
1 — Gal(F/N({')) — Gal(F/E) =5 Gal(N/M) — 1
the left vertical arrow is an isomorphism.

PART B: Application of the Frobenius property. The conjugacy class D =
Ar(B’, M,b) is generated by ¢*(Gal(N/M)). Since L = K (D) and p*(Gal(N/M))
D, it follows that there exists H € C such that resgpyH = ¢*(Gal(N/M)).
Note that H € H (because C € Conj(C’'/A’,H)); hence H € Im(Gal(M)). The
commutativity of the diagram in Part A shows that resy(p)(¢*(Gal(F/E)) =
©*(Gal(N/M)). Since the left vertical arrow is surjective, H < ¢*(Gal(F/E)).
Hence, there exists a subgroup H' of Gal(F/E) such that ¢*(H') = H. As
all the maps denoted by ¢* are injective, conclude that H' € Im(Gal(M)) and
resyH' = Gal(N/M). Also, by (1c), N is the algebraic closure of M in F.

Let L' € Fix(C) be the fixed field of H in K(C), and let ¢, be the content of
0, in K[A']. Since Oy E Ye(b), it follows that there exist elements g,z € Oy
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which satisfy g2(b,y) # 0, pe(b,y,z) = 0 and ¢c(b,g,z). Hence, there exists an
M-homomorphism, 7: R[z'] = K, such that 7(y') € Our, T(21) € Opr and Oy =
T(p(0r/)). Also, since hg,, (x,y) is invertible in K[A] (this is one of the assumptions
in Notation 3.11), it follows that 7(¢(he,, (x,y))) # 0. Hence, 1(¢(cq,,)) # 0;
therefore, the content, c g, ,) = ¢(co,,), of p(0r/) in R satisfies 7(cy,,)) # 0.

As M is a perfect algebraic extension of K which is Frobenius over Oy, Propo-
sition 3.2 produces an M-epimorphism v of R[z’] onto a Galois extension F’ of M
that contains N such that ¥(y') = ¢ € Oum, ¥(21/) € Om, Om = Y(p(01)) and
Dy (¢) = ¢*(Gal(F'/M)) = H'. From the definitions, ¢* (D (1)) < Das(¢ o ).
But, since both Dy (1) o ¢) and Dps(p) are isomorphic to Gal(F’ /M),

H =¢"(Du(¥)) = Du(vogp) .
The point a = (b,¢) = 9 o p(x,y) belongs to A’'(Op) and 7(a) = b. Hence,
C = Ar(A', M,a). Also, since Oy = 1op(0r), Or = IFZ[pe(a, Z) = 0Ape(a, 7).
Thus, (C'/A’, M, a) = 0.
This concludes the lemma. O

Notation 3.16. Let A C A™t! and B C A™ be two K-normal basic sets such that
m(A) = B and K(A) is an algebraic extension of K(B). Let (x,y) be a generic
point for A, where x is a generic point for B, and let B be the K-variety generated
by x. We assume that K[B] = K|[x, g1(x)"!] and K[A] = K[x,y, g2(x,y) '], where
g1 € O[Xy,...,X,]) and g2 € O[X4,...,X,,Y].

Let C/A be a complete Galois ring/set cover over K with an O[A]-integral prim-
itive element z and with a corresponding ring of integers O[C/A], and let 84 be
a quantifier-free sentence in the language L,4q(O[C/A, H]), where H is a family
of finite groups. Let E (resp., F') be the maximal separable extension of K(B)
in K(A) (resp., K(C)). Both extensions K(A)/E and K(C)/F are purely insep-
arable. Hence K(A) and F' are linearly disjoint over E and K(A) - F = K(C)
(because K(C)/K(A) is separable). If char(K) = p # 0, let ¢ be a power of p such
that K(A)? C E and K(C)? C F. Then, K(C)9/K(A)? is a Galois extension and
E-K(C)? = F (because F' is both separable and purely inseparable over E- K (C)?).
Therefore, F/E is also a Galois extension and res: Gal(C/A) — Gal(F/E) is an
isomorphism.

Lemma 3.17. Let (C/A,0%) and B be as in the notations of Notation 3.16. Then,
there exists a finite separable extension P of K(B) such that, for any finite Galois
extension Q of K(B) which contains P, for every complete Galois ring/set cover
Dy/By over K in which By = B~V (hg) (ho € O[X]) is a nonempty K-open
subset of B and K(Dy) = Q, and for each O[B]-integral primitive element w for
the ring/set cover Do/ By with corresponding ring of integers O[Dy/By), there exist
(3'a) a quantifier-free sentence x4, in the language L,2qa(O[Dy/ By, H]), and
(3'b) a multiple h of ho in O[X] such that h(x) # 0,
and for B' = BNV (h), A’ = ANV/(h), C" = C[h(x)71] and D = Dy[h(x)~1], the
quadruple (C'/A’,04; D/B’, x4,) of two cover-sentence pairs is compatible.
Moreover, in the explicit case, when A, B, C, H and 8 are presented, P can
be effectively computed, and if also QQ and w are presented, then x4 and h can be
also computed effectively.

Proof. Let A be the K-variety generated by (x,y) and suppose that
A={(xy) e A" | A(x,y)=0,..., fm(X, ) =0},
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where fi,...,fm € O[X,Y]. For each C € Conj(C/A,H), let pc(X,Y,Z) be
the quantifier-free formula in the language L;,q(O) which satisfies that 6, =
wc(x,y,z1,) and let pc € O[X,Y, Z] be a polynomial which satisfies that pe(x,y, Z)
is a multiple of irr(zz, K(x,y)) by an invertible element of K[A], for each L' €
Fix(C). Let 1¢(X) be the formula

3z 7\ [ Y)=0Ag(X,Y) #0Ape(X,Y, Z) =0 A pe(X,Y, Z)].
=1

Then, Proposition 2.26 gives a finite Galois extension Pr of K(x) and a polyno-
mial Ay, which does not vanish on B, such that the pair (¢¢, B) is solvable by the
pair (Pc,hy.). Let E and F be as in Notation 3.16.

Let P be the compositum of F' with all the Pc’s and let h, be a common
multiple of all the hy,’s in O[X], for C € Conj(C/A, H). Now, let @ be a finite
Galois extension of K (B) which contains P and let Dy/By be a complete Galois
ring/set cover such that By = BV (hg), where hy € O[X] is a polynomial which
does not vanish on B, and K(Dy) = Q. Let w be an O[x]-integral primitive
element for the ring/set cover Dy/By and let O[Dy/By)] be the corresponding ring
of integers. For each conjugacy class D in Conj(Dy/By, H), let gp € O[X, W] be
a polynomial which satisfies that ¢p(x, W) is a multiple of irr(wr/, K(x)) by an
invertible element of K[By], for each L’ € Fix(D). By assumption, Dy/By is a
complete Galois ring/set cover over K; in particular, the discriminant of wy, over
K(By) is invertible in K[By].

For each D € Conj(Dy/Bo,H), the set respD contains at most one conjugacy
class of Conj(F/E). If there exists C € Conj(C/A, H) such that respC C respD,
we let ¢p(X) be the formula t¢(X). Otherwise, we let 1p = ¢¥p(X) be some false
sentence in the language L,,4(0). Then, Proposition 2.26 gives a quantifier-free
formula 15 (X, W) in the language L,.q(Q) such that if h € O[X] is a common
multiple of hy and Ay, then, for B = BN V(h) and D = Dy[h(x)"!], the pair
(gp,1p) is a solution for the triple (vp,D/B’,D). For each L' € Fix(D), we
denote the quantifier-free sentence 15 (x,wz/) in the language L,.4(O[Do N L']) by
xz- Then, x4y = (xr/ | L' € Field(Dy/By,H)) is a quantifier-free sentence in the
language L;aq4(O[Do/ By, H]).

Let hy,, € O[X] be a content polynomial of x5, let hp € O[X] be a polyno-
mial which does not vanish on B and satisfies that K[A][hp(x)~!] is integral over
K[B][hp(x)~'], and let h € O[X] be a common multiple of ho, hy, hy,, and hp.
we denote B’ = BNV(h), D = Dy[h(x)71], A’ = ANV(h) and C' = C[h(x)71].
Then, in particular, hy, (x) (hence also ¢y, ) is invertible in K[B’] and K[A'] is
integral over K[B’]. Also, for every M € F3(O) and each b € B'(O)y), we have,
for D= Ar(D/B’, M,b), that

(4" Oum E ¥p(b) < On = IW[gp(b, W) =0 A ¢p(b, W)]

< (D/B/’va) ': XH

and Oy E IW[gp(b,W) = 0 A Yp(b,W)] & Oy E YWgp(b,W) =0 —
p(b, W)]. In particular, the pair (D/B’,Xx4) is compatible. It remains to check
that (2c) is satisfied for the pairs (C'/A’,04) and (D/B’, x4)-

Let M € Fu(O) and b € B'(Op). We denote the integral closure of K[B'] in
E (resp., F) by R (resp., S). Then R C K[A'] and S C C'N D.
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Suppose first that there is a € A’(Oyy) such that
m(a) =b and (C'/A',M,a) = 04 .

That is, for C = Ar(A’, M,a), we have Oy E 3Z[pc(a,Z) = 0 A ¢c(a, Z)]. In
particular,

(5) Om [ te(b).

Let ¢ be a K-homomorphism of C” into M such that o(x,y) = a. Since the restric-
tion resp: Gal(C’'/A’) — Gal(F/E) is an isomorphism, we have resp(Dy(¢)) =
Dy(ressep), and, since p(x) = b, this implies that respC C Ar(S/B’, M,b). It fol-
lows that respC C respD, where D = Ar(B’, M,b); hence, by (5'), Oy = ¥p(b).
If G € D, then G € Im(Gal(M)) = H. Therefore, D € Conj(D/B’,H). Then, it
follows from (4') that (D/B’',M,b) = x4-

Now, suppose that (D/B’, M,b) = x4. That is Oy = IW[gp(b,W) = 0 A
Up(b,W)] for D = Ar(B’, M,b). Hence, by (4'), Oy = ¥p(b). It follows that
p is not a contradiction; therefore, there exists C € Conj(C’/A’,H) such that
respC C respD and Oy = ¢e(b). Thus, there exists ¢ € Oy such that

Om |: 3Z[/\ fz(b,c) = OAQQ(baC) 750/\pc(b,c7Z) = O/\QDC(b7C7Z)]'

i=1
That is, a = (b, c) € A’(Oyr) satisfies that m(a) = b and
Oum = 3Z[pe(a, Z) = 0 Ape(a, Z)] .

For each K-homomorphism v of €’ into K which extends the specialization (x, ) —
a, we can extend resgty to a K-homomorphism ¢ of D into K. Hence we have that
respAr(A’, M,a) C respAr(B’, M,b) = respD. Since C is the unique conjugacy
class of Gal(C’/A’) that satisfies respC C respD, it follows that C = Ar(A’, M, a).
Thus, (C'/A’,M,a) = 0. O

Lemma 3.18. Let n > 0 and let {(Cy/A:,0,3)|t € T} be a finite collection of
compatible cover-sentence pairs, where Ay C A"t Cy/A; is a complete Galois
ring/set cover over K with a ring of integers O[Cy/A:], H is a family of finite
groups, and Oy is a quantifier-free sentence in the language L,aq4(O[Ct/As, H)),
teT. Let BC A™ be a K-normal basic set with B C w(A) for each t € T. Then
there exist

(6a) a nonempty K-open subset B’ of B,
(6b) complete Galois ring/set covers D/B' and C};/A}, over K with rings of
integers O[D/B'] and O[C},/A};], respectively, and
(6¢) quantifier-free sentences Xy; 3, Oin in the languages L.q(O[D/B’, H])
and Lyaa(O[CY; AL, H]), respectively,
fori in a finite set I(t), with the following properties:
(7a) the pair (Cm/Am@ti w) is induced (Definition 3.9) from (Cy/At, 013);
(Th) (BN A = ) A}, and n(A};) = B'; and
i€l(t)
(7c) the quadruple (C}; /Ay, 0135 D/ B, Xy %) is compatible.
Moreover, in the explicit case, if (Cy/As,0:3) and B are presented, then I(t),
Xtizr O, Cli/Ay, i €1(t), t €T, and D/B’" can be effectively computed.

albanian-j-math.com/archives/2019-01.pdf


http://albanian-j-math.com/archives/2019-01.pdf

PRIMITIVE RECURSIVE DECIDABILITY FOR LARGE RINGS 52

Proof. We apply | , p- 427, Prop. 19.7.3] to find a stratification of A; N7 ~1(B)
into a disjoint union U Ay; of K-normal basic sets, where J(¢) is a finite set. In
icJ(t)
particular, 7(Ay;) C B, for 7 € J(t).
Let I(t) = {j € J(t)| dim(w(As;)) = dim(B)} and let I'(¢t) = J(¢) ~ I(t). Then

Bi= |J B xx4y))u | w(4y)
JEI(t) JEI'(t)
is of dimension smaller than B. We find a polynomial f € O[X;y,...,X,] that
vanishes on B; but not on B. Then, for a multiple h of f in O[X] which does
not vanish on B, we have that W(Atz) NV(h) = BNV(h) for each i € I(t) and
T BNV NA = ) Ai~V(k
i€1(t)

For each t € T and i € I(t), let (Cyi/As, 01i2¢) be the cover-sentence which
is induced from the pair (C;/A:, 0 %) and let P,; be the finite separable exten-
sion of K(B) that Lemmas 3.15 and 3.17 give (effectively, in the explicit case, if
(Cti/Asi, 04 2) and B are presented). We find a finite Galois extension @ of K(B)
which contains all the Py;’s, i € I(t), t € T, and then we find an integral domain Dy
and a multiple kg of f in O[X] which does not vanish on B such that K (D) = Q
and, with By = B~V (hg), Do/By is a complete Galois ring/set cover over K.
Also, we choose for Dy/By a ring of integers O[Dy/By.

Now, with a generic point x of B, we find, by Lemmas 3.15 and 3.17, effectively
in the explicit case when all is presented,

a) a quantifier-free sentence x; 4 in the language L,.4(O[Do/Bo, H]), i € 1(t),
te T, and
b) a multiple h of hg in O[X] with h(x) # 0,
such that, for B = B\V(h), A}, = Ay NV(h), C}, = Culh(x) Y], i€ I(t), t €T,
and D = Dy[h(x)~!], we have that the quadruple

(Ctlz/Atzv gti,H; D/B/’ Xti,?‘-[)
is compatible, for each i € I(t), t € T O
Remark 3.19. Note that the extension P of K(B) in Lemmas 3.15 and 3.17 depends
on 0 (because the extension P of K(y) in Proposition 2.26 depends on ¥(Y)).

Hence, the cover D/B’ in Lemma 3.18 depends on the system of sentences (6 4 |t €
7).

3.4. Elimination of One Variable.

Definition 3.20. Let n > 0 and let A be a K-constructible set in A™.

a) A complete normal stratification
A= (A,Ci/Aliel)

of A over K is a partition A = U A; of A as a finite union of disjoint K-
iel
normal basic sets A;, each equipped with a complete Galois ring/set cover
C;/A; with ring of integers O[C;/A;].
b) Let H be a family of finite groups. If 8; 3 is a quantifier-free sentence in the
language L,24(O[C;/A;, H]) such that the pair (C;/A;,0;2) is compatible,
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1 € I, then A may be augmented to a radical Galois stratification (with
respect to H) over O:

Then, A is said to be the underlylng normal stratification of A(O,H).
We denote the system of sentences (0; 4| i € I) of A(O,H) by Sen(A(O,H)).

c) For M € Fu(O) and a € A(Oyr), we write (A, M,a) = Sen(A(O,H)) if
(Ci/A;, M, a) |= 0, 4 for the unique ¢ € I such that a € A;.

d) Suppose that A" = (A,C}/A}|j € J) is another complete normal stratifi-
cation of A. We call A’ a refinement of A if for each j € J there exists
a unique i € I such that A} C A;. If A'(O,H) = (A,C}/A},0) 4| j € J) is
an augmentation of A’ to a radical Galois stratification, then A’ ((9 H) is
said to be a refinement of A(O, H) if in addition the pair (C}/A}, ; ") is
induced (Definition 3.9) from the pair (C;/A;, 0; ) Whenever A, C A In
this case it is clear that if M € Fy(O) and a € A(Ojy), then (A, M, a) =
Sen(A(O,H)) if and only if (A’, M,a) = Sen(A' (O, H)).

The next two lemmas are based on Lemma 3.18. They allow us to eliminate, re-
spectively, one existential or universal quantifier from a given radical Galois formula
(Subsection 3.5).

Lemma 3.21. (The existential elimination lemma.) Letn > 0 and let A(O,H) =
(A"t C;/A;,0; %) € I) be a radical Galois stratification of A"t over O with re-
spect to a family H of finite groups. Then, there exists a radical Galois stratification
B(O,H) = (A", D;j/Bj,x;|j € J) of A" such that, for every M € F3(O) and
each b € A"(Oyr), we have (B, M,b) | Sen(B(O,H)) if and only if there exists
ac A" (Oyy) such that m(a) = b and (A, M,a) = Sen(A(O,H)).

Moreover, in the explicit case, if H is primitive recursive and A(O,H) is pre-
sented, then B(O,H) can be effectively computed.

Proof. The union of the constructible sets 7(A4;) is equal to A™. We apply Lemma
1.19 to stratify A™ into a union of disjoint K-normal basic sets Us, s € S, such
that, for each i € I and s € S, either Us; C 7(4;) or Us N 7(A4;) is empty.

Lemma 3.18 and the stratification lemma (Lemma 1.19), again, allow us to
stratify, effectively in the explicit case when A(O,H) is presented, each Uy sepa-
rately and then combine the separate stratifications into basic normal stratifications

U Bj and A"l = U U Aji, with the following properties:
jeJ JE€J keK(j)

(la) each Ajj is contained in a unique A; and has a complete Galois ring/set
cover Cj /A, over K with ring of integers O[Cj,/A ;] and a quantifier-
free sentence 05 7 in the language L,a4(O[Cjk /A i, H]) such that the pair
(Cjk/Ajk, 0, %) is induced from the pair (C’l/Alv, Oi H);

(1b) m(Ajx) = B; for each j € J, k € K(j) and n~1(B;) = -] Ajs;

keK(j)

(1c) each Bj; is equipped with a complete Galois ring set cover D;/B; over K
with ring of integers O[D;/B;] and with quantifier-free sentences x;;, 5 in
the language £,,q4(O[D;/B;, H]) for each k € K(j), j € J;

(1d) The quadruple (Cjx/Ajk, Ojk25 Dj/Bj, X jk,%) is compatible for each k €
K(j),jeJ.
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The stratification A'(O,H) = (A", Cj/Ajk, Ojiulj € J, k € K(j)) refines

A(O,H). For each j € J we define x; 4, to be \/ X,k.3¢- Since for each k € K(j)
kEK(j)

the pair (D;/Bj, X1 %) is compatible, the pair (D;/B;, X, 3) is also compatible,
Jj € J. Then, B(O,H) = (A", D;/B;j,x;x|Jj € J) is a radical Galois stratification
of A™ and it follows from (1d) that, for every M € F3(O) and each b € A"(Oyy),
(B, M,b) = Sen(B(O,H)) if and only if there exists a € A"1(0),) such that
m(a) =b and (A’, M,a) = Sen(A'(O,H)) (hence (A, M,a) |= Sen(A(O,H))). O

Lemma 3.22. (The universal elimination lemma.) Letn >0 and let
A(O,H) = <An+1, Ci/Ai, 91‘77.[| 1€ I>

be a radical Galois stratification of A"t over O with respect to a family H of finite
groups. Then, there exists a radical Galois stratification

B(O,H) = (A", D;/Bj, x;uli € J)
of A™ such that, for every M € Fp(O) and each b € A"(Oyr), we have (B, M,b) =
Sen(B(O,H)) if and only if (A, M,a) |= Sen(A(O,H)) for all a € A"T1(Oyr) such
that w(a) = b.
Moreover, in the explicit case, if H is primitive recursive and A(O,H) is pre-
sented, then B(O,H) can be effectively computed.

Proof. Let A°(O,H) = (A" C;/A;,—0; 4] € I) be the complementary radi-
cal Galois stratification to A(O,H) of A"*1. Note that, since (C;/A;,0;3) is
compatible, it follows from Remark 3.6 that also the pair (C;/A;, =6; 3;) is compat-
ible and we have, for every M € Fy(O) and each a € A;(Op), that

(Ci/Ai,M,a) E —8; % < (Ci/Ai, M,a) |~ 0; 3 .
We apply Lemma 3.21 to find a radical Galois stratification
BC(OaH) = <An7Dj/Bj7 _'Xj,”;‘-[|j € ‘]>

of A™ over O such that, for every M € F3(O) and each b € A"(Oyy), (B¢, M,b) |=
Sen(B¢(O,H)) if and only if there exists a € A"*1(Oy;) such that 7(a) = b and
(A%, M, a) = Sen(A°(O,H)). The complementary radical Galois stratification to
B¢(O,H) of A™ satisfies the conclusion of the lemma. O

Remark 3.23. Note that, by Remark 3.19, the underlying normal stratification B
of B(O,H) depends on the system of sentences Sen(A(O,H)). When O = K, we
can construct B such that it does not depend on Sen(A(O,H)) (see [ , PD-
715-719, Lemmas 30.2.6, 30.4.1 and 30.4.2]).

3.5. The Complete Elimination Procedure.
Definition 3.24. Let m,n > 0 be integers, let @1, ..., Q,, be quantifiers, and let
A(O, H) = <Am+n7 Ci/AZ‘, Bi,Hl 1€ I)

be a radical Galois stratification of A™™™ over O with respect to a family H of
finite groups. Then, the expression

(1) (@1X1) - (QmXm)[(A, (X, Y)) = Sen(A(O, H))],
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with X = (X1,...,X;») and Y = (Y3,...,Y,), is said to be a radical Galois
formula (with respect to A(O,H)) in the free variables Y. We denote it by § =
0(Y). For M € Fu(O) and by,...,b, € Oy, we write Oy | 0(b) if Qmam, €
Ou,---,Q1a1 € Oy such that (A, M, (a,b)) = Sen(A(O,H)). Here we read
“Qia; € Op” as “there exists a; in Oyp” if Q; is 3, and as “for each a; in Oy,” if
Q; is V. In the case that n = 0, 6 has no free variables and it is called a radical
Galois sentence.

Remark 3.25. Each formula in the language L,,q4(O) is equivalent to a radical Galois
formula over O with respect to every family H of finite groups which contains the
trivial group.  Indeed, let (Y7,...,Y,) be a formula in the language L;,4(O).
Then, by Remark 2.5 a), ¥(Y) is equivalent to a formula in the language L£(O):
That is, there exists a formula ¢(Y) in the language £(O) which satisfies that, for
every algebraic extension M of K and for each by,...,b, € Oy, we have Oy |
@(b) if and only if Oy = 9¥(b). Now, ¢(Y) can be written (effectively, in the
explicit case) in prenex normal form
ko1
(Qle) e (Qme)[\/ /\ fij(XvY) =0A gij(X’Y) # 0] )

i=1j=1
with f;;,g;; € O[X,Y]. The formula in the brackets defines a K-constructible set

A C A™*t™ We construct a K-normal basic stratification A™*T" = U A; such that,

iel
for each i € I, either A; C A or A; C A"\ A. In the first case, let C; = K[A;]
and let 6; be some true quantifier-free sentence in the language L£.,q(0), for example
rads 1(1,1,0,0) (which is equivalent to 0 = 0). In the second case, let C; = K[A;]
and let 0; be some false quantifier-free sentence in the language £,.q(Q), for example
rady 1(1,1,0,1) (which is equivalent to 1 = 0). The pair (C;/A;,6;) is, of course,
compatible. Let H be a family of finite groups which contains the trivial group. The
corresponding radical Galois stratification A(O,H) defines 6 as in (1). Obviously,
it M € F(O) and b € OF;, then Oy = 6(b) if and only if Oy = ¢(b) (hence, if
and only if Oy |= ¥(b)). Thus, each formula in £,,4(O) is equivalent to a radical
Galois formula over O with respect to H.

Application of Lemmas 3.21 and 3.22 to 6(Y) gives elimination of quantifiers.
Proposition 3.26. Let H be a family of finite groups and let 8(Y1,...,Y,) be a

radical Galois formula,
(Qle) ce (Qme)[(Aa (X7 Y)) ): SGH(A(O, IH))} )

with respect to a radical Galois stratification A(O,H) of A™T™ over O. Then,
there exists a radical Galois stratification B(O,H) of A™ over O such that, for
every M € Fp(O) and each b € A™(Oyr), we have
(2) Oy E6(b) < (B,M,b) E Sen(B(O,H)).
In the explicit case, if 0(Y) is presented and H is primitive recursive, then
B(O,H) can be effectively computed.

Proof. Lemmas 3.21 and 3.22 give a radical Galois stratification A,,_1(O,H) of
A™m=1+n (depending on Q) s.t., for every M € F(O) and each (ay,...,am_1,b) €
A™=I(O)y), we have

(Am—1,M,(as,...,am—1,b)) = Sen(Ay,,_1(O,H))
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if and only if Qpanm € Opr such that (A, M, (a, b)) = Sen(A(O, H)).

This eliminates @,, from #. We continue to eliminate Q,,_1,...,Q1, in order,
by constructing the corresponding radical Galois stratifications A,,—2(O,H), ...,
Ao(O,H). Then, B(O,H) = Ao(O,H) is the desired radical Galois stratification.

O

Remark 3.27. In the case of the usual Galois stratification (when O = K), the
normal stratification B under B(O,H) does not depend on H. This fact gives a
decision procedure for the family of all perfect Frobenius fields which contain K
[ , p- 722, Thm. 30.6.1]. In the general case this is not so (see Remark 3.23).

The case n = 0 is of particular interest: 6 is a radical Galois sentence; the normal
stratification B of A° is trivial; and Sen(B(O,H)) contains only one quantifier-free
sentence x4, in the language L;2q(O[L/K,H]) with L a finite Galois extension of
K. The condition (B, M,b) = Sen(B(O,H)) simplifies to Gal(L/L N M) € H
and Oy = xrnam. Note that xrna is a quantifier-free sentence in the language
Lad(Ornnn); hence, by Proposition 2.11, Oy | xpaam if and only if O E xonum-
We denote

Cong(H) = {Gal(L/K') € H| K’ is a subextension of L/K s.t. O = xx }.

Then, Cong(H) is a conjugacy domain of subgroups of Gal(L/K) which belong to
H (since if K and K} are two subextensions of L/K which are conjugate by an
element of Gal(L/K), then there exists o € Gal(L/K) which satisfies K} = 0K}
and xx; = oX K{). Moreover, when O is an effective computability domain, if H is
primitive recursive and 6 is presented, then we can find it effectively (because, by
Proposition 2.8, the relation rady ; on O is primitive recursive).

Theorem 3.28. Let H be a family of finite groups and let 8 be a radical Galois
sentence,

(@1X1) - (@mXm)[(A, X) |= Sen(A(O, H))],

with respect to a radical Galois stratification A(O,H) of A™ over O. Then, there
exists a finite Galois extension L of K and there exists a conjugacy domain Cong(H)
of Gal(L/K) which contains groups that belong to H such that, for every M €
Fx(O), we have

(3) OuEO< Gal(L/LNM) € Cong(H) .

Moreover, when O is an effective computability domain, if H is primitive recur-
sive and 0 is presented, then we can effectively construct L and Cong(H).

The following corollary follows from Theorem 3.28 and Remark 3.25.

Corollary 3.29. Let H be a family of finite groups which contains the trivial group
and let 0 be a sentence in the language L(Q). Then, there exists a finite Galois
extension L of K and there exists a conjugacy domain Con of Gal(L/K) which
contains groups that belong to H such that, for every perfect algebraic extension M
of K which is Frobenius over Oy and Im(Gal(M)) = H, we have

Oy EfO< Gal(L/LNM) € Con.
Moreover, when O is an effective computability domain, if H is primitive recur-

sive and 0 is presented, then we can effectively construct L and Con.
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3.6. Decidability of Large Rings of Algebraic Integers. When H consists
only of the trivial group, Im(Gal(K)) = H. In this case Proposition 3.26 is equiv-
alent to the main theorem of v.d. Dries | |:

Theorem 3.30. For each formula o(Y1,...,Y,) in the language L;2q4(O), we can
construct an equivalence

O F oY) ¢ oi(Y) V-V pa(Y),
in which each disjunct p;(Y) is of the form
with p; € O[Y, Z] a polynomial, monic in Z, and ¥;(Y, Z) a quantifier-free formula
in the language L;2q(O).

Moreover, in the explicit case, if p(Y) is presented, then we can effectively find
pi(Y) (1<i<d).

Proof. Let H be the family consisting only of the trivial group. We find, by Remark
3.25, a radical Galois formula 6(Y) over O with respect to H such that, for each
bi,... by € O,

(1) OE6b) < O E ¢b).
Proposition 3.26 gives, effectively in the explicit case if §(Y) is presented, a radical
Galois stratification B(O) = B(O,H) of A™ over O such that, for each b € A"(O),

(2) O = 6(b) & (B, K,b) = Sen(B(0)).
Suppose that B(O) = (A", C;/A;,0;|i € I), where 6; is a quantifier-free sentence in
the language L,4(O[C;]). For each i € I, let y; be a generic point of A4;, let z; be
a primitive element for the Galois ring/set cover C;/A;, integral over Oly;], such
that O[C;] = Olyi, 2], and let x;(Y, Z) be a quantifier-free formula in the language
L12a(0) such that 6; = x;(yi, z;). Let ¢; be a polynomial in O[Y, Z] which satisfies
that ¢;(y;, Z) is a multiple of irr(z;, K (y;)) by an invertible element of K[A;], and
let p; € O[Y, Z] be a polynomial which is monic in Z and satisfies p;(y;, z;) = 0.
Then q;(y:, Z)|p:(y:, Z) in K[A;][Z]. Also, for each by,...,b, € (5,

(3) (Ci/Ai, K, b) = 0; & O =3Z[q;(b,Z) = 0A xs(b, Z)] .
We write, for each i € I, A; = Vi~V(g;), where V; = V(fi1,..., fi (i) is a K-
variety on which g; does not vanish, and f,..., fi i), 9 € O[Y]. We denote
£i(Y) = (fi2(Y),..., fip(5)(Y)) and let ¢;(Y) be the following formula in the lan-
guage L;,q(0):

We denote by ¥;(Y, Z) the following quantifier-free formula in the language £,,4(O):
£(Y)=0Ag:(Y)#0Nq(Y,2) =0Axi(Y,2).

Then ¢;(Y) is equivalent to 3Z[p;(Y, Z) = 0A¢;(Y, Z)], which is a formula of the
desired form. B

Let b € A"(O) and let i be the unique element in I such that b € A4;(0). Tt
follows from (1), (2), and (3) that

O ¢(b) & O [=6(b) & (C;/A;, K,b) = 6;
A 6 ): HZ[Qz(b7Z) = O/\Xi(b7Z)]'
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Hence,
O E oY) &\ ((Y) = 0Agi(Y) #0A32[q:(Y, 2) =0 A xi((Y, Z)])
iel
thus, Ok oY) < \/ v (Y). O
iel
Remark 3.31.
a) The proof of this theorem in [ ], for O = Z, uses a compactness argu-
ment from model theory [ , Section 1.5], instead of our stratification
procedure; hence, the elimination procedure in | | is not primitive re-

cursive, but only recursive. However, the elimination procedure that we
have constructed here is primitive recursive. By the compactness argu-
ment, v.d. Dries achives the following result: Let f1(X,Y),..., fx(X,Y) €
Z[X,Y], where X = (X3,...,X,;,) and Y = (Y1,...,Y,). For every field L
and each y € L™, we denote {x € A™| fi(x,y) = 0,..., fr(x,y) = 0} by

Vi,y.- Then, there exist:

(i) quantifier-free L-formulas s;(Y), 1 < ¢ < B, such that all fields of
characteristic zero satisfy VY (s1(Y) V-V sp(Y));

(ii) for each i € {1,..., B}, a tuple (p;, fi1, ..., i), where p; € Z[X, T
is monic and of positive degree in T and each f;; is a tuple of elements
of Z[X,Y,T], such that if L is a field of characteristic zero, y is an
element in L™ satisfying s;(y), and t € L is a root of pi(y,T), then
Viy = WiU---UWjq, where each W := {x € A" |f;;(x,y,t) = 0}
is an absolutely irreducible variety.

b) L. v.d. Dries proved this theorem in [ ] for Z and generalized it, to-
gether with A. Macintyre, in | | for additional integral domains which
satisfy natural (i.e. algebraic) first-order assumptions. They called a ring
satisfying the relevant algebraic conditions a good Rumely domain; this
is by definition a domain R with quotient field E having the following six
properties:

1) FE is algebraically closed.

2) R is a Bezout domain.

3) If C C A™ is a smooth absolutely irreducible curve over E, f €
E[Xy,...,Xy], and Cf := {x € C| f(x) # 0} has points in A™(LR)
and in A™(+R), where a,b € R {0} have ged(a,b) = 1, then C; has
a point in A™(R).

4) For all a,b € R~{0} there are a;,b; € R such that a = ay - by,
ged(aq,b) =1, and b € radg(b1 R).

5) Every nonzero nonunit (i.e. non-invertible element) in R is a product
of two relatively prime nonunits.

6) R # F and R has Jacobson radical zero.

They also showed that condition 3) can be replaced by the local-global

condition:

3") If V C A™ is absolutely irreducible variety over E, f € E[X1,..., Xn],
and Vy = {x € V| f(x) # 0} has a point in each A" (Ry) (m €
Max(R)), then V; has a point in A™(R).

They proved that if R is a good Rumely domain, then it satisfies the follow-

ing claim: Let V' C A™ be an absolutely irreducible variety over E and let
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fyg1,---, 98,01,y -y hE, D1, ..., Dt be polynomials in E[X,. .., X,,]. Then,
in the notations of Subsection 2.3,

REIX[X eV Af(X 7éOA/\ gi(X A/\ (NU(p; (X)))]
k
& (Vm € Max(R)) Ry = 3X[X € V A f(X 750/\/\ (X))]

>
><—¢-

((3m € Max(R)) Ry = 3X [X € V A f(X) #0

<.
Il
—

(X)R 7 (X)) A NU(p; (X))])-

>
<.
§

@
I
-

This is, in fact, the claim we use in Proposition 2.20. But, in order to prove
this claim there, we use the weak approximation theorem for absolutely
irreducible varieties, which is more precise than the local-global principle,
but is not first order. Also, the proof of Proposition 2.20 depends on the
assumption that the Jacobson radical of a nonzero ideal in R and in Ry, for
m € Max(R), equals its nilradical; this property is blatantly not elementary.

Let M be an algebraic extension of K which is PAC over Op;. We have
shown, in Theorem 1.12, that if K is a finite subextension of M/K and a
is an ideal of Ok, , then there exists a finite subextension L of M/K; and
there exists ¢ € Op, such that aOy = cOp. In particular, Oy, is a Bezout
domain. We shall show now that also properties 4) and 5) are satisfied for
R= OMI

In order to see 4), let a,b € Ok, ~{0}, where K; is a finite subextension
of M/K. We factor the ideals aOg, and bOk, as follows:

0O, =mit ool onls (e f; > 0),
boKlzmglmgrql qt (927hk>0)7

where my,...,m,,ny,..., N5, q1,...,q; are distinct maximal ideals of O, .
By Theorem 1.12, we can take a finite subextension L of M/K; in which all
these maximal ideals become principal, say m;Or, = ¢;Or, n;0r, = d;O0f.
Then, a0, = (e¢d)Op, where ¢ = ¢f* -+ - ¢t and d = d{l ---dl+. Hence, there
exists an invertible element u in Of, such that a = cdu. We denote a; = d
and b; = cu. Then, a = a; - by, ged(ag,b) =1, and b € radp,, (010).

In order to see 5), let © # 0 be a nonunit in Ok,, where K is a finite
subextension of M/K. We write 2O, = m{* ---m*, where e;,..., e >0
and my,..., my are distinct maximal ideals of Ok,. Since m; factors in
a suitable subextension of M/K; (see the proof of Lemma 1.8), we can
get k > 1 after enlarging K7, and similarly we can achieve that each m;
is principal. From this, a factorization of z into a multiplication of two
relatively prime nonunits is clear.

When 6 is a sentence in the language £(O) (or L;2q(0O)), Theorem 3.30 gives an
equivalence

OO0 0,V---Vly,
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in which each sentence 6; is of the form
3Z[pi(Z) = 0 AN i(Z)]

with p; € O[Z] a monic polynomial and %;(Z) a quantifier-free formula in the
language L,,4(0O). Moreover, in the explicit case and when O is an effective com-
putability domain, if 8 is presented, then we can check for each i between 1 and d
and each root z; of p;(Z) whether O = 1;(2;) (Proposition 2.8). Alternatively, we
can arrive to the same conclusion using Theorem 3.28 if we take for H the family
consisting only of the trivial group.

Theorem 3.32. When O is an effective computability domain, the ring O is de-
ctdable. B
Moreover, the theory of O is primitive recursive.

We arrive, finally, to the main result in this work. For a positive integer e and
for o = (01,...,0.) € Gal(K)¢, we denote the fixed field in K of o1,...,0. by
K (o) and the integral closure of O in K (&) by O(c). We denote the theory of all
sentences of £(0) which are true in O(c) for almost all (with respect to the Haar
measure) o € Gal(K)¢ by Almost(O,e).

Theorem 3.33. Let e be a positive integer and let 6 be a sentence in the language
L(0O). Denote the Haar measure of all o € Gal(K)® such that 0 is true in O(o) by
a. Then, a is a rational number.

Moreover, when O is an effective computability domain (e.g. when O = Z and
O =TF,[t]), if 0 is presented, then « can be effectively (primitive recursively) com-
puted. The theory Almost(O, e) is primitive recursive.

Proof. Let ‘H be the family of all finite groups H such that rank(H) < e. By
Remark 3.25, 6 is equivalent to a radical Galois sentence over O with respect to
‘H. Theorem 3.28 gives a finite Galois extension L of K and a conjugacy domain
Cong(#H) of Gal(L/K), which contains only groups that belong to H, such that,
for every perfect algebraic extension M of K which is PAC over Oy, and satisfies
Im(Gal(M)) = H, we have

(4) Oy E0< Gal(L/LN M) € Cong(H).
Note that Im(Gal(M)) = H if and only if Gal(M) = F, | , p. 360, Lemma
17.7.1]; therefore, Gal(M) has the embbeding property | , p. 568, Lemma

24.3.3]. Since, in addition, M is PAC over Oy, if follows that M is Frobenius over
O
Let k be the number of oy € Gal(L/K)¢ such that < o9 >€ Cong(H). Then, by
4), a= ﬁ is the desired rational number, because, for almost all o € Gal(K)®,
K (o) is perfect and PAC over (5(0') (Proposition 1.7) which satisfies Gal(K (o)) =
E, [IrJ08, p. 379, Thm. 18.5.6]. O
APPENDIX A. IDEAL CALCULUS

Let O be a Dedekind domain with a quotient field K and let P be the set of all
nonzero prime ideals of O. We assume:

a) O is presented in K | , D. 404, Def. 19.1.1];
b) P is presented and each ideal of O can be effectively written as a product
of prime ideals of O;
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¢) O is an Euclidean ring. That is, there exists a function § : O ~{0} - N
which satisfies, for each a,b € O {0}, that d(ab) = §(a)d(b) and there
exist ¢,r € O such that a = be+r and 6(r) < §(b) or » = 0. We define also
4(0) = 0. We assume that § is presented and that we can effectively perform
division with a remainder as above. In particular, we can effectively find,
by Euclid’s algorithm, a greatest common divisor of two elements in O;

d) For each n € N, the set {a € O] §(a) < n} is an explicitly given finite subset
of O.

Along this appendix, L is a separable extension of K of degree n, Oy is the
integral closure of O in L, and Py, is the set of all nonzero prime ideals of Op,. Let
7 be a primitive element for L/K and let f(X) = irr(n, K). We multiply 7 by a
suitable element of O, in order to assume that n € Op and f is a monic polynomial
in O[X]. L is given, in fact, by the coeflicients of f. Also, each element x in Oy, is
given by the coefficients of irr(z, K). We assume, then, along this appendix, that
1 € O, is a primitive element for L/K and f(X) = irr(n, K) is a monic polynomial
in O[X].

Let x € Op. We would like to know how to factor xOp, into a product of prime
ideals. We shall show, in fact, how to (effectively) factor each ideal of Oy, presented
by a finite number of generators, into a product of prime ideals.

The presentation of an ideal by generators is not suitable for calculations. In
Subsection A.1 we shall find an integral basis {w1,...,w,} of L/K such that O, =
Owi + -+ - + Ow,, and in Subsection A.2 we shall find, for each ideal a in Oy, an
O-basis {a1,...,a,} such that a = Oay + - - - + Oa,. By this presentation we can

n

check whether an element 5 = Z b;w; € O, belongs to the ideal a and hence we
i=1

can check inclusion between ideals. Finally, in Subsection A.3, we shall show how

to find, for p € P, all the prime ideals 8 € Pr, which lie above p and, as a result,

we shall show how to factor each ideal in Of, into a product of prime ideals.

The references to this appendix are the book “Algorithmic algebraic number
theory” of Pohst and Zassenhaus | ] and the book “Elementary and analytic
theory of algebraic numbers” of Narkiewicz | ]. However, these references deal
only with the case O = Z while this appendix is written for the general case.

A.1. Integral Basis.
Definition A.1. The discriminant.

a) Let o01,...,0, be the isomorphisms of L into K over K. For each n-tuple
a=(a1,...,a,) € L™ we define the discriminant

Dp/k(a) = (det(o;a;))?.

If a; = Zaijﬁj with 5]' € L and a;; € K, then
j=1
Dy yx () = (det(ai;))*Dr/x (B) .-

Dy k() # 0 if and only if {a1,...,a,} is a basis of L/K | , Prop. 9
in Chapter III].
If L = K(a), then {1,q,...,a" '} is a basis of L/K and we denote

DL/K(a) = DL/K(I,Oé,. ..7Otn_1) .
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If a € OF, then Dy () € O. In particular, 0 # Dy, /x(n) € O and we
have

n(n—1)

Dpg(n)=(=1)"= Np/x(f'(n).
Dy, k(1) can be effectively computed in the following way: we find a;; € K
such that

ajf’(n):Zaijni7 j=0,1,...,n—1;
i=1

then _—
Dr/x(n) = (=1)" 7 det(ai;)
[ , Prop. 2.9] (see also | , §19.2]).

b) If M C L is a free O-module of rank n and {aq,...,a,} is a basis of M
over O, we denote the fractional ideal Dy, /x(a)O of O by Do, j0(M); it
can be shown that this notation does not depend on the basis | , Prop.
10 in Chap. III].

We shall show in Proposition A.3 that O is a free O-module of rank n and
hence also each fractional ideal of Oy, is a free O-module of rank n.

Definition A.2. An integral basis. A set of n elements w,...,w, in Op which
are linearly independent over K and generate Oj as an O-module, i.e. Op =
Owy + -+ + Owy,, is called an integral basis for the field L.

Proposition A.3. L has an integral basis {wy, ..., w,} which can be found effec-
tively.

Proof. We denote a; =n*~',i=1,...,n, and let d = Dy k() = Dp/(n). Then
0#de 0. We denote M = Oy + - -+ + Oayy,.

Cramm: dOyp € M. Indeed, Let b € Op. Then, there exist c¢1,...,c, € O with
ged(er, ..., ) = 1 and there exists 0 # ¢p € O such that

1
b= —(cra1 + -+ cpay).
Co
Let 01,...,0, be the isomorphisms of L into K over K. Then
&1 Cn .
o;b=—o0ojoa1+---+ —0jan, j=1...,n.
Co Co
1
01b o101 ce. 0100 o
That is, =
onb OOl ... OpQp En

co

Note that ¢;b,0,0; € (5, i,j =1,...,n. Let A = det(c;a;). Then A € O and
A? =d.

J
o101 Ulb 010,
We denote Aj = det , i=1,...,n
OnQy ... Opb ... opap

Then A; € O and it follows, by Kramer’s rule, that ZTJ) = %, j=1,...,n. Hence

AN = A2 g% e Gk =0,
A Co
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and therefore ¢oldc;, j = 1,...,n. Since ged(cq, ..., cn) =1, thereexist di, ..., d, €
O such that ¢1dy +- - -+ ¢pd, = 1 and hence d = (dey)dy + - - -+ (dey, )dy,. Therefore
¢old; thus, db = %(cloq + -+ cpap) € Oay + - -+ Oa, = M, and the claim is
proved.

For each 7 between 1 and n, we let D; be the set

1
{di e(’)\di # 0 and ddy,...,d;—1 € O s.t. E(dlal—l—-n—i—diai) EOL}.

D; # () because d € D;: é(dal +--4+da) = a1+ -+ a; € Op. We denote
m; = dmiB 0(d;) and let d;; € O be such that §(d;;) = m,;. We can effectively find

7 i

such d;; as follows: Since O is an Euclidean ring of finite type, the set C' = {c €
0|6(c) < 6(d)} is finite. If L(dioy + -+ + dsay) € Op and df = dj(mod d) (ie.,
there exists b; € O such that d; = b;d + d} and §(d}) < 6(d)), j = 1,...,4, then
also L (djay + -+ + dja;) € Op. Hence, we can go over the finite set C* and check,
for each (di,...,d;) € C* with d; # 0, whether % (dyay + - -+ + d;a;) is integral over
0.

For each ¢ between 1 and n, we find d;1,...,d; ;-1 € O such that

1
w; = a(dilal + o+ dia)

belongs to Op,. Then,

d;;
#))QDL/K(OL) #0,

because d = Dy i (a) # 0 and det(%) = Ldet(d;;) = Pdan £ 0. Hence
{wy,...,w,} forms a basis for L/ K. We shall prove that it is also an integral basis
for L, that is, O, = OQwy + - - - + Ow,,. Note first that if an element ¢ € Of, can be
written as ¢ = é(claﬁw --+cja;) with j between 1 andnand¢; € O,i=1,...,7,
then d;; divides ¢;. Indeed, if ¢; = sd;; + 7, where s,7 € O and 0 < §(r) < §(d;;),
then ¢ — sw; € O and

1
c—sw; = g((cl —sdj1)ar + -+ (¢j—1 — sdj j—1)a—1 +ray),

in contradiction to the choice of d;;.

We denote My = OQw;y + - - - + Ow,,. We shall prove by induction on j that each
element of Oy, of the form é(xlal + -+ xja;), with z; € O, belongs to M. For
j = n this gives O, = O N éM C My, and hence O, = My. Suppose that we have
proved this claim for j — 1 and let y = é(:cloq +---+zja;) with z; € O such that
y € Op. Then, there exists a € O such that z; = adj;; therefore, y — aw; € Of,
and, by the induction’s assumption,

1
Yy —aw; = g((l‘l — adﬂ)al + -+ (Zj_l — adj7j_1)) (S Mo .
Thus, since aw; € My, also y € My, as required. O

A.2. Presentation of Ideals. We denote the group of invertible matrices in M, (O)
by GL(n, ©). Then A € GL(n, Q) if and only if detA is an invertible element in O.

Remark A.4. Let M be a free O-module of rank n and let {b,...,b,} and{c1,...,cn}
be two O-bases of M. Then, there exists U € GL(n, Q) which satisfies (b1, ...,b,) =
(c1y...,¢,)U. Indeed, since Oby + -+ + Ob, = M = Ocy + --- + Oc,, there
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exist U,V € M,(O) such that (b1,...,b,) = (c1,...
(b1,...,b,)V. Hence,

,en)U and (cq, ...

(c1y..yen) =(C1y..0,en)UV
therefore, by the uniqueness of representation, UV = I,,.

Lemma A.5. Leta,...,a, € O. Then, one can effectively find a matriz A = (a;;)
in My, (O) such that a1; = aj, j =1,...,n, and detA = ged(ay, ..., an).

Proof. We denote d; = ged(aq,...,a;), i = 1,...,n. We do an induction on n.
The case n = 1 is trivial. Suppose, then, that there exists a matrix A = (@;;) €
M,,_1(O) which satisfies a1; = a;, j = 1,...,n — 1, and detA = d,,_;. Since
dy, = ged(dp—1, an), there exist u, v € O such that d,, = ud,,—1 +va,. Suppose that

A= , and let
Qp ai - Gp—1|0n
0 0
A= A M B
0 0
al An—1 aj Apn—1
dp Ve dnflv‘ u dn—1 """ dno1

Then, Ayj =aj,j=1,...,n,

detA= (—1)'"q,

and, by developing detA by the last column,

B
- det + (=1)"t7y - detA

a]‘ DRI
kdnlv

An—1
dnfl ’U)

= (=D "an +u-dpo

— %detfi +udp_1 = van + udp_1 = dy
as required. -
Lemma A.6. Let ay,...,a, € O and denote d = ged(ay,...,a,). Then, one can

effectively find U € GL(n, O) which satisfies
(aty...,an)U =(d,0,...,0).
Proof. By Lemma A.5 we can find A = (a;;) € M, (O) which satisfies a1; = a;, j =

1,...,n, and detA = d. Suppose that A = and let A =

Then, A € M, (0) and detA = édetA = 1; therefore, A € GL(n, 0). Also,
(d,0,...,0)A = (a1,...,ay,). Hence, U = A~ is the desired matrix. O

A matrix A = (a;;) in Myxn(O) is a lower triangular matrix if a;; = 0 for
each 7 < j.
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Proposition A.7. For each matrix A in My, xn,(O), one can effectively find a
matriz U € GL(n, O) such that AU is a lower triangular matriz.

Proof. Suppose that A = (a;;) and denote d = ged(ai1,...,a1,). We shall prove
the proposition by induction on n. Let n > 1 and suppose that the proposition is
true for matrices in M, «(O), for each positive integer m and each k between 1 and
n—1. We find, by Lemma A.6, a matrix U € GL(n, Q) such that (a11,...,a1,)U =
(d,0,...,0). Then, AU is a matrix of the form

2

Cn

If m = 1, then we are done. For m > 1 we apply induction on m on the matrix

B € My,,—1xn—1(0) and conclude that there exists a matrix V € GL(n —1, Q) such
110---0

0

that BV is a lower triangular matrix. The matrix V = 7 belongs to

GL(n, O) and satisfies that AUV = is a lower triangular matrix. O

Cn

Corollary A.8. Let {w1,...,w,} be an integral basis for L and a = (x1,...,2%)O0L
be a nonzero ideal of Of,.

Then, one can effectively find a lower triangular matric H in M, (O) such that
detH # 0 and, for (aq,...,an) = (w1,...,w,)H,

a=0a;+ -+ Oaqy.
Proof. Since O = OQw;y + - - - + Ow,, it follows that
a=x10r 4+ -+ 2,0 = Oxqw1 + - - + Oxywp, + - - - + Ozpwy + - - - + Oxpwy, .

Suppose, without loss, that x; # 0 for each i. For all ¢ between 1 and k, we can find
(since z; € Op) amatrix 4; in M,,(O) such that (x;wy, ..., z;wy,) = (w1, ..., wy)A:;
since {x;w1,...,z;w,} is a basis for L/K, the matrix A; is invertible in M, (K)
and therefore rankA; = n. We denote

A= (A 1A,
By Proposition A.7, we find a matrix U € GL(kn, ©) such that H = AU is a lower

triangular matrix. Then H = (H:0), where H € M,(0O) is a lower triangular
matrix, and we have that n > rankH = rankH = rank(AU) = rankA > rankA; =

n. Hence rankH = n and therefore detH # 0. Also, (H:0) = AU and A =
(H:0)U~'. We denote (ay,...,a,) = (wi,...,w,)H. Then,
(T1W1, o, T Wiy e v oy W, - o, W) = (W1, ..., Wy)A
= (w1,...,w,)(H:0) U™
= (1,0, 00,0,...,00U L.
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Thus,
a=x10r 4 -+ 2,0 = Spanp{T1w1, ..., T1Wn, ..., LW, ..., LWy}
= Spanp{aq,...,an},
as required. d
For an ideal a of Of, we denote the norm of a | , Section 7 in Chapter I
by N, k(a).
Lemma A.9. Let a = (z1,...,2;)OL be a nonzero ideal of Or. Then, one can

effectively compute N,k (a).

Proof. We find, by Proposition A.3, an integral basis {w1,...,w,} for L. By Corol-
lary A.8, we find a lower triangular matrix H = (h;;) in M, (O) such that detH =
hi1 -+ hnn # 0 and, for (aq,...,ap) = (w1, ..., wy)H, a = Oa; +- -+ Oay,. Then

DOL/O(a) = DL/K(OL)O = (detH)2DL/K(W)O = (detH)QDoL/@(OL) .
On the other hand, by | , Prop. 13 in Chapter I11],
Do, jo(a) = (Ny,x(a))*Do, j0(OL) -
Hence
NL/K(a) = (detH)O
O

Corollary A.10. Let a = (21,...,2,)Or be an ideal of Op, and let 5 € Of. Then,
one can effectively check whether § € a.

Proof. If a = 0, the claim is clear. Suppose then, without loss, that x; # 0,
i=1,...,k. We find, by Proposition A.3, an integral basis {wy,...,w,} for L and

we present (3 in the form g = Z bjw; with b; € O. Also, by Corollary A.8, we find
j=1
a lower triangular matrix H = (h;;) in M, (O) such that hi1---hpp = detH # 0

and, for a; = Zhjiwj (t=1,...,n),a=0a; + -+ O«a,. Then, § € a if and
j=i

only if there exist y1,...,y, € O which satisfy

Z bjw; = = Zyiai = Zyi Z hjiw; = ij(z hjiyi) -
j=1 i=1 i=1 j=1 j=1 =1

Hence, € a if and only if there exist yi,...,yn € O such that

J
(1) bj:zhﬂyl’ ]:1,,77,
i=1
j—1
We define 9; € K by induction: §; = hlel and g; = %(bj — Z hjigi), j=1,...,n.
i=1
Then (g1, -.-,¥n) is the unique solution to the system of equations (1). Therefore,
feaifandonlyify; € O,i=1,...,n. O

Corollary A.11. Let a = (z1,...,2,)O0L and b = (y1,...,y)OL be two ideals of
Op. Then, one can effectively check whether b C a.
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Lemma A.12. Let a = (x1,...,2;)Or be a nonzero ideal of Or. Then, one can
effectively find a system of representatives for Oy /a.

Proof. We find, by Proposition A.3, an integral basis for {wi,...,w,} L. By
Corollary A.8, we find a lower triangular matrix H = (h;;) in M, (O) such that

hi1 -« hpn = detH # 0 and, for o; = Zhjiwj (i=1,...,n),a=0a1+ - -+0Oay,.
j=i
For each i between 1 and n, let C; = {z € O | §(z) < d(hi;) }. Let

R:{Zziwi ‘ ZiECZ‘}.

i=1

Then, R is a system of representatives for Or/a. Indeed, let § € Or. We have

n
to show that there exists r € R such that § —r € a. Suppose that 5 = Z bjw;

j=1
with b; € O. We find, by induction, §; € O and ¢; € Cj such that by = h1191 + 1
-1 n
and b; — Zhjigi = h;j¥; +¢5, j=1,...,n. We denote r = chwj and B =
i=1 j=1

n J
Z w; (Z hjigi). Then r € R and, as in the proof of Corollary A.10, it follows that
j=1  i=1
B—r=pF¢ca. (Il

We can even find a complete system of representatives in the following case.

Remark A.13. Suppose that there exists a presented subset O of O which satisfies,
for each a,b € O with b # 0, that there exist unique ¢ € O and r € O such that
a =bc+r and 0(r) < 6(b). In this case we say that O is a nice Euclidean ring.
For example, Z with Z; = NU{0} and F,[t] with F,[t]; = F,[t] are nice Euclidean
rings.

A nice Euclidean ring satisfies, for each n € N and each a,b € O4 with §(a) <n
and d(b) < n, that d(a — b) < n. Indeed, suppose on the contrary that there exist
a,b € O4 such that §(a) < n, 6(b) < n, and §(a —b) > n. Then, a — b # 0 and
there exist two different divisions with a remainder of ¢ in a — b:

a=(a—>b)-1+b (be Oy satisfies 6(b) <n <d(a—b)) and
a=(a—">)-0+a (a€ Oy satisfies 6(a) <n < §(a—b)),
in contradiction to the assumption that O is a nice Euclidean ring.

We return now to the notations in the proof of Lemma A.12 and for each i be-
tween 1 and n we replace C; by the set {z € O4 |d§(z) < 6(hi;)}. Then, the same

proof of Lemma A.12 gives that R = {Z ziw; | z; € C;} is a system of representa-
i=1

tives for O, /a. We claim that R is even a complete system of representatives for

O /a. That is, for each r1,7r2 € R such that r; # ro we have 11 —ro ¢ a.

To this end, let 5 € Op be a nonzero element and suppose that g = ijwj
j=1

with b; € O. Then, if 3 € a, then there exists j between 1 and n such that

d(b;) > 6(hjj;). Indeed, suppose on the contrary that §(b;) < d(hj;), j=1,...,n.
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j
It follows from the proof of Corollary A.10 that b; = Z hjiyi, where y; € O are

i=1
j—1

defined by induction: ; = ,f—lll and g; = ﬁ(bj — Zhﬁgi), j=1,...,n. We
i=1

shall prove by induction on j that b; =0, j = 1,...,n, and therefore arrive to the
contradiction § = 0. If j = 1, then hj1|bi; hence, since 6(b;) < d(h11), b1 = 0.
Suppose that 7 > 1 and that b = --- =b;_1 = 0. Then also 41 = --- =gj—1 =0

and therefore y; = }% Hence hj;|b;; thus, since 6(b;) < 6(h;;), b; = 0.

n
Now, let r1,72 € R be such that r1 # rp. Suppose that r; = z:z]zwZ with

i=1
n

2ji € Cy, 5 =1,2. Then 0 # 1 — 1o = Z(Z“ — z9;)w; and for each ¢ between 1
i=1

and n, 6(z1; — 22;) < 6(hy;) (because O is a nice Euclidean ring). Hence, it follows

from the preceding pharagraph that r; — ro ¢ a.

Lemma A.14. Leta = (z1,...,2,)OL be an ideal of Or,. Then, one can effectively
check whether a is a prime ideal of Op. If a is not a prime ideal, then one can
effectively find all the prime ideals of O which contain a.

Proof. An ideal B in Op is prime if and only if it is maximal. Therefore, a is a
prime ideal if and only if a # Op and a + 2O = Oy, for each x € O ~a. We
find, by Lemma A.12, a system of representatives (even complete if O is a nice
Euclidean ring) R for O /a. Then, since for every y,z € O, y — z € a if and only
if yOr + a = 20 + a, it follows that a is a prime ideal if and only if a # O and
a+ 20 = Oy, for each x € R. Hence, by Corollary A.11, we can effectively check
whether a is a prime ideal.

If a is not a prime ideal, we find all the z’s in R such that a + O # Op.
These are (in fact all) proper ideals of O which contain a properly. We find, by
induction, all the prime ideals 8 € P;, which contain one of the ideals a + zOy,.
These are all the prime ideals B € P;, which contain a. ]

A.3. Factorization of an Ideal into a Product of Prime Ideals. By Lemma
A.14 we get

Proposition A.15. For each p € P, one can effectively find all the prime ideals
of Or, which contain pOr.

We can cut the number of calculations needed for the above procedure in the
following case.

Remark A.16. Suppose that, for each p € P, the field I_(p = O/p is presented with
a splitting algorithm | , p. 405, Def. 19.1.2]. For example, this situation
is satisfied if K is a global field and, for each p € P, one can effectively compute
(O :p) (i-e., the field K, is an explicitly given finite field). In this case we can save
in the number of calculations that are needed for finding all the prime ideals of O
which lie over p € P in the following way.

Let f and 1 be as in the introduction. Let p be a prime ideal of O, let f be the
reduction of f modulo p and let

F(X) = Pi(X)* - Pr(X)

Albanian J. Math. 13 (2019), no. 1, 3 - 93.


http://albanian-j-math.com/vol-13.html

AHARON RAZON 69

be the factorization of f into a multiplication of powers of distinct monic and
irreducible polynomials over K, = O/p. For each i between 1 and r, we find a

monic polynomial P; € O[X] such that its reduction modulo p is P;. We denote
Bi =pOL+P,(n)Or, i=1,...,r.

It follows from | , Prop. 16 in Chapter III] that I = Dy x(n)A-Do, j0(Or) ™"

is an (integral) ideal of O and if p { I, then Or, , = O,[n]. Hence, it follows from

[ , Prop. 25 in Chapter I] that Bq,...,, are distinct prime ideals of Oy,
with f(;/p) = deg P;, such that

POL = P

If p | I, then the 9B;’s are not necessarily prime ideals of O, and they even can
be the ring Oy, itself. But, still, we have, for a proper ideal B of Op, that P is
a prime ideal of Op which contains p if and only if there exists i between 1 and r
such that P contains ;:

CLAIM: For each i # j P; # B; or B; = O = *B;. Moreover pOr C B;
(1<i<r), and P - - P CpOy.

PROOF: Let i # j be between 1 and r and suppose that J3; = B;. Since P;(X
and P;(X) are distinct monic irreducible polynomials over K, ged(P;(X), P;(X)) =
1. Therefore, there exist polynomials %, € K,[X] such that aP; + vP; = 1.
Hence, there exist polynomials u,v € O[X] and a polynomial w € p[X] such that
u(X)Py(X)+v(X)P;j(X) =14+ w(X). Thus, since u(n)P;(n) € Bi, v(n)P;(n) € B,
and w(n) € pOy, it follows from the assumption that 1 = u(n)P;(n) + v(n)P;(n) —
w(n) € P;, and therefore P, =P, = Or.

It is clear that pOp C pOr + P;(n)Or =B, i=1,...,r.

Finally, since f(X) — Pi(X)¢ --- P.(X)* € p[X] and f(n) =0,

Pi(n)t - Po(n)* € pOL .
Also, B CpOp + P,(n)*Or,i=1,...,r. Hence,
1B CpOL + Pi(n) - Pr(n)OL CpOy,
and the claim is proved.

Now, let p € P and find B; = pOr, + Pi(n)OL, i =1,...,r, and I as above. If
ptlI,ieif I Zp, then we have finished. Otherwise, we throw out all the 3, = Oy,
in order to assume that B1,..., B, are distinct proper ideals of Oy,. It follows from
the claim that the set of all prime ideals 3 € P;, which lie over p is the set of all
prime ideals of O which contain one of the ideals B;, ¢ = 1,...,r. By Lemma
A.14 we find all the prime ideals 8 € P;, which contain one of the ideals ;. These
are all the prime ideals 3 € P;, which lie over p

Proposition A.17. Let a = (x1,...,2;)Op be an ideal of Op. Then, one can
effectively factor a into a product of prime ideals of Of.

Proof. We find, by Lemma 2.13, the norm Ny, (a) and factor it into a product of
prime ideals p € P. For each p € P such that p | N,k (a) we find, by Proposition
A15, the set I, = { € Pr | B D pOr} and denote A = U I,. Then, if
pINL K (a)
BB € P, contains a, then it is necessarily in A. By Corollary A.11, we find, for each
B € A, the multiplicity e = eq, e > 0, of B in a by checking a CPB*, i =0,1,...,e,
and a Z P!, Since e < n, the number of checks is finite. Then a = H xper. O
PeA
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Remark A.18. Each ideal in a Dedekind ring is generated by two generators that
one of them is an arbitrary element of the ideal. In | , Section 6.3] they use this
fact in order to represent, in more economic way, each ideal of O, by two generators
that one of them is in O. Also, if a = aOp, +aO, and b = bOp + 80Oy, with a,b € O
and «, 8 € Op, then, under suitable conditions, we have ab = abOp, + oSOy,

The difficulty in this technique is that in order to represent an ideal which is
given in the form (z1,...,2,)Or with k& > 2 by two generators, one must know
how to find, for each a € O, all the a’s in Of, such that N /x(a) = aO | ,
Thm. (4.2) in Section 6.4]. The advantage of this technique, however, is that it is
more economic in the number of calculations needed to factor an ideal in Of, into
a product of prime ideals.

APPENDIX B. QUANTIFIER’'S ELIMINATION IN THE THEORY OF VALUATION
RINGS WITH ALGEBRAICALLY CLOSED FRACTION FIELDS

The purpose of this appendix is to show that there exists a primitive recursive
procedure of quantifier’s elimination in the theory of valuation rings which are not
fields and have algebraically closed quotient fields, in the language Lg;, which is the
language of rings augmented by a binary relation standing for divisibility (Theorem

B.24) | , p. 434, Cor. 3.4(4)]. Subsections B.2, B.3 and B.4 in this appendix
are an elaboration of Sections 2 and 3 in the article “Quantifier elimination and
decision procedure for valued fields” of Weispfenning [ , Pp. 428-439].

Subsection B.2 shows how to eliminate (primitive recursively) field-quantifiers
from “linear formulas” in the language of valued rings, and in Subsection B.3 we
extend the elimination procedure to any formula in the theory of algebraically
closed valued fields. The valuation group I' of an algebraically closed (non trivial)
valued field is a non trivial commutative group which is ordered and divisible. In
Subsection B.1 we show how to eliminate (in a primitive recursive way) quantifiers
in the theory DOG of non trivial divisible ordered abelian groups with a top
element co. We are using this result in Subsection B.3 to eliminate the valuation
group-quantifiers that were left in the formulas after we have eliminated the field-
quantifiers, in order to get a complete and primitive recursive elimination theory of
quantifiers in the theory of algebraically closed (non trivial) valued fields. Finally,
in Subsection B.4, we reformulate this result in terms of valuation rings.

This work is written, generally, for valuation rings which contain a homomorphic
image R of a ring R. The procedure of quantifier elimination, which is carried
out in the language Lqiv(R), is primitive recursive when R is a presented ring, in
the definitions of Chapter 19 in the book “Field Arithmetic” of Fried and Jarden
[ ]. The only reference to this appendix is the article of Weispfenning. Here,
however, we are working with the language of rings instead of the language of fields
as in Weispfenning.

B.1. Divisible Ordered Abelian Groups.

Definition B.1. An abelian group I' (with an action of addition) is called divisible
if for every positive integer m and each y € I" there exists x € T" such that y = ma.

Definition B.2.

a) Lr = {0,00,+, <} is the language of ordered abelian groups with a top
element oo.
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b) DOG is the theory of non trivial (=non zero) divisible ordered abelian
groups with top element oo in Lr. The axioms of the theory include, in
particular, the axioms x 4+ co = oo for every x and = < oo if and only if
x # 00, the axioms of divisibility (VY)(3X)[Y = mX], m =1,2,..., the
axiom that state that the group is not trivial, 3IX [X < co A X > 0], and
the axioms of order,

X<ooANY <Z = X+Y<X+Z and X <YANY <Z X< Z.

Theorem B.3. There exists a primitive recursive procedure of quantifier elimina-
tion in the theory DOG .

Proof. Let ©(Zy,...,Zy,) be a formula in Lr. By induction on the number of
quantifiers in ¢ it suffices to handle the case when ¢ is of the form (3X)¥(X,Z),
where 1 is quantifier-free. Each term a = «(X,Z) of Lr in ¢ is of the form
mX + kiZ1 + -+ + knZ, or of the form mX + k1Z1 + --- + k. Z,, + oo, where
myk1,...,kn € NU{0}. In the later case DOGs | a = co. Hence, ¢ is a
disjunction of expressions of the form
(1) /\ai(X7Z):Bi(XvZ)/\ /\ Vj(XaZ)<6j(X7Z),
i€l JjeT

where «;, B;,7;,6; are terms of Lr. Note that DOGo Ea # < (> BVa < B).
We replace ¢ by the following disjunction of conjunctions

X =ocon¢(X,Z)]v \/ [X<oon\Zi<ooh N Zj=oc0nv(X,2Z)],
IC{1,...,n} i€l jer

where I' = {1,...,n} ~1. If a term of the form mX + k1Z; + --- + k,Z,, with
m # 0 (resp., k; # 0) appears in the conjunction (1) and one of the conjuncts is
X = oo (resp., Z; = o), we replace the term by co.

We introduce the symbol < to stand for one of the three relations =, < or >. If
the conjunction (1) contains the conjunction (X < oo) A /\(Zl < 00), then each

iel

term of the form a(X,Z) < 5(X,Z) which occurs in (1), that does not contain Z;
for every j € I, can be replaced, using a transfer from one side to another, by an
expression of the form

mX +7(2)<v'(Z),
where m € NU {0}, v(Z) = ZkiZi and v/(Z) = Zk:Zl with k;, k, € NU{0}.
iel iel

Hence, modulo DOG, 9 is a disjunction of an expression of the form X = oo A
0(Z), where 0 is a quantifier-free formula which does not contain X, and expressions
of the form
(2) X<oo/\/\Z,-<oo/\/\Zj:oo
i€l jer
AN\ miX + ai(Zr) = aj(Zr) A N\ miX + B;(Zr) < Bj(Zr)
i€l JjET
N /\ mipX +’yk(Z1) > ’}/,;(Z]) N Q(Z[) ,
kek
where m; € N; Z; = (Z;|i € I); o, B, v are expressions of the form Z k; Z; with
lerl
ki € NU{0}; of, B}, are expressions of the form Z k;Z, with kj € NU{0} or oo;
lel
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and @ is a quantifier-free formula which does not contain X. Let m be a common
multiple of all the m;’s. Then (2) is equivalent to the expression

X<oo/\/\ZZ-<oo/\/\Zj:oo

zeI jer
m
A\ mX + Eal(z,) Hoz (Z) A N\ mX + 7ﬁj(z,) < —6 (Z;)
i€T JjET
AN\ mX + 7%(21) > *%(ZI) NO(Zy).

kek

It suffices to handle, then, the case when ¢ is of the form
(3) (3X)[X<oo/\/\Zi < 00 A /\ Zj =00

icl Jer
A /\ mX + a;(Zr) = oi(Z1) A /\ mX + B3(Zr) < B(Zr)
€T jeTJ
N N\ mX +(Z1) > 1(Zr) AO(Zg)]

ke
where m € N and «;, of, B, B}, Yk, 7, and € are as above.
Let ¥(X,Z) be the formula
(4) X<oo/\/\Zi<oo/\/\Zj:oo
iel jer

AN\ X +0i(Zr) = aj(Zr) A N\ X + Bi(Z1) < B}(Z)
€T JjeET

AN\ X +(Zr) > 7i(Zr) AO(Z).
kek

It follows, by the divisibility axiom (VY)(3X)[mX =Y] in DOG, that
DOG = ¢(Z) < 3X)[Y(mX, Z)] + 3Y)[¢(Y,Z)].

Hence we can assume, without loss, that m = 1 and ¢(Z) is the formula (3X )y (X, Z).
We denote the following quantifier-free formula in Lr by x(Z):

NZi<oon N\ Zi=ocon0(Zi) N )\ e(Zr) <oon N\ 7i(Zr) <

el jer €L ke
NN @2+ a(Zr) = 0i(Zy) + o) (Z))
(i,0)ez?
NN (0(Zh) + Bi(Zr) < ul(Zr) + B(Z))
(i,))ETXT
AN (@UZD) A+ w(Zr) > ai(Zr) +71.(Z0))
(i,k)ETXK
AN BHZD +w(Zn) > B5(Zr) +i(Zr)) -
(4,k)eT XK

CramM: DOGy = ¢(Z) <> x(Z). Indeed, it is clear that DOG = ¢(Z) —
X(Z). Conversely, let T' U {oo} be a model of DOG, where T' is a non trivial
divisible ordered abelian group, and let z1, ..., z, € I'U{oo} be such that T'U{co} |=
X(Z). In particular, z; € T for each i € I and z; = oo for each j € I'. We
have to show that there exists € T" such that I' U {co} | ¢(z,2). We denote
z; = (%4 € I); then of(z;) < oo for each ¢ € Z and v}, (zr) < oo for each k € K.
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If Z # () we choose ig € Z. Then, with = = o (z1) — a4, (z), T' U {oo} | ¥(x,2).
Suppose, then, that Z = (. In this case x(Z) reduces to the conjunction

/\Zi < oo A /\ Zi:OO/\Q(Z[)/\ /\ ’y]/c(Z]) < 00

i€l jer kek

NN BYZr) +w(Zr) > Bi(Zr) +vi(Zr))
(4,k)eT xK

Suppose first that J # 0 and K # (. We denote 8 = mi}l{ﬁ;(z]) — Bj(zr)} and
JE
v = r]?a%{v,’c (z1)—7k(z1)}. Theny < B. If 8 < oo, then, since T is a divisible group,
€

there exists « € I" such that 2z = S+ ~. This z satisfies v, (z7) —r(zr) <7<z <

B < Bj(z1) — Bj(zr) for each j € J and k € K and therefore I' U {o0} |= ¥(z,2).

If 8 = oo, then z = 2 - max{~y, —v} satisfies v, (z1) — (z7) < v <z < 00 =

Bi(zr) — Bj(zr) for each j € J and k € K; hence, again, I'U {oo} = ¢(x, 2).
Suppose now that 7 = () and K # ). In this case x(Z) is

/\Zi<OO/\ /\ Zi:OO/\H(Z])/\ /\7;€(Z1)<OO.
icl jer kek

We denote v = r]ila’é({%’c(zf) —7k(z7)}. Since T is not trivial, there exists 0 < 6 € T.
€

Hence x = 7y + ¢ satisfies © > ;,(z;) — vk (zs) for each k € K and thus I' U {o0} |=

¥(z,2).
Finally, suppose that J # @ and K = . We denote 8 = Hél;l{ﬂ; (zr) — Bj(zr)}.
J

If B = 0o we choose £ = 0 and if 8 < oo we choose x = 8 — §, where 0 < § € T is
some element. In any case, * < 8 < fi(z1) — B;(zr) for each j € J and therefore
TF'U{oo} E ¥(x,z). The case J = K = ) is trivial. O

B.2. Linear Problems in Valued Fields.

Definition B.4.

a) L=1{0,1,+,—,} is the language of rings.
For a ring R we denote the language £ augmented by a constant symbol for
each element of R by L(R). In every ring which contains a homomorphic
image R of R, these symbols are interpreted as elements of R which satisfy
the additive and multiplicative tables of corresponding elements of R.

b) Lvr = (£, Lr,v) is the language of valued rings.
For aring R, Lvr(R) = (L(R),Lr,v).

¢) VF is the theory of valued fields in the language Lygr. In each valued
field, (F,vr), the function symbol v is interpreted as the valuation vp. We
denote the valuation group vg(F*) of F by I'r. Then, I'r is an ordered
abelian group and vp : F — I'p U {oo} is surjective.

d) For a ring R, we denote by VF(R) the theory, in the language Lygr(R),
whose models are valued fields (F,vg) such that F' contains a homomorphic
image R of R and v is integral on R. That is, VF(R) contains in addition
the axioms v(a) > 0 for each a € R.

e) If (F,v) is a model of VF, we denote the residue field of F' at v by F' = F,.
If = is an element of F' such that v(z) > 0, we denote the reduction modulo
vby z. If f(X) =a,X"+---+a1 X +aop is a polynomial in F[X], we denote
v(f) = Orgliign{v(ai)}. If v(f) > 0, we denote f(X) = @, X"+ --+a1 X +ao.
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f) LE; (vesp., LE;(R)) is the language Lygr (resp., Lyr(R)) augmented by
the symbols F,,, for each positive integer n, to be interpreted in every valued
field (F,v) by

|F| >n s (Fv) EE,.

E,, can be defined in the language Lyg by the sentence

n—1
e (3X1) - GXa)[ A\ v(X)=0n A w(Xi-X;)=0].
i=1 1<i<j<n—1
Indeed, in every valued field (F,v), (F,v) = €, if and only if |[FX| > n — 1

(or |F| >n).

Notation B.5. We denote L-variables (which will be called field-variables or F-
variables) by X,Y, ..., L(R)-terms (which will be called F-terms) by a,b, ..., Lr-
variables (I-variables) by &, 7, ..., and I'-terms in Lygr(R) (including I'-terms in Lr)
by a,f,.... F-quantifiers (i.e. L-quantifiers) are quantifiers of the form 3IX,VX
and I'-quantifiers (Lp-quantifiers) are quantifiers of the form 3¢, V€.

Remark B.6.
a) let o(Xy,...,Xn,m,...,mx) be a quantifier-free formula in the language
Lyr(R). Then there exist a positive integer m, polynomials ay,...,ay, €
R[X1,..., Xy, and a quantifier-free formula

¢(§1,' .. agmnnla o 77716)
in the language Lr such that

F(R) = o(X,m) < (3&[v(Em) A [\ v(ai(X) = &].

Indeed, note that each F-term a is a polynomial and that a = 0 <> v(a) =
oo. Hence, we can write ¢ in the form

"/’(v(al(x))ﬂ s ,v(am(X)), 7]) )

where ay,...,a,, are all the F-terms that occur in ¢ and ¥(&1,...,&m,N)
is a quantifier-free formula in the language Lr. Thus ¢ is equivalent to the
desired formula modulo V F(R).

b) Let (T, X1,...,Xn,m,...,n) be an F-quantifier-free formula in Lyg(R).
Then, there is an F-quantifier-free formula ¢'(X1,..., X, Y, Z, 01, ..., nx)
in the language Lygr(R) such that

F(R)E Z £0A @)Y = 2T A (T, X, m)] & ¢/(X,Y, Z,1m) .
Indeed, by a), we can assume that o(7T, X, n) is the formula

36)[w( /\ Zaw =&,

=1 =
where a;; € R[X] and ¢ is a formula in the language Lr. Hence

F(R) = Z+#0 /\(HT)[Y:ZT/up(T,X n)] <
Z# 0N (3E€)[v( /\ Zaw YYIZm=d) = & +n(Z)].
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Definition B.7. Let X = (X1,...,X,,) be a tuple of F-variables. We say that
an F-term a of L(R) is linear in X if a is of the form a = a1 X; + -+ +
anX, + da, where ay,...,a,,a’ are F-terms in which X, i.e. each X;, does not
occur. We say that a I'-term « of Lygr(R) is linear in X if « is of the form
o = ﬂ(v(al)a cee 7U(am)7n17 ey nk)v where 5(615 v a€m5 M- -- 777k) is an Ll"‘terIn
and ay,...,a, are F-term which are linear in X. We say that a formula ¢ of
Lyr(R) is linear in X if each term which occurs in ¢ is linear in X. Finally,
we call a fomula ¢ of Lygr(R) a linear formula if ¢ is linear in the tuple of all
F-variable bounded in it.

Lemma B.8. There is a primitive recursive procedure assigning to any Lyg-
formula ¢ of the form
A& <o NY £0Av(YiX = Zi) = &]
i=1
an Lyg-formula ¢’ and an LEg -formula ¢" such that:
a) VFEp+e ¢ and VFE @X)p < ¢’ ;
b) ¢ and ©" are quantifier-free and linear in Z ; and
c) ¢ is the formula

a#0n \/  [ar <oon N(ei=ar) A A\ (w(aX —b;) =ay)

0AIC{1,...,n} el iel
A\ /\ (v(bi—bj):oq)/\x[],
(i,g)el?
i#£]

n n

where a = HYZ-; with a; = H Y;, bi = a;Z; and oy = & +v(a;), i =
i=1 j=1

J#i

1,...,n; and, for 0 #1 C{1,...,n}, ay is any element in {a;|i € I} and

X1 s a quantifier-free Lyr-formula in which X does not occur.

Hence, ¢’ is a disjunction of formulas of the form
(1) a#0Aa; <oo/\/\(v(aX—bi) =ay) A /\ (v(b; —bj) = ar) AN X,
icl (i,5)eI?
1#]
where X is a quantifier-free Lyg-formula; the variables Z; do not occur in a; and
X does not occur in a, b; (i € I), ag and x’.
Proof. ¢ is equivalent to the formula a # 0 A /\[ai < oo Av(eX —b) = o]

i=1
Indeed, modulo V F,

n

1. /\ Y; #£0 <+ a#0;
i=1

2. For each ¢ between 1 and n, a; < o0 — & < oo. Conversely, for each @
between 1 and n,

[(;\}G#O%ai;&O)/\(ai;«éO—)v(ai)<oo)/\(£i<oo)]—>ai<oo;
j=1
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3. For each i between 1 and n,
’U(Y;X — Zl) = 51 < U(ai}/;X — alZl) = gz + v(ai) — v(aX — bl) = Q5.

We adjoin to ¢ a disjunction over the possible orderings of the «;’s:

eV A N@=a)A A (aw <an)l,

0AIC{1,...,n} iel iel’
where I' = {1,...,n} ~ I and oy is any element in {«;| ¢ € I'}. Then, ¢ is equivalent
to the disjunction \/ (¢r A1), where
PAIC{1,...,n}
(2) 301:a;«éO/\aI<oo/\/\[(ozi=a1)/\v(aX—bi):aI],
iel
(U /\ [(ay < ar) Av(by —br) = a; ],
irer

and by is any element in {b;|i € T} .

Indeed, for i’ € I,

VF E[(ay < ar) ANv(eX —bp) =ar] —
[’U((IX — bll) = Oy > ’U(bi/ — b[) = Oy } s

since, if v(by — br) = @y, then v(aX — by) = v((aX — by) — (byy — b)) = @y and if
v(aX — by) = ayr, then v(by —by) = v((aX —by) — (aX — b)) = ay.

Let 0 #£ I C{1,...,n}; for each (i,j) € I%, v(b;—b;) = v((aX —b;) — (aX —b;)) >
ar. We adjoin to ¢; a disjunction over the possible values of v(b; — ;) for 4,5 € I:

pre \ lern N o=ty =ann N\ (\ (el —b)>arn)]
0£JCI (G.4")er? ier g J€J
i’

Then, ¢; is equivalent to the disjunction \/ (¢’ Nt.;), where

B£JCI
3) <pf,:a;«éO/\aJ<oo/\/\[(aj:aj)/\v(aX—bj):aJ]
jeJ
A /\ v(b; —bjr) = ay
(7.5
i#5’

and
(S /\ (v =aJ)/\(\/ v(b; —b;) > ay).
iel™J =
Indeed, let @ # J C I and suppose that for each j € J, v(aX —b;) = a, and
for each i € I~ J there exists j € J such that v(b; —b;) > ay. Then v(aX —b;) =
’U((aX — bj) + (b] — bz>) =qQy.
We add (2) and (3) and get, modulo V F, that

P \V  (ernvn) o Vo LV (@ avh ) ner

0AIC{1,....n} 0£IC{1,...,n} 0£JCI
< \/ (¥ Axa) s
0£IC{L,....n}
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where x : \/ (w} s ANYr) is a quantifier-free Lygr-formula in which X
JCIC{1,...,n}
does not occur. Then
o \V  (@raxa)
PA£IC{L,...,n}

is the desired formula. Since Z; occurs only in b; = a;Z; and the terms containing
the b;’s are only of the form v(aX — b;) and v(b; — b;), it follows that ¢’ is linear
in Z.

It is left to construct the formula ¢” in the language L& such that VF |=
(X)) > ¢". For O £ 1 C {1,...,n}, we denote

(p}/:E|I|+1/\a750/\041<OO/\/\(O(¢=O(I)/\ /\ v(bi—bj)zoq.
i€l (i,5)eI?
i#]
Then ¢ is a quantifier-free formula in the language £&; and ¢/ is linear in Z.
Cram: VF = (3X)¢ <> ¢f. Indeed, let (F,v) be a valued field with valuation
group I', let « € T, let 0 # a € F, and let b; € F (i € I) be such that v(b; —b;) = «
for i # j. We have to show that

(Fv) = @X) [\ vaX —b) = a] B
iel
Let 0 # b € F be such that v(b) = a — v(a). Then,

EX)[ N\ vaX —b) =l @X)] \v(X - %) =a—uv(a)]

el i€l
o AN G - 2y =0]

i€l
& AN\ vy —a)=0],

i€l

where ¢; = %, i € 1. Also, for i # j,
b, b

o(ei = ¢j) = vy = o) = vlbi = by) = vla) = v(b) = a = v(a) ~ v(b) = 0.

It suffices, then, to show that
(Fov) = EX)[ N\ o(X =) =0] ¢ By -
iel
Let ig be any element in I and let I’ = I ~{ip}. For each i € I’ we denote
d; = ¢; — ¢;,. Then v(d;) = 0 and, for each ¢ # j in I,
o(di = dj) = v((ci = i) = (¢ = ¢ip)) = v(ei —¢5) = 0.
That is, the set {d;|i € I'} has |I'| = |I| — 1 distinct elements in F*. Hence
(4) (F,Q}) ): E|[‘+1 & 3dde F*st. d §é {dl|’t S Il}
s3dde Fst.v(d)=0andv(d—d;)=0 Viel.
Suppose first that (F,v) = Ej7j4+1. Then, it follows from (4) that there exists d € F’
such that v(d) = 0 and v(d — d;) = 0 for each i € I'. Then z = d + ¢;, satisfies, for
each i € I,
v —c¢)=v(d+ ¢y, —c;)=v(d—d;) =0.
Also, v(z — ¢;,) = v(d) = 0; therefore, v(x — ¢;) = 0 for each i € I.
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Conversely, suppose that there exists « € F' such that v(z—¢;) = 0 for each i € I.
Then d = z — ¢;, satisfies that v(d) = v(z — ¢;,) = 0 and v(d — d;) = v(x —¢;) =0
for each i € I'. Hence, by (4), (F,v) = Ej7j41. This proves the claim.

Now, " : \/ (@7 Axr) is the desired formula. O

PAIC{1,...,n}

In Subsection B.3 we shall need only the above lemma. However, an immediate

corollary from this lemma is

Theorem B.9. FEach linear formula ¢ in E%R(R) has an F'-quantifier-free linear
formula ¢’ in LEL (R) such that VF(R) = ¢ < ¢'.

Moreover, if R is a presented ring and ¢ is a presented formula, them we can
effectively find ¢’.

Proof. By induction on the number of F-quantifiers in ¢, it suffices to handle the
case when ¢ is a formula of the form (3X)¢*(X,Z,n), where Z = (Z1,...,2Z,),
n=nm,...,n), and ¢*(X,Z,n) is an Lyr(R)-formula which is F-quantifier-free
and linear in (X, Z). By Remark B.6 a), we can assume that ¢* is of the form

GO [vE ) A N\ v(a(X,Z) = &1,
=1

where € = (&1,...,&m), a;(X,Z) € R[IX,Z], i =1,...,m, and ¥(§,n) is an Lr-
formula. Hence we may assume, without loss, that ¢ is of the form

m

EO[ N v(ai(X,2)) = &].

i=1
Since ¢ is linear in (X, Z), it follows that a; is linear in (X,Z), i = 1,...,m.
That is, a;(X, Z) is of the form
ai(X,Z) = bZX —|— Ci(Z) 5
where b; € R, ¢;(Z) € R|Z] and ¢; is linear in Z, i = 1,...,m. Hence, modulo
VE(R),
v(ai(X,Z)) =& < (ai(X,Z) =0NE& =00) V (& < oo Av(ai(X,Z)) = &)
H([(bl = OACi(Z) :O)\/ (bz Z0Ab;X = —Cl(Z))]
N& =00) V(& <o Av(biX +¢i(Z)) = &),
and therefore we can reduce to the case that ¢ is of the form
@X)[ N\ (b #0A by X = —cir(Z)) A \(& < 00 Av(b:iX + ¢i(Z)) = &),
ier i€l
where I C{1,...,m}and I'={1,...,m} N 1.
If I' # (), we choose ig € I'. Then ¢ is equivalent to the formula
N\ (bir # 0 Abiyeqr(Z) = byrciy (Z))A
ier
A\ (& < 00 Av(=biciy(Z) + biyci(Z)) = & + v(bi,))
iel
which is a quantifier-free formula in Lygr(R). If I’ = ), then ¢ is the formula
X[\ (& < oo Avb:iX +ci(Z) = &)].

iel
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We adjoin to ¢ a disjunction over the possible options b; = 0 or b; # 0:

p o AXN{N\&G <oon[(bi=0Av(ci(Z) = &)
el
\Y (bz 75 O/\U(biX + CAZ)) = fl)]},

in order to reduce to the case that ¢ is the formula

(HX)(/\[(& < 00) A (b #0) A (v(b: X +¢i(Z)) =&)])-

el

Now, we can eliminate the quantifier 3X using Lemma B.8. (]

B.3. Algebraically Closed Valued Fields. We continue to hold the notations
of Subsection B.2.

Definition B.10.

a) ACVF is the theory of algebraically closed, nontrivially valued fields in the
language LyR.

b) For a ring R, ACVF(R) is the theory, in the language Lygr(R), whose
models are valued field (F,v) which contain a homomorphic image R of R
and satisfy (F,v) E ACVF and (F,v) = VF(R).

Remark B.11. Let (F,v) be a model of ACV F with a valuation group I'. Then
a) I is not trivial, i.e. T # 0;

b) F, is an algebraically closed field and, in particular, infinite. Hence, the
predicates E,, of Subsection 2 (Definition B.4 f)) are true modulo ACV F;

¢) T'is a divisible group (Definition B.1). Indeed, let m be a positive integer
and let 8 € I'. We have to show that there exists £ € I" such that 5 = m¢.
Let b € F* be such that v(b) = . Since F is algebraically closed, there
exists x € F* such that ™ = b. Then, with £ = v(z), 8 = v(b) = v(z™) =
mu(z) = mé.

Definition B.12. It is convenient to enlarge the language Lr by the n-ary operation
symbol min,,, for each positive integer n, which is defined by

M min (€1, &) = €0 \(E=&n \E<E).

i=1 j=1
So, in any ordered abelian group I' and for each a1, ...,a, € T, min,(a1,...,ay)
is interpreted as the minimal element in the set {aq, ..., an}.

Since these operations can be eliminated in formulas by (1) without introducing
new quantifiers, they do not affect the quantifier elimination procedure in the theory
DOG, (see Theorem B.3).

Definition B.13.

a) a formal polynomial in X of degree n = deg(f) is an F-term (in the lan-

guage L(R)) f(X) of the form Z fiX?, where the f;’s are F-terms which do
i=0

not contain the variable X and f,, is not identically zero (modulo VF(R));

f is monic if f, = 1. We denote polynomials by f(X),g(X),h(X),...;

the corresponding tuples of coefficients are then £ = (fy,..., fn), g h,....
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b) T(f,a) is the tuple of coeflicients of the Taylor expansion of f(X) at q;

that is, T(F,a) = (f3, ..., f7) with ff = 3 (;) Fai* and the equation
i=k

f(X) = f*(X — a) is true in every field which contains a homomorphic
image of R.

¢) Let f(X) and ¢g(X) be two formal polynomial in X of degrees n and m,
respectively. Q(f,g) (resp., R(f,g)) is the tuple of coefficients of the quo-
tient (resp., remainder) of f(X) when formally divided by g(X); i.e.,
if Q(f,9) = q and R(f,g) = r, then ¢(X) is a polynomial of degree
max{0,n — m}, r(X) is a polynomial of degree < max{0,m — 1}, and
the formula
2) g 70— F(X) = g(X)g(X) + r(X)
is true in every field which contains a homomorphic image of R.

Notation B.14. For a tuple ¢ = (c1,...,c,) of F-terms, we denote

v(c) = min, (v(c1),...,v(cy)).
In particular, if f is a formal polynomial in X of degree n, then

v(f) = min(v(fo), .., v(fn)) -
If, in addition, a is an F-term, we denote fa = (fo, f1a, ..., fna™). Hence

v(fa) = min(v(fo), v(fia),...,v(fna")).
Lemma B.15. Let f(X) be a monic formal polynomial in X of degree n. Then,
the following equivalences hold in ACV F(R):
(a) (a <0 Av(a) = a) —
[EX)((X —a) > aA f(X)=0) < v(f(a) >v(fa)];
(b) a<oo—=[AX)v(X)=aA f(X)=0)
\ o) +ia=o(f;) + jo

0<i<j<n
= ming1(v(fo),v(f1) + o, ..., v(fn) + na)].
Proof of (a). Let a be a finite Ep—term and let a be an F-term such that v(a) = a.

In particular, a # 0. Let g(X) = Z(fZ Zngz Then g, = a™ # 0,
=0
g = fa, 9(X) = f(aX) and therefore g(1) = f(a). It follows by the subtitution
X = aY that, modulo VF(R),
@AX)[v(X —a) >a A f(X)=0] < (3
< (3

Y)
Y)
Hence it suffices to show that, modulo ACV F
3) EX)[0(X ~ 1) > 0 A g(X) = 0] & v(g(1)) > v(g).
Indeed, suppose first that the left hand side of (3) holds. Then, modulo VF(R),
g(1

(
v(g(1))=v(0 —g(1)) = v(g(X) — 9(1))
= v(zgi(Xi —1)) = min {v(g;(X* — 1))} > v(g),

[(a(Y = 1)) > a A f(aY) = 0]
[o(Y —1) > 0Ag(Y) = 0].
(R),

0<i<n
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since VF E v(X" = 1) = v(X = 1)+ v(1 +--- 4+ X*71) > 0; note that VF =
(X —-1)>0—v(X)=0.

Conversely, let (F,v) be a model of ACV F(R), let g(X) be a (usual) polynomial
in F[X] of degree n (g, # 0) and suppose that the left hand side of (3) does not
hold. Let ¢ € F' be such that v(c) = v(g). Then ¢ # 0 (since v(g) < v(gn) < 0)
and the polynomial ¢'(X) = %g(X) satisfies v(g’) = 0. Since F,, is infinite (Remark
B.11 b)), there exists b € F,* such that ¢/(b) # 0 and therefore there exists b € F
such that v(b) = 0 and v(¢’(b)) = 0. That is, there exists b € F' which satisfies

(4) v(b) =0 Aw(g(b)) = v(g).
Let

g(X)=9(X +b) =gn (X —c1) (X —cn)
with ¢; € F' (F is an algebraically closed field). Then
9(X) =g" (X =b) = gn - (X = (c1 + b)) -+ (X = (cn + D))

hence, =(3X)[v(X —1) > 0 A g(X) = 0] implies

5 n

(5) /\v(cierfl)gO.

i=1

If v(e;) > 0, then, by (5), v(c;+b—1) < v(¢;), and if v(e;) < 0, then, since v(b) = 0,
v(c; +b—1) =v(¢;). Thus, in any case,

(6)

~.

v(ei+b—1) <w(e).

i=1

Finally, by (6) and (4),

v(g(1)) = v(g"(1 = b)) = v(gn +Zv1—b—cz

v(gn) + Y vlei) = vlgner -+ cn) = v(g5)
i=1

=v(g%(0)) = v(g(b)) = v(g)
and the right hand side of (3) does not hold.

Proof of (b). Let (F,v) be a model of ACVF(R) and let T be the corresponding
valuation group. Let o € I’ and let f(X) be a monic polynomial in F[X] of degree
n (in particular, v(f) < v(f,) =v(1) =0 < 00).

Suppose first that the left hand side of (b) holds. That is, there exists « € F' such
that v(r) = @ and f(z) = 0. In particular, z # 0 (hence v(z) < 00) and v(f(z)) =
oo. Therefore v(f(z)) = co > v(fx). If the value v(fr) = Omin {v(fiz")} would

(f

have been achieved only by one of the values v(fo),...,v(fnz"), then v(f(z)) =
v(fx), a contradiction. Hence, there exist 0 < i < j § n such that v(f;z*) =

v(fja7) = v(fz). Thus
v(fi) +ia = v(f;) + jo = min(v(fo), v(fi) + a,...,v(fa) + na).

Conversely, we choose a € F' with v(a) = « (in particular, a # 0) and define

g(X) = > (fia")X". Then g(X) = f(aX) and v(gr) = v(fra®) = v(fx) + ka,

1=0
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E=0,...,n If for 0 <i < j<n, vu(fi) +ia=v(f;) +ja= Oinkig {v(fr) + kal,
then, since v(f) < oo, o

(7 v(gi) = v(g;) = v(g) < oo.
We choose b € F with v(b) = v(g) and define h(X) = b~'g(X). Then, by (7),
v(h;) = v(h;) = v(h) = 0. Since F), is algebraically closed and h;, hj # 0, it follows
that there exists 0 # ¢ € F,, such that h(c Z h;é = 0 (if h(X) would have no

nonzero roots, then h(X) would have been of the form hx X*, with k between 0 and
n, in contradiction to the fact that there exist 0 < i < j < n such that h;, Bj #0).
Hence, there exists ¢ € F' such that v(c) = 0 and v(h(c)) > 0. That is, there exists
¢ € F which satisfies

v(c) =0Av(g(c)) > v(g).

By (a), with a = 0, g instead of f and c instead of a, there exists d € F such that
vid—c)>0Ag(d)=0.
Hence f(ad) = g(d) =0, v(d) = v(c) = 0, and v(ad) = v(a) = a. Thus
( v) | EX)[v(X) = a A f(X) =0].

Lemma B.16. ACV F(R) admits quantifier elimination, in the language Lyr(R),
for formulas of the form

n
(a) (3X)] /\ v(X —a;) =a;] and
i=1
(b) EX)[F(X)=0A \v(X —a) = a5,
i=1
where the variable X does not occur in oy, a;, i = 1,...,n, and f(X) is a monic

formal polynomial of degree m.

Moreover, if R is a presented ring, then there is a primitive recursive procedure
of quantifier elimination in the theory ACV F(R) for formulas of the above forms
in the language Lyr(R).

Proof. If there exists i between 1 and n such that a; = oo, then X = a; and
n

hence (a) is equivalent to the quantifier-free formula /\ v(a; —aj) = a; and (b) is

7

n

equivalent to the quantifier-free formula f(a;) =0 A /\ v(a; —aj) = o;.

i=1

JF

Suppose then that o; < oo, i =1,...,n. Then, the elimination of the quantifier

from formulas of type (a) is an immediate consequence of Lemma B.8 a), b) and
Remark B.11 b). Also, the quantifier elimination for formulas of type (b) reduces,
by Lemma B.8 c), to formulas of the form

(8) "
z/JA(HX)[f(X):0/\/\7)(X—a;):a/\ /\ v(a; —a}) = al,
i=1

1<i<j<n’
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where ¢ : a < co A, x is a quantifier-free Lyg (R)-formula which does not contain
X, and X does not occur in aj, i =1,...,n'.
We denote £* = T'(f, a}) (Definition B.13 b)). Then f =1, and with f*(X) =

Zf Xt = f*(X —a}). If n/ =1, then, by the subtitution X’ = X — af,
the formula (8) is equivalent to the formula
b A GX A (X) = 0 A 0(X') = a]

and by Lemma B.15 (b) we can eliminate the quantifier 3X’.
Suppose now that n’ > 1 and let b; = a}, — a}, ¢ = 2,...,n’. Then, by the
subtitution X’ = X — af, the formula (8) is equivalent to the formula

9) "
wA/\v(bi) =a A /\ v(b; —bj) =«
AGXNFMUZOAMXq:aAAvutwgzay
Let

w’:w/\/\v(bi):a/\ /\ v(b; —bj) = a.
=2 2<i<j<n’
Then, the formula (9) is equivalent, modulo ACV F(R), to the formula
(10) Y AEYHo(Y)=a A@EX)v(X' -Y)>a A f(X)=0]A

Aoy —b)=a}.
i=2

Indeed, let (F,v) be a model of ACV F(R) with a valuation group I'" and let
a €T and by,...,b, € F. Suppose first that (9) holds. Then there exists 2’ € F
such that f*(z') =0, v(2’) = @, and v(z' — b)) =, i =2,...,n’. Let d € F be
such that v(d) > 0 and let ¢ = 1 — d. Then v(c) = 0 and y = cz’ satisfies that
v(y) = a, v(@' —y) = v(da') > a, and v(y —b;) = v((@" = b;) — (2" —y)) =
1=2,...,n.

Conversely, suppose that (10) holds. Then there exist y,z’ € F such that
(@) =0, vy) = a, v —y) > a, and vy — b;)) = o, i = 2,...,n'. Then
v(i@) =v((@' —y)+y) =cand v(z' —b;) =v((z' —y)+(y—b;)) =, i =2,...,7n .

Now, by Lemma B.15 (a), the formula (10) is equivalent to the formula

(11) "

P AEY) oY) =a Av(f(Y)) >v(fY)A /\ (Y —b;) =a].
i=2

CASE A: a=0. Let ¢ be the formula

(12) ‘

Yy Av(g) < oo A (FX)[v(X) =0 Av(g(X)) > v(g) A N\ v(X —¢) =0],
i=1

where g(X) is a formal polynomial in X of degree m and

4
/\ (i) =0 A /\ =0.

1<i<j<t
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Let hA(X) be the formal polynomial which corresponds to (X — ¢1)--- (X — ¢p).
Then, modulo VF(R), ¢ is equivalent to the formula

(13) Py A (3 )[v(X)—OAv( (X)) > v(g) Av(h(X)) =0],
because
¢ ¢
VE(R) Eo(X)=0A /\v(c:) =0— [ \v(X —¢) =0 v(h(X)) =0]
Note that

14
VE(R) | (he = 1A [\ ofc) = 0) = v(h) =0.

CaseE Al: g(X) is monic and v(g) = 0. Suppose that ¢ is the formula
(14) gm =1Av(g)=0Av(h)=0

A (EX)[0(X) = 0 A v(h(X)) = 0 Av(g(X)) > 0].

Let k(X) be the formal polynomial which corresponds to (Xh(X))™ and let q =
Q(k,g) and r = R(k, g) (Definition B.13 ¢)). Then, the degree of r is smaller than
m and, by (2),

(15) (Xh(X)™ = g(X)g(X) +r(X).

Cramm: ACVF(R)E e+ gm=1Av(g) =0Av(h)=0Auv(r)=0.

Indeed, let (F,v) be a model of ACVF(R), and let g(X) and h(X) be monic
polynomials in F[X] of degrees m and ¢, respectively, such that v(g) = 0 and
v(h) = 0. Then, it follows from the construction of ¢(X) and r(X), that ¢ is monic,
v(q) = 0 and v(r) > 0. Hence, it follows from (15) that in F,

(16) (Xh(X)™ = g(X)q(X) +7(X).

By (14), we need to show that there exists x € F' such that v(z) = 0, v(h(z)) = 0,
and v(g(z)) > 0 if and only if v(r) = 0. An equivalent formulation in F, is:

there exists 0 # 7 € F, s.t. h(Z) #0 and g(z) = 0iff 7 # 0.

Suppose first that there exists 0 # Z € F, such that h(z) # 0 and §(z) = 0. Then
it follows from (16) that #(z) = (Zh(Z))™ # 0 and, in particular, that 7 # 0.

Conversely, suppose that each root Z of g(X) in F, satisfies h(Z) = 0. Then,
since F, is algebraically closed, g(X) divides (Xh(X))™ and therefore ¥ = 0. This
proves the claim.

CASE A2: ¢(X) is any formal polynomial of degree m such that v(g) < oo.
Suppose now that ¢ is the formula

(17) wv(g) <ocoAv(h) =0A(3X)[v(X)=0Av(g(X)) > v(g) ANv(h(X))=0].

We adjoin to ¢ a disjunction over the possible values of the v(g;)’s: modulo VF(R),

(18) N

o \pn N\ (g)>v(@)A(v(g) =)l
i=0 j=it1

For each i between 0 and m, let g(*) (X) be the formal polynomial which corresponds

to ZTi)ij’ where T; = (T;0,...,T;,) is a new tuple of F-variables. Then,

=0
modulo VF(R),
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(v(g) <co Av(X)=0A A v(g;) >v(g) Av(g:) =v(g) —
j=i+1

[0(9(X)) > v(g) ¢+ AT 95 = 9:Ti Av(9" (X)) > 0)].

Jj=0

Indeed, suppose the top line in (19) holds. Then, modulo VF (R Z 9; X7) J
Jj=i+1

v(g) and U(Z g;X7) > v(g). Hence in this case, modulo VF(R),
7=0

v(g(X)) > v(g) < v g; X7) > v(g)
j=0

& AT 95 = 9T A v(g™ (X)) > 0).
3=0
Note that if v(g;) = v(g), then (modulo VF(R)), since v(g) < oo, it follows that

g; # 0 and v(g;) > v(g;), j =0, ..., m, and therefore g( D =1 and v(g®) = 0.

It follows from (18) and (19) that in order to eliminate the quantifier 3X from
(17), it suffices to know how to eliminate, for each ¢ between 0 and m, the F-
quantifiers from the formula

7
gi # 0 Av(h) = 0AFTH{ N\ ¢; = 6T A gt = 1 Av(g™) =0
j=0

AEX)[v(X)=0Av(R(X)) =0A0(gD (X)) >0]}.
We can eliminate the quantifier 3X using Case A1, and afterwards we can eliminate

the quantifiers 37T} g, ..., 3T; ; using Remark B.6 b).
CASE B: « is any Lp-term such that v(a) < 00. We eliminate now the quantifier

Y from formula (11). Let g(X) = Z(f WYX = Zng Then formula (11) is

=0 =0
equivalent, modulo VF(R), to the formula
(20) "
W AFTL N\ by = baTy A (3X) [0(X) = 0 A 0(g(X)) > (@)
i=2

’
n

/\U(X—E)=0]},

where T = (T5,...,T,) is a new tuple of F-variables.

Indeed, let (F,v) be a model of VF(R) with a valuation group I and let « € T
and b, ..., b, € F be such that v(b;) = a, ¢ = 2,...,n’. Note, since v(a) < o0,
that by # 0 and therefore v(g) < co. We denote ¢; = Zl)’—; (hence v(¢;) = 0),
i = 2,...,n'. Suppose first that (11) holds. Then there exists y € F such that
v(y) = a, v(f*(y)) > v(f*y), and v(y — b;) = @, i = 2,...,n". Therefore z =
satisfies v(z) = v(y) —v(b2) = o —a = 0, v(g(z)) = v(f*(bex)) = v(f*(y)) >
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v(f*y) = v(g), and for each i between 2 and n’,

y—b;
ba
Conversely, suppose that (20) holds. Then there exists € F such that v(z) = 0,
v(g(x)) > v(g), and for each i between 2 and n', v(z — ¢;) = 0. Hence y = box
satisfies v(y) = v(b) + v(z) = a,

v(f*(y)) = v(f* (b)) = v(g(x)) > v(g) = v(fy),

v(x —¢) = v( y=v(y—0b;) —v(b) =a—a=0.

and
vy —b;) =v(by- (x —¢;)) =v(be) +v(r—c¢;)=a,i=2,...,n.
Now, we can eliminate the quantifier 3X from formula (20) using Case A, and
afterwards the quantifiers 375, ..., 3T, using Remark B.6 b). This concludes the
proof of the lemma. O

Notation B.17.

a) Ft(Wy,...,W,) is the set of all F-terms in £(R) whose variables belong to
the set {W1,...,W,.}.

n
b) Z¢(W;Z) (£ = Zeros) denotes a formula of the form /\ 9i(Z;) = 0, where
i=1
g = (91,...,9n) and g¢;(Z;) is a monic formal polynomial in Z; with coef-
ficients g;; € Ft(W,Z1,...,Z;—1), i = 1,...,n. (Z is a tuple of zeros of
polynomials with parameters W.)
c) deg Zg(W;Z) = max {degg;(Z) }-

n
Lemma B.18. To any formula ¢ : /\ v(fi(X)) = a;, where oy is an Lr-term and
i=1
fi(X) is a monic formal polynomial with coefficients in Ft(W), i = 1,...,n, one
can assign a formula

’
n

¢ FO{(EZ)[Ze(W;Z) A \v(X —ai) =] Ax T,

i=1
where a; € Ft(Z), of is an Lr-term, i =1,...,n/, x is a quantifier-free Lp-formula
and deg Zg(W; Z) < max {deg f;(X)}, such that
<i<n

ACVFE(R) E ¢+ ¢

Moreover, if R is a presented ring and ¢ is a presented formula, then we can
effectively (primitive recursively) find ¢’.

Proof. We shall prove the lemma by induction on k = Z deg f;. If £k =0,
1<i<n
deg fi>1
then all the f;’s are linear polynomials and we are done. We suppose that k£ > 0
and choose f;(X) with deg f; > 1. Let f* = T'(f;, Z’) (Definition B.13 b)). That

is, f;(X) = f*(X — Z’). In particular, f5 = f*(0) = f;(Z’). Let

deg f*

ax)= 3 frxt
=1
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Then f*(X) = fg + X - g(X). We also denote h(X) = g(X — Z’). Then

hi e Ft(W,Z"), i=0,...,degh,
(21) degh =degg < deg f* =deg f;,

and
X)) =f(X=2)=f+(X—-29(X - 2") = f;(Z2") + (X = Z)h(X).
Hence, since the models of ACV F(R) are algebraically closed fields,
ACVE(R) F ol(f;(X)) = aj &
EZ0[fi(Z') =0 (v(X = Z) + v(h(X)) = o) ]

Thus, modulo ACV F(R),
(22) ¢+ @ENEZ)[f(Z2) =0Av(X = Z') =nAv(h(X)) = (A

A o(fiX) =ain(n+¢=aj)].
%

It follows from (21) that we can apply the induction assumption on the formula

Bioh(X) =CA N o(fi(X) = as,

1<i<n
i#£]
for the tuple of variables (W, Z’) instead of the tuple W, and to get a formula
(23) Y

Vs GO BL)[Ze(W. Z5Z) A \ (X —ai) = af] AX'},

=1

such that ACVF(R) E ¢ < ', where Z = (Z1,...,Zy), a; € Ft(Z), o is

7

an Lr-term, ¢ = 1,...,ny, X' is a quantifier-free Lr-formula, and Z,(W,Z";Z) :
/\ 9i(Z;) = 0 with monic formal polynomials g;(Z;) such that the coefficients g;;
i=1
belong to Ft(W,Z', Zy,...,Z;_1) and, by (21),

(24)  degZg(W,Z";Z) = wiax {degg:(Zi)}

< max{deg h(X), max {deg f;(X)}} < max {deg f;(X)}.
1<i<n 1<i<n
i#5
We put (23) in (22) and get, modulo ACV F(R), that ¢ is equivalent to the formula:
EnEOGOLBZ)BZ) [ 24, (Wi Z',Z) No(X = Z') =1

n,d,

A/\U(Xfai):ag]Ax},

where
XX Am+¢=aqy)
and

25,5 (Wi Z'Z) s £5(Z") =0 \ gi(Zi) =0.
=1

Note that f;(Z’) is a monic formal polynomial and its coefficients belong to Ft(W).
Also, by (24), deg Z(y, ¢(W;2',Z) < max {deg fi(X)}. We have found then a

formula equivalent to ¢, modulo ACV F(R), of the desired form. O
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Corollary B.19. Let ¢ be the formula of Lemma B.18. Then, modulo ACV F(R),
(3X)¢ is equivalent to a formula of the form

(38)(3Z)[ Z(W; Z) Ay ]

with Zg(W;Z) as in Lemma B.18 and ¢ a quantifier-free Lyr(R)-formula.
Moreover, if R is a presented ring and ¢ is a presented formula, then we can
effectively find Zg and 1.

Proof. Combine Lemma B.18 with Lemma B.16 (a). O

The elimination of the quantifier 3X for formulas (3X)e, as in Corollary B.19,
looks like a bad deal: to eliminate 3X, a tuple of a new F-quantifiers, 3Z, had to be
introduced. Nevertheless, the additional condition on Z expressed by the formula
Z5(W; Z) will make sure that the elimination of the quantifiers 3Z will come to an
end after finitely many steps.

Lemma B.20. Let ¢ be a formula of the form

(25) (3Z2)[ Z2g(W:Z) ANp(W, Z) ]
where (W, Z) is an F-quantifier-free Lyr(R)-formula. Then, there exists an F-
quantifier-free Lygr(R)-formula ¢’ such that

ACVF(R) Ep < ¢
Moreover, if R is a presented ring and o is a presented formula, them we can

effectively find .
m

Proof. Suppose that Z = (Z4,...,Z,,) and Zg(W;Z) : /\ 9i(Z;) = 0, where ¢;(Z;)
i=1

is a monic formal polynomial in Z; with coefficients in

Ft(W,Zl,...,ZZ‘_1>, Z:1,7m

Let
n =deg Zg(W;Z) = max {deggi(Z;)}.

We shall prove the lemma by induction on the degree of the formulas, n, of the
type Z5(W;Z). if n = 1 (and m arbitrary), then each g;(Z;) is of the form
Z; — b;, where b; € Ft(W,Zy,...,Z;_1). Therefore, the substitutions Z,, =
bW, Z1, ..., Zm—1),-..,Z1 = by(W), in order, in ¢ bring it to a quantifier-free
formula.

Suppose now that n > 1. We denote Z' = (Z1,..., Zm_1)-

CASE A: (W, Z) is a formula of the form

-

U(fi(ZmD = i,

i=1

where «; is an Lpr-term and f;(Z,,) is a monic formal polynomial with coefficients
in Ft(W,Z’), i = 1,...,r. By the division algorithm for formal polynomials
(Definition B.13 ¢)), we may assume, without loss, that

deg fi(Zm) < deggm(Zm) <n, i=1,...,r.

Now, by Lemma B.18, we find a tuple Y of F-variables and a tuple & of I'-variables,
F-terms a; € Ft(Y), Lp-terms o, i = 1,...,7', a formula 2,(W,Z';Y) of the type
of Notation B.17 b) with
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(26) deg Zp(W,Z";Y) < max {deg fi(Zm) } <n

and a quantifier-free Lr-formula x such that
ACVF(R) = N\ v(fi(Zm)) = ai >
i=1

FO{ AY)[Zu(W,Z';Y) A N\ v(Zm —a;) = al] Ax}.

.
[
L

Hence we may assume that ¢)(W,Z) is the formula written in the above line and
reduce ¢ to the formula

(E21) - (3 A A B (EY) [ Zn(W. Z: V)

(3Zm)(gm(Zm *0/\/\ m — @ *a;)]/\x})'

By Lemma B.16 (b) we find a quantifier-free Ly (R)-formula ¢'(W,Z’,Y) such
that

’
T

ACVF(R) E 3Zn)(gn(Zn) = 0N \ 0(Zi — ai) = o)) < ¢/ (W, Z,Y).

i=1
Now, by (26) and the induction assumption, we find an F-quantifier-free Lyg(R)-
formula ¢ (W, Z’) such that
ACVE(R) E (BY)[ 2a(W, Z';Y) A /(W, Z',Y)] ¢ 0" (W, Z).

This reduces ¢ to the formula

-1

)N\ 9i(Z) =0 (EFE{¢ (W, Z)}).

1=

—

We denote
P (WLZY) - (39{ 0" (W, 2) }

and
m—1
z): N\ gz
i=1
where g’ = (g1,...,9m—1). Then ¢ is equivalent, modulo ACV F(R), to the formula
(32)[ 2 (W Z') A "D (W, Z))]

which is a formula of the form (25).

Now, by induction on m, we can eliminate the quantifiers 37,,_1,...,371, in
order, and arrive to an F-quantifier-free Lyg(R)-formula which is equivalent to ¢
modulo ACV F(R).

CASE B: ¢(W, Z) is any F-quantifier-free CVR(R)—formula, By Remark B.6 a)

we may assume, without loss, that ¥(W,Z) is of the form /\ (W, Z)) = 6,

=1
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where by,...,b, € R[W,Z] and B,..., [, are I'-terms. Let n; = deg, b, i =
1,...,r, and write

bi(W,Z) =Y bi;(W,2)Z},,
=0
with b;; € R[W,Z’]. Then

v(bi(W,Z)) = Bi < /{(bw(w, Z')=0AB; =o0)V
£=0

s

\/[ A big(W,Z/) =0A bij(W, ZI> Z£0A ’U(Z big(w, Z/)Zﬁl) = ﬁ,]

§=0 ¢=j+1 =0

Hence we may assume, without loss, that ¢(W,Z) is the formula

I\ bin, (W, Z') # 0 A v(bi(W,Z)) = ;.

i=1
Let fi(Z,,) be the formal polynomial which corresponds to
Z0 A Tor Z0 4+ T 2y + Ty,
where T; = (Tp,...,Tn,—1) is a new tuple of F-variables. Then, modulo V F(R),
bin,(W,Z') # 0N v(bi(W,Z)) = B;
(F&){v(bin; W, Z")) + & = Bi Nbipn,(W,Z") # 0N

nifl

ATH[ N\ b (W, Z') = bin,(W,Z') - Ty Av(fi(Zm)) =&}
j=0

Hence, we may assume that ¢ is the formula

r n;—1
ET1) - BTN\ bine #0A N bij = biw, Ti)A
i=1 7=0
(F2)[ Zg A /\ v(fi(Zm)) = &1}

Now, we can eliminate the quantifiers 3Z using Case A, and afterwards the quan-
tifiers 3T, ..., 3T, using Remark B.6 b). O

Theorem B.21. For any Lyr(R)-formula ¢ we can assign an F-quantifier-free
Lvr(R)-formula ¢ such that

ACVF(R)Ep < ¢

Moreover, if R is a presented ring and ¢ is a presented formula, then we can
effectively find .

Proof. By induction on the number of F-quantifiers in an Lyg(R)-formula, it suf-
fices to eliminate the quantifier 3X from formulas of the form (3X)[@p(X)] with
an F-quantifier-free Lyg(R)-formula $(X). By Remark B.6 a) we may assume,

n

without loss, that $(X) is of the form /\ v(fi(X)) = a;, where a; is an Lp-term
i=1
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and f;(X) is a formal polynomial in X with coefficients in Ft(W), i =1,...,n. As
in the proof of Lemma B.20, we may assume that f;(X) is monic, i = 1,...,n.

Now, by Corollary B.19, we can find a tuple Z of F-variables, a tuple & of Lr-
variables, a formula Zg(W; Z) of the type of Notation B.17 b), and a quantifier-free
Lyr(R)-formula (W, Z) such that

ACVF(R) |= (3X)[p(X)] <+ (38)(FZ)[ 2¢(W: Z) N (W, Z) .
Next, by Lemma B.20, we can find an F-quantifier-free Lyg(R)-formula ¢'(W)
such that
ACVF(R) | (3Z)[ Zg(W;Z) N(W, Z)] < ¢/ (W).
Thus, ¢ :(3€)[¢'(W)] is the desired formula. O

Theorem B.22. For any Lyr(R)-formula ¢ we can assign a quantifier-free Lyr(R)-
formula ' such that

ACVF(R)Ep < ¢
Moreover, if R is a presented ring and ¢ is a presented formula, then we can

effectively find ¢’ . That is, the theory ACV F(R) admits a primitive recursive
procedure of quantifier elimination in the language Lygr(R).

Proof. By Theorem B.21, it is left to eliminate only I'-quantifiers from F-quantifier-
free Lygr(R)-formulas. Hence, it suffices to know how to eliminate I'-quantifiers
from Lp-formulas.

If (F,v) is a model of ACVF(R) and T is the corresponding valuation group,
then, by Remark B.11 a) and ¢), 'U{co} is a model of DOG, (Definition B.2 b)).
Hence, by Theorem B.3, we can eliminate also the I'-quantifiers from the formulas
and arrive to quantifier-free formulas. O

B.4. Monically Closed Valuation Domains.
Definition B.23.

a) Laiv =9{0,1,4,—,-,|} is the language of rings augmented by the symbol |
of a binary relation which is interpreted in every ring as divisibility: x|y <>
(32)[zz =y].

b) For a ring R, we denote by Laiy(R) the language L4, augmented by a
constant symbol for each element of R. In every ring which contain a
homomorphic image R of R, these symbols are interpreted as elements
of R which satisfy the additive and multiplicative tables of corresponding
elements in R.

¢) VD is the theory of valuation domains in the language Lqiy. That is, in
addition to the ring-axioms in the language £, V D contains the axiom

(VX) (YY) [ X|Y VY] X].

d) MCVD (MCVD = Monically-Closed Valuation Domains) is the theory, in
the language L4;y, whose models are valuation domains which are not fields
and have algebraically closed quotient fields. Alternatively, we say that a
ring R is monically closed if each monic polynomial in R[X] has a root
in R. Then, the models of MCV D are monically closed valuation domains
which are not fields. The axioms of the monically closeness are:

(VZo) -+ (VZp1) 3X)[ X" + Zya X" P+ + Z5=0], n=1,2,....
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e) VD(R) and MCV D(R) are the theories, in the language Lqiv(R), whose
models are valuation domains A which contain a homomorphic image R of
R and satisfy A =V D and A = MCV D, respectively.

Theorem B.24. To any Lqiv(R)-formula ¢ we can assign a quantifier-free Laiy (R)-
formula ¢ such that

MCVD(R)E ¢+ ¢ .
Moreover, if R is a presented ring and ¢ is a presented formula, then we can

effectively find ¢'. That is, the theory MCV D(R) admits a primitive recursive
procedure of quantifier elimination in the language Laiv(R).

Proof. We shall show first that there is a one-to-one correspondence between models
of VD(R) and models of VF(R). Indeed, if A is a valuation domain containing a
homomorphic image R of R with quotient field F, then there is a unique valuation
v of F (up to an equivalence of valuations) which satisfies, for each a € F, a0 € A &
v(a) > 0. In particular, v(a) > 0 for each a € R, as required in Definition B.4 d).
Conversely, if (F,v) is a valued field containing a homomorphic image R of R such
that v(a) > 0 for each a € R, then A = {a € F|v(a) > 0} is a valuation domain
which contains R.

We translate each expression of the form a|b in the language Lqiv(R) to the
expression v(b) > wv(a) in the language Lyr(R). (Note that equations can be
eliminated in favour of divisibilities using a = 0 +» 0]a.) In this way we code each
formula ¢(X1,...,X,) in the language Lqiv(R) into a formula ¢*(Xq,...,X,) in
the language Lyr(R) without I'-variables, such that if (F,v) is a valued field with
a valuation domain A which contains a homomorphic image of R, then for each
A1y 0, € A,

) A ola) & (Fo) E o' ().

Conversely, we translate each expression of the form v(b) > v(a) in the language
Lyr(R) to the expression a|b in the language Lqiv(R). (Note that VF(R) = v(a) =
v(b) < v(a) > v(b) Av(b) > v(a).) In this way we code each quantifier-free
Lyr(R)-formula (X, ..., X,) without I'-variables into a quantifier-free formula
¥(X1,...,X,) in the language Laiv(R), such that if (F,v) is a valued field with
a valuation domain A which contains a homomorphic image of R, then for each
A1y ypy €A,

(2) (Fov) = y(a) & A= d(a).

Note also that there is a one-to-one correspondence between models of MCV D(R)
and models of ACV F(R). Indeed, if (F,v) is a valued field with a valuation domain
A which contains a homomorphic image of R, then F' is algebraically closed if and
only if A is monically closed, and v is not trivial on F' if and only if A is not a field.

Let now ¢(Xy,...,X,) be an Lgiy(R)-formula. Then ¢*(Xy,...,X,) is an
Lyr(R)-formula without I'-variables. We find, by Theorem B.22, a quantifier-free
Lyvr(R)-formula (X, ..., X, ) without I'-variables such that

3) ACVE(R) | ¢"(X) © (X))
The formula @[AJ(X 1,...,Xp) is a quantifier-free Lq;y (R)-formula which satisfies
MCVD(R) E ¢(X) ¢ (X).

Indeed, let A be a model of MCV D(R), let F' be the quotient field of A, and
let v be the corresponding valuation of F'. Then, for each a1, ...,a, € F, it follows
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from (1), (3), and (2) that
AEp(a) & (Fo) E¢'(a) & (Fo) Eé) & AEd).
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