
ALBANIAN JOURNAL OF MATHEMATICS
Volume 12, Number 1, Pages 131–136
ISSN: 1930-1235; (2018)

ON THE CONNECTEDNESS OF THE BRANCH LOCUS OF THE

SCHOTTKY SPACE
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Abstract. Schottky space Sg is the space that parametrizes PSL2(C)-conjugacy

classes of Schottky groups of rank g ≥ 2. The branch locus Bg consists of the
conjugacy classes of those Schottky groups which are a finite index proper

subgroup of some Kleinian group. In a previous paper we observed that Bg
was connected for g ≥ 3 odd and that it has at most two components for g ≥ 4
even. In this short note, we observe that Bg is always connected.
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1. Introduction

A Schottky group of rank g ≥ 2 is a purely loxodromic Kleinian group, with non-
empty region of discontinuity, isomorphic to the free group of rank g. Geometrically,
these groups are constructed as follows. Let Ck, C

′
k, k = 1, · · · , g, be 2g Jordan

curves on the Riemann sphere Ĉ such that they are mutually disjoint and bound
a 2g-connected domain D. Suppose that for each k there exists a fractional linear
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transformation Ak ∈ PSL2(C) so that (i) Ak(Ck)=C ′k and (ii) Ak(D) ∩ D = ∅.
Then the group Γ, generated by all these transformations, is a Schottky group of
rank g. Every Schottky group is constructed in that way [1]. If Ω is the region
of discontinuity of the Schottky group Γ, then Ω is connected and Ω/Γ is a closed
Riemann surface of genus g (by the retrosection theorem, every closed Riemann
surface of genus g is obtained in that way). Schottky groups are exactly those
Kleinian groups providing the lowest regular planar coverings of closed Riemann
surfaces. See [8, 9].

The Schottky space of rank g ≥ 2, which we denote as Sg, is the one that
parametrizes PSL2(C)-conjugacy classes of Schottky groups of rank g. (Sg can be
identified with the space of classes of conformally equivalent Kleinian structures on
an oriented handlebody.) If Γ is a Schottky group, then we denote by [Γ] ∈ Sg
its conjugacy class. The branch locus Bg ⊂ Sg consists of the conjugacy classes of
those Schottky groups which are a finite index proper subgroup of some Kleinian
group.

A marked Schottky group of rank g ≥ 2 is a tuple (Γ, A1, . . . , Ag), where Γ
is a Schottky group of rank g and A1, . . . , Ag is a set of generators for it. Two

marked Schottky groups of rank g, say (Γ, A1, . . . , Ag) and (Γ̂, Â1, . . . , Âg), are said

to be equivalent if there is a Möbius transformation B so that BAjB
−1 = Âj ,

for every j = 1, . . . , g. The marked Schottky space of rank g, denoted by MSg,
parametrizes equivalence classes of marked Schottky groups of rank g. This space
can be identified with the quasiconformal deformation space of a Schottky group of
rank g, so it carries a complex manifold of dimension 3(g − 1) [2, 13]. (It can also
be identified with the Teichmüller space of classes of marked Kleinian structures of
an orientable handlebody of genus g.)

The group of holomorphic automorphisms of MSg is isomorphic to the outer
automorphism group Out(Fg), where Fg is the free group of rank g, and the forgetful
map π : MSg → Sg is a (regular) orbifold-covering whose deck group is Out(Fg)
[4, 8, 9, 13]. In this setting, the branch locus Bg is the projection under π of the
points in MSg with non-trivial Out(Fg)-stabilizer.

If (Γ, A1, A2) is a marked Schottky group of rank g = 2, then E = A1A2−A2A1

is an elliptic transformation of order two such that E1 = EA1 and E2 = EA2

are also elliptic transformations of order two. In this case, the Kleinian group
K = 〈E,E1, E2〉 ∼= Z2 ∗ Z2 ∗ Z2 (called a Whittaker group) contains Γ as an index
two subgroup [7]. It follows that B2 is connected. In the paper [6] we observed
that the sublocus of B2 consisting of the conjugacy classes of rank two Schottky
groups which are finite index proper subgroups of Kleinian groups different from
the Whittaker ones, has exactly two connected components. For g ≥ 3 odd, we
proved in [6] that Bg is connected and, for g ≥ 4 even, that Bg has at most two
connected components. In this short note we complete the above results as follows:

Theorem 1. The branch locus Bg is connected for every g ≥ 2.

As observed in the previous lines, we only need to prove the connectedness of Bg
for the case g ≥ 4 even.

2. Proof of Theorem 1

2.1. Cyclic extension of Schottky groups. First of all, we will see an inter-
pretation of MSg and Sg in terms of quasiconformal deformation spaces: If Γ is
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a Schottky group of rank g ≥ 2, then by [2] its quasiconformal deformation space
Q(Γ) turns out to be a connected complex manifold of dimension 3g − 3. As any
two Schottky groups of the same rank g are quasiconformally equivalent, their re-
spective quasiconformal deformation spaces are complex analytically equivalent. It
can be seen that if Γ is a Schottky group of rank g, then Q(Γ) is isomorphic to
MSg; that is Q(Γ) is a model of the marked Schottky space MSg. To obtain a
model of Sg, one has to consider the following equivalence relation on Q(Γ): two
deformations ω1 and ω2 are equivalent if there is a Möbius transformations A so
that ω1Γω−11 = Aω2Γω−12 A−1. Then, the set of equivalence classes is a model for
Sg. Details can be found, for instance, in [2, 13].

Assume that there is a Kleinian group K containing Γ as a finite index normal
subgroup (in particular, K is finitely generated). As each Beltrami coefficient for
K is also a Beltrami differential for Γ and both K and Γ have the same limit set,
there is a natural holomorphic embedding ι : Q(K) → Q(Γ) centered at Γ. In
general, if there is some [µ] ∈ Q(Γ) so that the Schottky group Γu is contained
in some Kleinian group K as a finite index normal subgroup, then it provides a
holomorphic embedding j : Q(K)→ Q(Γ) centered at Γu.

A Kleinian group K, containing a Schottky group Γ of rank g ≥ 2 as a finite index
normal subgroup so that K/Γ is a cyclic group, is called a cyclic extension Schottky
group or cyclic-Schottky group. A geometrical picture of these Kleinian groups is
provided in [5]. In the case that K/Γ is a cyclic group of rank a prime integer p, the
group K is a free product, in the sense of the Klein-Maskit combination theorems, of
t cyclic groups generated by loxodromic transformations, r cyclic groups generated
by elliptic transformations of order p and s Abelian groups, each one generated by
a loxodromic transformation and an elliptic transformation of order p both of them
commuting, so that g = 1 + p(t+ r + s− 1)− r. In particular

(1) K ∼= Z∗ t· · · ∗Z ∗ Zp∗
r· · · ∗Zp ∗ (Z× Zp)∗ s· · · ∗(Z× Zp).

We say that a cyclic-Schottky group K as above is of type (g, p; t, r, s). In this
case, the region of discontinuity Ω of K coincides with the region of discontinuity of
the Schottky group Γ, and S = Ω/Γ is a closed Riemann surface of genus g admitting
a conformal automorphism φ of order p with S/〈φ〉 of signature (γ; p, 2r. . ., p), where
γ = t+ s [8, 13].

The above description permits also to see that any two cyclic-Schottky groups
of the same type are quasiconformally conjugated. In particular, the quasicon-
formal deformation space of a cyclic-Schottky groups of a fixed type (which is
connected from the measurable Riemann mapping’s theorem) contains all cyclic-
Schottky groups of such a type.

2.2. A cyclic decomposition of Bg, for g ≥ 3. Now, let F (g, p; t, r, s) be the
subset of Bg consisting of those points [Γ] ∈ Sg for which there exists some Γ0 ∈ [Γ]
and a cyclic-Schottky group K, of type (g, p; t, r, s), containing Γ0 as an index p
normal subgroup.

First of all it is easy to see that Bg is the union of the subsets F (g, p; t, r, s), where
p is prime, t, r, s are non-negative integers so that g − 1 = p(t+ r + s− 1)− r [6]:
Let W be a Kleinian group containing a Schottky group Γ as a non-trivial finite
index normal subgroup and consider the natural epimorphism θ : W → W/Γ. Let
φ ∈W/Γ an element of prime order p. The group K = θ−1(〈φ〉) is a Kleinian group
containing Γ as a normal subgroup of index p. In [6] it was observed that, for p ≥ 3,
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F (g, p; t, r, s) is not necessarily connected (this it might happen since K may contain
different Schottky groups of rank g). However, for p = 2, it was proved in [3] that
F (g, 2; t, r, s) is always connected. Moreover,it can be seen that F (g, 2; t, r, s) is an
orbifold of complex dimension(3g − 3 + r)/2. Finally, in [6] it was proved that, for
p ≥ 3, every connected component of F (g, p; t, r, s) intersects some F (g, 2; t′, r′, s′)
(this since the orbifold O = M/〈φ〉, where M is the handlebody uniformized by Γ
and K uniformizes O, admits an orientation-preserving self-homeomorphism τ of
order two keeping Γ).

Consequentently, to prove the connectedness of Bg we only need to look at the
possible intersections of the connected families F (g, 2; t, r, s). To show that two fam-
ilies F (g, 2; t, r, s), F (g, 2; t′, r′, s′) intersect, we need to construct a Kleinian group
K containing two cyclic-Schottky groups K1,K2, of type (g, 2; t, r, s), (g, 2; t′, r′, s′)
and both of them containing the same Schottky group Γ of rank g as index two
subgroup.

The following intersections were obtained in [6]:

Theorem 2 ( [6]). Consider connected components F (g, 2; t, r, s) of Bg. Then the
following hold:

(1) If g ≥ 3 is odd:
(a) F (g, 2; t, r, s) ∩ F (g, 2; (g − 1)/2, 2, 0) 6= ∅, if t is even.
(b) F (g, 2; t, r, s) ∩ F (g, 2; (g − 3)/2, 4, 0) 6= ∅, if t is odd.
(c) F (g, 2; (g − 1)/2, 2, 0) ∩ F (g, 2; (g − 3)/2, 4, 0) 6= ∅.

(2) If g ≥ 4 is even:
(a) F (g, 2; t, r, s) ∩ F (g, 2; g/2, 1, 0) 6= ∅, if s and t are even.
(b) F (g, 2; t, r, s) ∩ F (g, 2; (g − 2)/2, 3, 0) 6= ∅, if s is even and t is odd.
(c) F (g, 2; t, r, s) ∩ F (g, 2; (g − 2)/2, 1, 1) 6= ∅, if s is odd and t is even.
(d) F (g, 2; t, r, s) ∩ F (g, 2; (g − 4)/2, 3, 1) 6= ∅, if s and t are odd.
(e) F (g, 2; g/2, 1, 0) ∩ F (g, 2; (g − 2)/2, 3, 0) 6= ∅.
(f) F (g, 2; (g − 2)/2, 1, 1) ∩ F (g, 2; (g − 4)/2, 3, 1) 6= ∅.

The above asserts, for g ≥ 3 odd, that Bg is connected. In the case g ≥ 4 is
even, Theorem 2 permits to observe that the connectivity of Bg will be obtained if
F (g, 2; 0, g + 1, 0) ∩ F (g, 2; (g − 2)/2, 1, 1) 6= ∅.

2.3. The connectedness of Bg, for g ≥ 4 even. In order to obtain the con-
nectedness of Bg, for g ≥ 4 even, we will construct two cyclic-Schottky groups K1

and K2, of respective types (g, 2; 0, g+ 1, 0) and (g, 2; (g− 2)/2, 1, 1), each one con-
taining the same Schottky group Γ as an index two normal subgroup. To do it,
we consider the Kleinian group K constructed from the Klein-Maskit combination
theorems [8,10,11] by using (g− 2)/2 + 4 elliptic transformations of order two, say
E1, . . . , E(g−2)/2, F1, F2, F3, F4, such that (F2F1)2 = (F3F2)2 = (F4F3)2 = 1, as
shown in Figure 1.

The Kleinian group K has a Cantor as a limit set, and if its (connected) region of
discontinuity is Ω, then the 2-orbifold Ω/K is the Riemann sphere (genus zero) with
exactly (g−2)+5 cone points, each one of order two. Let us consider the surjective
homomorphism θ : K → 〈a, b〉 ∼= Z2

2 defined by θ(E1) = · · · = θ(E(g−2)/2) =
θ(F1) = θ(F4) = b, θ(F2) = a, θ(F3) = ab.

The kernel Γ of θ is a index 4, torsion free subgroup of the Kleinian group
K. The Kleinian group Γ is geometrically finite purely loxodromic Kleinian group
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Figure 1. The Kleinian group K

with connected region of discontinuity. It follows from the classification of function
groups [12] that Γ is necessarily a Schottky group.

Let K1 = θ−1(〈a〉) and K2 = θ−1(〈b〉). Both of these are index two subgroups
of K and Γ = K1 ∩K2 has index two in each of K1 and K2. It can be seen that

K1 = 〈F1E1, . . . , F1E(g−2)/2, F4F3, F2, F3F1〉,
K2 = 〈E1, . . . , E(g−2)/2, F2E1F2, . . . , F2E(g−2)/2F2, F1, F4, F3F2〉.

The group K1 is a cyclic-Schottky group of type (g, 2; (g− 2)/2, 1, 1). It induces
an involution φ1 in the handlebody M uniformized by Γ whose branch locus in
M/〈φ1〉 consists of 1 loop and one arc of fixed points. Similarly, K2 is a cyclic-
Schottky group of type (g, 2; 0, g + 1, 0) inducing an involution φ2 in the same
handlebody M uniformized by Γ whose branch locus in M/〈φ2〉 consists of g + 1
arcs of fixed points.

The groups K, Γ, K1 and K2 as above are as desired ones.
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