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Abstract. We study finite permutation groups with special properties, moti-

vated from the theory of Riemann surfaces. In this article we focus on groups

acting with fixity 4 and analyse their Sylow structure and possible orbit lengths
of Sylow subgroups.
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1. Introduction

The nature of the fixed point sets of group actions continues to play a central role
in group theory. This paper continues our investigation of transitive permutation
groups in which all nonidentity elements fix at most four points, with a focus on
the Sylow structure of such groups. We decided to summarize basic results about
orbit sizes of Sylow subgroups in this article, in particular some information for the
primes 2 and 3, because this information is much more intricate and complex than
it was in previous work on groups acting with fixity 2 or 3.

Building on this work, subsequent papers will give more details of the Sylow
structure analysis and consequences for the group structure in general, along with
a classification of finite simple groups acting with fixity 4. While our class of per-
mutation groups is of purely group theoretic interest, our initial interest in this
topic stems from the study of Weierstraß points of Riemann surfaces, and we refer
the reader to [6] for more background.
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2. Notation and examples

Let k ∈ N0 and suppose that the group G acts on the finite set Ω. We say that
G has fixity k on Ω if and only if there is some element of G that fixes exactly k
distinct points on Ω and if no element of G fixes more than k distinct points.

Hypothesis 1. Suppose that (G,Ω) is such that G acts faithfully and transitively
on Ω and that G has fixity 4 in this action.

We begin with natural and well-known examples.

Example 1 (Classical examples). Suppose that the group G acts sharply 5-transitively
on a set Ω of size at least 6. Then for all pair-wise distinct elements ω1, ω2, ω3, ω4 ∈
Ω, we find α, β in Ω \ {ω1, ω2, ω3, ω4} that are distinct, and then the 5-transitivity
gives an element g ∈ G such that ω1, ω2, ω3, ω4 are fixed and α is mapped to β. In
particular every four point stabilizer is non-trivial, but every five point stabilizer is
trivial because of the sharp 5-transitivity. Therefore (G,Ω) satisfies Hypothesis 1.

Now Jordan’s result (see for example p. 327 in [5]) this gives the well-known ex-
amples S5, S6, A7, M12, in their natural action. The transitive subgroup M11 ≤M12

also gives rise to an example, with point stabilizers of order 22 · 3 · 5 · 11.

Calculations in GAP ([8]) show that the groups S5, A6 and S6 also give rise to
several (very small) examples, respectively.

Example 2 (Frobenius group extensions). Suppose that F is a Frobenius group
with Frobenius kernel K and complement H and suppose that G is a group with a
subgroup U of order 4 such that G = F o U .

Consider the action of G on G/H by right multiplication. As all conjugates of
H are contained in F , it follows that |NG(H)| = 4 · |H|. If g ∈ G is such that
g ∈ NG(H) \ H, then all elements of H fix the coset Hg. This gives four fixed
points on the set G/H, and it follows that (G,G/H) satisfies Hypothesis 1 in the
special case where all elements have 0 or 4 fixed points.

A similar construction works based on pairs (G,Ω) that satisfy the main hypoth-
esis of [6].

Example 3. Suppose that G is a finite group, that U ≤ G has order 2 and that
H,M ≤ G are such that the following hold: H ≤M , G = MoU and with respect to
the action by right multiplication, the group M has fixity 2 on M/H. In particular
|NM (H) : H| = 2. As M has index 2 in G, all conjugates of H in G are contained
in M and |NG(H) : H| = 4. It follows that (G,G/H) satisfies Hypothesis 1 with
the action of G on G/H by right multiplication.

3. General properties

By “group” we always mean a finite group, and by “permutation group” we
always mean a group that acts faithfully. Throughout this paper Ω denotes a finite
set and G denotes a permutation group on Ω. We also use the notion of fixity
introduced in the previous section.

Let ω ∈ Ω and g ∈ G, and moreover let Λ ⊆ Ω and H ≤ G. Then Hω := {h ∈
H | ωh = ω} denotes the stabilizer of ω in H,

fixΛ(H) := {ω ∈ Λ | ωh = ω}
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for all h ∈ H} denotes the fixed point set of H in Λ and we write fixΛ(g) instead
of fixΛ(〈g〉). We write ωH for the H-orbit in Ω that contains ω.

Whenever n,m ∈ N and p is a prime number, then we denote by (n,m) the largest
natural common divisor of n and m and by np the largest power of p dividing n.

Finally, a subgroup H of G is said to be a TI-subgroup if and only if for all
g ∈ G, we have that Hg ∩H = 1 or Hg = H.

We begin with general local properties that follow from our main hypothesis.
We will notice that the primes 2 and 3 behave differently from the larger primes in
π(G), motivating the extensive analysis that we begin to describe in this article.

Lemma 4. Suppose that Hypothesis 1 holds and let α ∈ Ω. If p ∈ π(Gα) and
p ≥ 5, then Gα contains a Sylow p-subgroup of G.

If moreover some non-trivial p-element fixes four points, then the corresponding
four point stabilizer contains a Sylow p-subgroup of G.

Proof. Let Q ∈Sylp(Gα) and let Q ≤ P ∈Sylp(G). Then Z(P ) centralises Q and
therefore stabilizes the set fixΩ(Q) of size at most 4, by hypothesis. In particular
Z(P ) induces a subgroup of S4 on this set, but it has order divisible by p ≥ 5. This
implies that Z(P ) fixes every element of fixΩ(Q), in particular Z(P ) ≤ Gα. With
the same argument P fixes every fixed point of Z(P ), including α, and therefore
P ≤ Gα.

Now let 1 6= x ∈ P be such that x fixes four points. Let ∆ := fixΩ(x). Then we
argue as above: First Z(P ) centralizes x and hence fixes ∆ point-wise, and then P
also stabilizes ∆ point-wise. �

From this we obtain initial information about F ∗(G):

Corollary 5. Suppose that Hypothesis 1 holds, let α ∈ Ω and let p ∈ π(G). If
P ∈ Sylp(G) and P ≤ Gα, then Op(G) = 1. In particular, if p > 3 and p ∈ π(Gα),
then Op(G) = 1.

Proof. The first statement follows from the fact that G acts faithfully and transi-
tively on Ω. Then the second claim follows form the first, together with Lemma
4. �

Lemma 6. Suppose that Hypothesis 1 holds. Let α ∈ Ω and suppose that H ≤ Gα
is a non-trivial 4-point stabilizer.

(a) H is a TI-subgroup.
(b) If 3 divides π(H), then H contains a Sylow 3-subgroup of G or NG(H) has

a subgroup that induces A4 on fixΩ(H).
(c) If NG(H) is not transitive on fixΩ(H), then NG(H)/H is elementary abelian

of order 4 and NGα
(H)/H of order 2.

(d) If 1 6= X ≤ Gα is a subgroup that fixes exactly one or two points, then
|NG(X) : NGα(X)| ∈ {1, 2}. If X fixes exactly four points, then NG(X) ≤
NG(H) and |NG(H) : NGα(H)| ∈ {2, 4}. In particular, if 3 ∈ π(NG(X))
in this case, then 3 ∈ π(Gα).

Proof. Set ∆ := fixΩ(H) and let g ∈ G. Then H ∩Hg fixes ∆ and ∆g point-wise,
so fixΩ(H ∩ Hg) contains ∆ and ∆g. If H ∩ Hg 6= 1, then Hypothesis 1 forces
|∆ ∪∆g| ≤ 4 and therefore ∆ = ∆g and H = Hg. This is (a).

The hypothesis in (b) implies that some nontrivial 3-element fixes four points,
hence |Ω| ≡ 1 mod 3. Therefore Gα contains a Sylow 3-subgroup of G. Suppose
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that H does not contain a Sylow 3-subgroup of G. Then there exists a 3-element in
Gα that induces a 3-cycle on ∆. Such an element stabilizes the set ∆ and therefore
normalizes H. We conclude that 3 divides |NGα

(H)/H|. If β ∈ ∆ and β 6= α, then
H ≤ Gβ and we can argue in the same way to see that 3 divides |NGβ

(H)/H|. In
particular we find two elements that induce distinct 3-cycles on ∆, hence there is
a subgroup of NG(H) that induces A4 on ∆. Thus (b) holds.

For (c) we suppose that NG(H) is not transitive on ∆, which means that
|NG(H) : NGα(H)| ∈ {1, 2, 3}.

We show that H is a 2-group. As a first step we prove

(∗) For all r ∈ π(G), H does not contain a Sylow r-subgroup of Gα.
Assume otherwise and let r ∈ π(G), R ∈Sylr(Gα) and R ≤ H. Let β ∈ ∆

be such that β 6= α. In particular R ≤ H ≤ Gβ and then R ∈ Sylr(Gβ). As G is
transitive on Ω, there is some g ∈ G such that αg = β, and then R and Rg are Sylow
r-subgroups of Gβ . By Sylow’s Theorem let x ∈ Gβ be such that Rgx = R. Then gx
normalizes R and hence stabilizes the set fixΩ(R) = ∆, in particular gx ∈ NG(H).
As αgx = β, we now have the contradiction that NG(H) acts transitively on ∆.
This proves (∗).
If p ∈ π(H) and p ≥ 5, then Lemma 4 yields that H contains a Sylow p-subgroup
P of G, contrary to (∗).

If 3 ∈ π(H), then we recall that H des not contain a Sylow 3-subgroup of Gα
(by (∗) and therefore a subgroup of NG(H) induces A4 on ∆ by (b). But this
contradicts our hypothesis that NG(H) is not transitive on ∆.

We conclude that H is a 2-group.

Now (∗) implies that H is not a Sylow 2-subgroup of Gα. Let H ≤ S ∈ Syl2(Gα)
and T := NS(H). Then H < T and therefore some t ∈ T induces a transposition
on ∆. It follows for all δ ∈ ∆ that some element of NGδ

(H) induces a transposition
on ∆. Together with the fact that NG(H)/H is isomorphic to a non-transitive
subgroup of S4, by hypothesis, we deduce that (c) holds.

For (d) we let Λ := fixΩ(X). If |Λ| ≤ 2, then the first assertion of (d) holds.
Now suppose that |Λ| = 4 and let M denote the point-wise stabilizer of Λ. As

NG(X) stabilizes Λ, it normalizes M . If 3 is not in π(NG(M)/M)), then (d) follows.
So we suppose that 3 ∈ π(NG(H)/H). Then NG(M) does not induce a 2-group on
Γ and therefore NG(M) is transitive on Γ by (c), which shows the second assertion
of (d).

Now suppose that 3 ∈ π(NG(X)). Then 3 ∈ π(NG(M)) and 3 ∈ π(M) or
3 ∈ π(NG(M)/M)) and NG(M) is transitive on Γ by the last paragraph. This
shows the last assertion of (d).

�

Corollary 7. Suppose that Hypothesis 1 holds. Then |Z(G)| ∈ {1, 2, 4}.

Proof. Let α ∈ Ω. As G acts faithfully on Ω, we know that Z := Z(G) intersects
Gα trivially. Let x ∈ Gα be an element with exactly four fixed points. Then
Z ≤ CG(x) and hence Lemma 6 (d) implies our assertion. �

Lemma 8. Suppose that Hypothesis 1 holds and let α ∈ Ω. Then the following
hold:

(a) If there is a 2-element in Gα that has exactly one or three fixed points on
Ω, then Gα contains a Sylow 2-subgroup of G.
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(b) If there is a 3-element in Gα that has exactly one, two or four fixed points,
then Gα contains a Sylow 3-subgroup of G.

Proof. For (a) we suppose that x ∈ Gα is a 2-element with exactly one or three
fixed points. As x has orbits of 2-power lengths on the set of points that are not
fixed, it follows that Ω is odd. Therefore |G : Gα| is odd and consequently Gα
contains a Sylow 2-subgroup of G.

Next suppose that y ∈ Gα is a 3-element with exactly one, two or four fixed
points on Ω. We note that this implies that |Ω| ≡ 1 or 2 mod 3 and hence Gα
contains a Sylow 3-subgroup of G. This is (b). �

4. Orbit lengths for Sylow subgroups

We prove two basic lemmas that allow us to determine the possible orbit sizes
for Sylow subgroups. After that we analyze the situation for the prime 2 in more
detail.

Lemma 9. Suppose that Hypothesis 1 holds. Let S ∈ Syl2(G) and α ∈ Ω. Then
one of the following holds:

(a) Sα = 1.
(b) |Sα| = 2 and S is dihedral or semidihedral.
(c) 1 6= |Sα| ≤ 8, |αS | ≥ 8 and there exists some subgroup T ≤ Sα of index at

most 2 such that all t ∈ T# fix exactly four points.
Moreover Sα is isomorphic to a subgroup of D8.

(d) |S : Sα| ∈ {2, 4}.
(e) S ≤ Gα.

Proof. We suppose that neither (a) nor (e) holds. Then 1 6= Sα 6= S and therefore
the orbit ∆ := αS is nonregular of length at least 2. If |∆| ≤ 4, then (d) holds
because |∆| = |S : Sα|. So now we suppose that (d) does not hold.

Then |∆| ≥ 8 and we consider (S,∆). If this pair does not satisfy Hypothesis 1,
then it satisfies Hypothesis 1.1 from [6]. Then it follows from Lemma 2.12 in this
article that S is dihedral or semidihedral, which means that (b) holds.

So now we suppose that (S,∆) satisfies Hypothesis 1 and we let t ∈ S# be such
that t fixes exactly four points on ∆. Without loss α ∈ fix∆(t). Next we let T
denote the point-wise stabilizer of fix∆(t) in S. Then T ≤ Sα and, since T fixes
four points, all other orbits of T on ∆ are regular by Hypothesis 1.

We let a ∈ N0 be such that |∆| = 4 · a+ |T |. As |∆| is a power of 2, at least 8,
it follows that |∆| is divisible by 8 and hence a · |T | is divisible by 4, but not by
8. This forces |T | ≤ 4. Moreover T ≤ Sα 6= S and hence T < NS(T ). The factor
group NS(T )/T is isomorphic to a 2-subgroup of S4 (i.e. a subgroup of D8), and
|Sα : T | ≤ 2. In particular |Sα| ≤ 2 · |T | ≤ 8, as in (c), and it only remains to prove
that Sα is isomorphic to a subgroup of D8.

This is clear if |Sα| ≤ 4. Otherwise |Sα| = 8 and |T | = 4. If we recall the
equation |∆| = 4 · a+ |T | from above, then we obtain that a is odd. Let s ∈ Sα \T .
Then s stabilizes at least one of the regular T -orbits on ∆, and on such an orbit
it fixes at most two points. As every element of T# acts as a 4-cycle or a double
transposition on each regular T -orbit, it follows that Sα = 〈s, T 〉 ' D8. �

Lemma 10. Suppose that Hypothesis 1 holds and let P ∈ Syl3(G). Let ∆ be the
union of all P -orbits of Ω of size at most 3. Then one of the following holds:
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(a) All P -orbits are regular and the point stabilizers in G are 3′-groups.
(b) |∆| > 4 and |P | ≤ 9.
(c) |∆| ≤ 4 and P is of maximal class. There exists some nonregular P -orbit

on Ω \∆ and for every such orbit Λ and all λ ∈ Λ it is true that |Pλ| = 3
and that Pλ fixes exactly three points on Λ.

(d) ∆ is the unique P -orbit of length 3 and all orbits of P on Ω\∆ are regular.
(e) 1 ≤ |∆| ≤ 4, there is some δ ∈ ∆ such that P ≤ Gδ, and all P -orbits on

Ω \∆ are regular.

In (c), (d) and (e) we see that P possesses an orbit of length at least 9 and therefore
|P | ≥ 9.

Proof. Suppose that |∆| > 4. As P is a 3-group, all P -orbits contained in ∆ are of
length 1 or 3. If Σ1,Σ2 ⊆ ∆ are distinct P -orbits of length 3, then |Σ1 ∪ Σ2| = 6
and therefore Hypothesis 1 implies that P acts faithfully on Σ1 ∪Σ2. In particular
P is isomorphic to a subgroup of a Sylow 3-subgroup of S6 and hence |P | ≤ 9. This
is (b).

If there is a unique P -orbit Σ1 ⊆ Σ of length 3, then the other P -orbits contained
in ∆ have length one. Consequently the kernel P0 of the action of P on Σ1 fixes ∆
point-wise. As |∆| > 4, it follows from Hypothesis 1 that P acts faithfully on Σ1

and therefore |P | ≤ 3. Again this is included in (b).
Now we suppose that neither (a) nor (b) holds, and from the previous paragraphs

we know that this implies that 0 ≤ |∆| ≤ 4.
Suppose further that P acts semiregularly on Ω \∆. In particular (c) does not

hold. Assume that |∆| = 0, i.e. ∆ = ∅. Then all P -orbits are regular, which
implies (a) and hence a contradiction. So we know that |∆| ≥ 1 and we prove that
(d) or (e) holds:

If P is contained in a point stabilizer, then the size of ∆ can be anything between
1 and 4 because P can fix up to four points or P has one fixed point and one orbit
of length 3. These cases are covered by (e).

Otherwise all P -orbits have length at least 3. Together with our restriction
0 ≤ |∆| ≤ 4 this implies (d).

If none of (a),(b),(d) or (e) holds, then the previous arguments show that 0 ≤
|∆| ≤ 4 and that P has a nonregular orbit on Ω\∆. Let Λ denote such a nonregular
orbit. Then Λ has size at least 9 by definition of ∆.

Let λ ∈ Λ and let n ∈ N be such that |Λ| = 3n. Then n ≥ 2 and by our
main hypothesis Pλ fixes at most four points in total. So it follows that Pλ fixes
exactly three points on Λ and acts semi-regularly on the set of remaining points.
Let m ∈ N be such that |Pλ| = 3m and let a ∈ N be such that |Λ| = 3 + a · |Pλ|.
Then 3n = |Λ| = 3 + a · |Pλ| = 3 + a · 3m, so this forces m = 1. We deduce that
|Pλ| = 3 and now Lemma 6 implies that |NP (Pλ)| ≤ 9.

This means that P has maximal class and that Pλ fixes exactly three points in
Λ, as stated in (c).

Finally we argue why the concluding remark is true. In (c), with the notation
introduced there, we see that |Pλ| = 3 and |Λ| ≥ 3, because Pλ fixes three points
on Λ. This means that |P | = |P : Pλ| · |Pλ| ≥ 3 · 3 = 9.

In (d) the regular orbits of P have size at least 3 because ∆ is the unique orbit
of size 3. As |Ω| > 3, there must be a regular P -orbit and hence |P | ≥ 9 again.

In (e) we see that |∆| ≤ 4 and |Ω| ≥ 6, therefore Ω \∆ 6= ∅ and regular orbits
have size strictly greater than 3. Consequently |P | ≥ 9. �

Albanian J. Math. 12 (2018), no. 1, 137-145.

http://albanian-j-math.com/magaard.html


Baumeister, Magaard, Waldecker 143

Lemma 11. Suppose that Hypothesis 1 holds, let p ∈ π(G) and let P ∈ Sylp(G).
Then the following hold:

(a) If p = 2, then the possible orbit sizes for P on Ω are 1, 2, 4, 8, |P |8 , |P |4 ,
|P |
2 and |P |.

(b) If p = 3, then the possible orbit sizes for P on Ω are 1, 3, |P |3 and |P |.
(c) If p ≥ 5, then the possible orbit sizes for P on Ω are 1 and |P |.

Proof. (a) follows from Lemma 9 by inspecting the cases.
For (b) we look at Lemma 10: In addition to orbits of size |P | and 1 we see in

(d) that orbit size 3 is possible, and the only case where another orbit size occurs
is (c), with orbits of length |P |/3.

Finally, if p ≥ 5, then we turn to Lemma 4. If P does not fix any point, then
the lemma forces the point stabilizer orders to be coprime to p. This means that
all P -orbits are regular. �

We remark that the group M12 in its natural action on 12 points provides an
example for Case (b) where a 3-Sylow subgroup has one orbit of length 3 and an-
other nonregular orbit.

For more details about the 2-structure we set up additional notation.

Hypothesis 2. Suppose that Hypothesis 1 holds and let S ∈ Syl2(G). Let f denote
the maximal number of points of Ω that are fixed by some involution in G, let ∆
denote the union of S-orbits on Ω of length at most 4 and let

F := 〈xg | x, g ∈ G, o(x) = 2, | fixΩ(x)| = f〉.

We note that Hypothesis 2 allows for the special cases that S = 1 or f = 0.

Lemma 12. Suppose that Hypothesis 2 holds and that the point stabilizers in G
have even order. Then one of the following is true:

(a) |∆| ≤ 4, S acts semi-regularly on Ω \∆ and the stabilizer of the set ∆ is
strongly embedded in F .

(b) |∆| > 4 and S acts semi-regularly on Ω \∆. Moreover there exists a subset
∆1 ⊂ of ∆ that is S-invariant and such that 4 < |∆1| ≤ 8.

(c) S does not act semi-regularly on Ω \ ∆ and there exists an S-orbit Λ in
Ω \∆ such that maxs∈S#{|fixΛ(s)|} ∈ {2, 4}.

Proof. Since G acts transitively on Ω and the maximum number of fixed points of an
involution of G is 4, we see that the hypothesis of the main theorem and Proposition
3.1 of [7] are satisfied. Applied to f = 4, this gives exactly the statements in the
three cases; it is worth mentioning that the value of k in Ronse’s proposition 3.1 (ii)
can only be 2 in our situation. �

Keeping the notation from Hypothesis 2 Ronse (see [7], main theorem) proves a
more general result:

Theorem 13. If G has even order and acts transitively on a set Ω such that f ≤ 4,
then one of the following holds:

(a) The set stabilizer of ∆ in F is strongly embedded in F , or
(b) f ≤ 3 and the Sylow 2-subgroups are dihedral or semidihedral, or
(c) f = 4 and the Sylow 2-subgroups of G have sectional rank bounded by 4.
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For later applications we need a version for simple groups.

Theorem 14. Suppose that Hypothesis 2 holds and that G is nonabelian simple.
Then one of the following is true:

(a) The point stabilizers in G have odd order.
(b) G has a strongly embedded subgroup and is therefore isomorphic to PSL2(q),

Sz(q) or PSU3(q) for s suitable power q of the prime 2, where q ≥ 4.
(c) f ≤ 3 and G is isomorphic to A7, to M11 or to PSL2(q) for some prime

power q or to PSL3(q) or PSU3(q) for some odd number q that is a prime
power.

(d) f = 4 and G has sectional 2-rank at most 4.

Proof. Suppose that the point stabilizers have even order. Then Theorem 13 applies
and F = G because G is simple. So in Case (a) of the theorem, we see that G has
a strongly embedded subgroup and Bender’s classification gives our statement in
(b). (See [2].) Case (b) of the theorem leads to dihedral or semidihedral Sylow
2-subgroups and hence to the classification results by [4] and [1], giving our list of
groups in (c). Finally Case (c) in Theorem 13 directly gives our claim (d). �

If the point stabilizers have odd order, then it becomes important whether or
not 3 divides their order. This connection between the primes 2 and 3 will be
discussed in subsequent work. In Case (d) above, the group G is known by work of
Gorenstein and Harada (see [3]).

5. Final comments

As we have discussed in the introduction, analyzing the Sylow structure of groups
satisfying Hypothesis 1 is crucial when it comes to classifying these groups.

Corollary 5 shows where the differences between the primes 2 and 3 an larger
primes come into play, and with its help we can prove the following:

If Hypothesis 1 holds and ω ∈ Ω, then all Sylow subgroups of Gω have rank 1 or

F ∗(G) = O2(G)O3(G)E(G).

This leads to a natural case distinction not only for primes that divide the order of
point stabilizers, but also for the rank of their Sylow subgroups. Following this case
distinction we will classify all finite simple groups (and some extensions) satisfying
Hypothesis 1, and we are also working on general structure results.
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