Volume 12, Number 1, Pages 131–136 ISSN: 1930-1235; (2018)

ON THE CONNECTEDNESS OF THE BRANCH LOCUS OF THE SCHOTTKY SPACE

RUBÉN A. HIDALGO

Departamento de Matemática y Etadística, Universidad de La Frontera, Temuco. Chile

MILAGROS IZQUIERDO

Mathematiska Institutionen, Linköpings Universitet, 581 83 Linköpings, Sweden

Dedicated to the memory of Kay Magaard

ABSTRACT. Schottky space \mathcal{S}_g is the space that parametrizes $\mathrm{PSL}_2(\mathbb{C})$ -conjugacy classes of Schottky groups of rank $g \geq 2$. The branch locus \mathcal{B}_g consists of the conjugacy classes of those Schottky groups which are a finite index proper subgroup of some Kleinian group. In a previous paper we observed that \mathcal{B}_g was connected for $g \geq 3$ odd and that it has at most two components for $g \geq 4$ even. In this short note, we observe that \mathcal{B}_g is always connected.

MSC 2010: Primary: 30F10, 30F40 KEYWORDS: Schottky, branch locus

1. Introduction

A Schottky group of rank $g \geq 2$ is a purely loxodromic Kleinian group, with nonempty region of discontinuity, isomorphic to the free group of rank g. Geometrically, these groups are constructed as follows. Let $C_k, C_k', k = 1, \dots, g$, be 2g Jordan curves on the Riemann sphere $\widehat{\mathbb{C}}$ such that they are mutually disjoint and bound a 2g-connected domain \mathcal{D} . Suppose that for each k there exists a fractional linear

 $E{-}mail\ addresses: \verb|ruben.hidalgo@ufrontera.cl|, milagros.izquierdo@liu.se|. Partially supported by project Fondecyt 1150003, Anillo ACT 1415 PIA-CONICYT and Redes Etapa Inicial Grant 2017-170071.$

transformation $A_k \in \mathrm{PSL}_2(\mathbb{C})$ so that (i) $A_k(C_k) = C'_k$ and (ii) $A_k(\mathcal{D}) \cap \mathcal{D} = \emptyset$. Then the group Γ , generated by all these transformations, is a Schottky group of rank g. Every Schottky group is constructed in that way [1]. If Ω is the region of discontinuity of the Schottky group Γ , then Ω is connected and Ω/Γ is a closed Riemann surface of genus g (by the retrosection theorem, every closed Riemann surface of genus g is obtained in that way). Schottky groups are exactly those Kleinian groups providing the lowest regular planar coverings of closed Riemann surfaces. See [8, 9].

The Schottky space of rank $g \geq 2$, which we denote as S_g , is the one that parametrizes $\mathrm{PSL}_2(\mathbb{C})$ -conjugacy classes of Schottky groups of rank g. (S_g can be identified with the space of classes of conformally equivalent Kleinian structures on an oriented handlebody.) If Γ is a Schottky group, then we denote by $[\Gamma] \in S_g$ its conjugacy class. The branch locus $\mathcal{B}_g \subset S_g$ consists of the conjugacy classes of those Schottky groups which are a finite index proper subgroup of some Kleinian group.

A marked Schottky group of rank $g \geq 2$ is a tuple $(\Gamma, A_1, \ldots, A_g)$, where Γ is a Schottky group of rank g and A_1, \ldots, A_g is a set of generators for it. Two marked Schottky groups of rank g, say $(\Gamma, A_1, \ldots, A_g)$ and $(\widehat{\Gamma}, \widehat{A}_1, \ldots, \widehat{A}_g)$, are said to be equivalent if there is a Möbius transformation B so that $BA_jB^{-1} = \widehat{A}_j$, for every $j=1,\ldots,g$. The marked Schottky space of rank g, denoted by $\mathcal{M}S_g$, parametrizes equivalence classes of marked Schottky groups of rank g. This space can be identified with the quasiconformal deformation space of a Schottky group of rank g, so it carries a complex manifold of dimension 3(g-1) [2,13]. (It can also be identified with the Teichmüller space of classes of marked Kleinian structures of an orientable handlebody of genus g.)

The group of holomorphic automorphisms of $\mathcal{M}S_g$ is isomorphic to the outer automorphism group $\operatorname{Out}(F_g)$, where F_g is the free group of rank g, and the forgetful $map \ \pi : \mathcal{M}S_g \to \mathcal{S}_g$ is a (regular) orbifold-covering whose deck group is $\operatorname{Out}(F_g)$ [4, 8, 9, 13]. In this setting, the branch locus \mathcal{B}_g is the projection under π of the points in $\mathcal{M}S_g$ with non-trivial $\operatorname{Out}(F_g)$ -stabilizer.

If (Γ, A_1, A_2) is a marked Schottky group of rank g = 2, then $E = A_1A_2 - A_2A_1$ is an elliptic transformation of order two such that $E_1 = EA_1$ and $E_2 = EA_2$ are also elliptic transformations of order two. In this case, the Kleinian group $K = \langle E, E_1, E_2 \rangle \cong \mathbb{Z}_2 * \mathbb{Z}_2 * \mathbb{Z}_2 * \mathbb{Z}_2$ (called a Whittaker group) contains Γ as an index two subgroup [7]. It follows that \mathcal{B}_2 is connected. In the paper [6] we observed that the sublocus of \mathcal{B}_2 consisting of the conjugacy classes of rank two Schottky groups which are finite index proper subgroups of Kleinian groups different from the Whittaker ones, has exactly two connected components. For $g \geq 3$ odd, we proved in [6] that \mathcal{B}_g is connected and, for $g \geq 4$ even, that \mathcal{B}_g has at most two connected components. In this short note we complete the above results as follows:

Theorem 1. The branch locus \mathcal{B}_q is connected for every $g \geq 2$.

As observed in the previous lines, we only need to prove the connectedness of \mathcal{B}_g for the case $g \geq 4$ even.

2. Proof of Theorem 1

2.1. Cyclic extension of Schottky groups. First of all, we will see an interpretation of $\mathcal{M}S_g$ and \mathcal{S}_g in terms of quasiconformal deformation spaces: If Γ is

a Schottky group of rank $g \geq 2$, then by [2] its quasiconformal deformation space $\mathcal{Q}(\Gamma)$ turns out to be a connected complex manifold of dimension 3g-3. As any two Schottky groups of the same rank g are quasiconformally equivalent, their respective quasiconformal deformation spaces are complex analytically equivalent. It can be seen that if Γ is a Schottky group of rank g, then $\mathcal{Q}(\Gamma)$ is isomorphic to $\mathcal{M}S_g$; that is $\mathcal{Q}(\Gamma)$ is a model of the marked Schottky space $\mathcal{M}S_g$. To obtain a model of \mathcal{S}_g , one has to consider the following equivalence relation on $\mathcal{Q}(\Gamma)$: two deformations ω_1 and ω_2 are equivalent if there is a Möbius transformations A so that $\omega_1\Gamma\omega_1^{-1}=A\omega_2\Gamma\omega_2^{-1}A^{-1}$. Then, the set of equivalence classes is a model for \mathcal{S}_g . Details can be found, for instance, in [2,13].

Assume that there is a Kleinian group K containing Γ as a finite index normal subgroup (in particular, K is finitely generated). As each Beltrami coefficient for K is also a Beltrami differential for Γ and both K and Γ have the same limit set, there is a natural holomorphic embedding $\iota: \mathcal{Q}(K) \to \mathcal{Q}(\Gamma)$ centered at Γ . In general, if there is some $[\mu] \in \mathcal{Q}(\Gamma)$ so that the Schottky group Γ_u is contained in some Kleinian group K as a finite index normal subgroup, then it provides a holomorphic embedding $j: \mathcal{Q}(K) \to \mathcal{Q}(\Gamma)$ centered at Γ_u .

A Kleinian group K, containing a Schottky group Γ of rank $g \geq 2$ as a finite index normal subgroup so that K/Γ is a cyclic group, is called a cyclic extension Schottky group or cyclic-Schottky group. A geometrical picture of these Kleinian groups is provided in [5]. In the case that K/Γ is a cyclic group of rank a prime integer p, the group K is a free product, in the sense of the Klein-Maskit combination theorems, of t cyclic groups generated by loxodromic transformations, r cyclic groups generated by elliptic transformations of order p and s Abelian groups, each one generated by a loxodromic transformation and an elliptic transformation of order p both of them commuting, so that g = 1 + p(t + r + s - 1) - r. In particular

(1)
$$K \cong \mathbb{Z} * \stackrel{t}{\cdots} * \mathbb{Z} * \mathbb{Z}_{p} * \stackrel{r}{\cdots} * \mathbb{Z}_{p} * (\mathbb{Z} \times \mathbb{Z}_{p}) * \stackrel{s}{\cdots} * (\mathbb{Z} \times \mathbb{Z}_{p}).$$

We say that a cyclic-Schottky group K as above is of type (g,p;t,r,s). In this case, the region of discontinuity Ω of K coincides with the region of discontinuity of the Schottky group Γ , and $S=\Omega/\Gamma$ is a closed Riemann surface of genus g admitting a conformal automorphism ϕ of order p with $S/\langle \phi \rangle$ of signature $(\gamma; p, \stackrel{?r}{.}, p)$, where $\gamma = t+s$ [8,13].

The above description permits also to see that any two cyclic-Schottky groups of the same type are quasiconformally conjugated. In particular, the quasiconformal deformation space of a cyclic-Schottky groups of a fixed type (which is connected from the measurable Riemann mapping's theorem) contains all cyclic-Schottky groups of such a type.

2.2. A cyclic decomposition of \mathcal{B}_g , for $\mathbf{g} \geq \mathbf{3}$. Now, let F(g, p; t, r, s) be the subset of \mathcal{B}_g consisting of those points $[\Gamma] \in \mathcal{S}_g$ for which there exists some $\Gamma_0 \in [\Gamma]$ and a cyclic-Schottky group K, of type (g, p; t, r, s), containing Γ_0 as an index p normal subgroup.

First of all it is easy to see that \mathcal{B}_g is the union of the subsets F(g,p;t,r,s), where p is prime, t,r,s are non-negative integers so that g-1=p(t+r+s-1)-r [6]: Let W be a Kleinian group containing a Schottky group Γ as a non-trivial finite index normal subgroup and consider the natural epimorphism $\theta:W\to W/\Gamma$. Let $\phi\in W/\Gamma$ an element of prime order p. The group $K=\theta^{-1}(\langle\phi\rangle)$ is a Kleinian group containing Γ as a normal subgroup of index p. In [6] it was observed that, for $p\geq 3$,

F(g,p;t,r,s) is not necessarily connected (this it might happen since K may contain different Schottky groups of rank g). However, for p=2, it was proved in [3] that F(g,2;t,r,s) is always connected. Moreover,it can be seen that F(g,2;t,r,s) is an orbifold of complex dimension (3g-3+r)/2. Finally, in [6] it was proved that, for $p\geq 3$, every connected component of F(g,p;t,r,s) intersects some F(g,2;t',r',s') (this since the orbifold $\mathcal{O}=M/\langle\phi\rangle$, where M is the handlebody uniformized by Γ and K uniformizes \mathcal{O} , admits an orientation-preserving self-homeomorphism τ of order two keeping Γ).

Consequentently, to prove the connectedness of \mathcal{B}_g we only need to look at the possible intersections of the connected families F(g,2;t,r,s). To show that two families F(g,2;t,r,s), F(g,2;t',r',s') intersect, we need to construct a Kleinian group K containing two cyclic-Schottky groups K_1, K_2 , of type (g,2;t,r,s), (g,2;t',r',s') and both of them containing the same Schottky group Γ of rank g as index two subgroup.

The following intersections were obtained in [6]:

Theorem 2 ([6]). Consider connected components F(g, 2; t, r, s) of \mathcal{B}_g . Then the following hold:

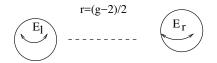
- (1) If $g \geq 3$ is odd:
 - (a) $F(g,2;t,r,s) \cap F(g,2;(g-1)/2,2,0) \neq \emptyset$, if t is even.
 - (b) $F(g, 2; t, r, s) \cap F(g, 2; (g 3)/2, 4, 0) \neq \emptyset$, if t is odd.
 - (c) $F(g,2;(g-1)/2,2,0) \cap F(g,2;(g-3)/2,4,0) \neq \emptyset$.
- (2) If $g \ge 4$ is even:
 - (a) $F(g,2;t,r,s) \cap F(g,2;g/2,1,0) \neq \emptyset$, if s and t are even.
 - (b) $F(g, 2; t, r, s) \cap F(g, 2; (g 2)/2, 3, 0) \neq \emptyset$, if s is even and t is odd.
 - (c) $F(g,2;t,r,s) \cap F(g,2;(g-2)/2,1,1) \neq \emptyset$, if s is odd and t is even.
 - (d) $F(g,2;t,r,s) \cap F(g,2;(g-4)/2,3,1) \neq \emptyset$, if s and t are odd.
 - (e) $F(g,2;g/2,1,0) \cap F(g,2;(g-2)/2,3,0) \neq \emptyset$.
 - (f) $F(g,2;(g-2)/2,1,1) \cap F(g,2;(g-4)/2,3,1) \neq \emptyset$.

The above asserts, for $g \geq 3$ odd, that \mathcal{B}_g is connected. In the case $g \geq 4$ is even, Theorem 2 permits to observe that the connectivity of \mathcal{B}_g will be obtained if $F(g,2;0,g+1,0) \cap F(g,2;(g-2)/2,1,1) \neq \emptyset$.

2.3. The connectedness of $\mathcal{B}_{\mathbf{g}}$, for $\mathbf{g} \geq \mathbf{4}$ even. In order to obtain the connectedness of \mathcal{B}_g , for $g \geq 4$ even, we will construct two cyclic-Schottky groups K_1 and K_2 , of respective types (g,2;0,g+1,0) and (g,2;(g-2)/2,1,1), each one containing the same Schottky group Γ as an index two normal subgroup. To do it, we consider the Kleinian group K constructed from the Klein-Maskit combination theorems [8,10,11] by using (g-2)/2+4 elliptic transformations of order two, say $E_1,\ldots,E_{(g-2)/2},F_1,F_2,F_3,F_4$, such that $(F_2F_1)^2=(F_3F_2)^2=(F_4F_3)^2=1$, as shown in Figure 1.

The Kleinian group K has a Cantor as a limit set, and if its (connected) region of discontinuity is Ω , then the 2-orbifold Ω/K is the Riemann sphere (genus zero) with exactly (g-2)+5 cone points, each one of order two. Let us consider the surjective homomorphism $\theta: K \to \langle a,b \rangle \cong \mathbb{Z}_2^2$ defined by $\theta(E_1) = \cdots = \theta(E_{(g-2)/2}) = \theta(F_1) = \theta(F_4) = b, \ \theta(F_2) = a, \ \theta(F_3) = ab.$

The kernel Γ of θ is a index 4, torsion free subgroup of the Kleinian group K. The Kleinian group Γ is geometrically finite purely loxodromic Kleinian group



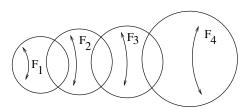


FIGURE 1. The Kleinian group K

with connected region of discontinuity. It follows from the classification of function groups [12] that Γ is necessarily a Schottky group.

Let $K_1 = \theta^{-1}(\langle a \rangle)$ and $K_2 = \theta^{-1}(\langle b \rangle)$. Both of these are index two subgroups of K and $\Gamma = K_1 \cap K_2$ has index two in each of K_1 and K_2 . It can be seen that

$$K_1 = \langle F_1 E_1, \dots, F_1 E_{(g-2)/2}, F_4 F_3, F_2, F_3 F_1 \rangle, K_2 = \langle E_1, \dots, E_{(g-2)/2}, F_2 E_1 F_2, \dots, F_2 E_{(g-2)/2} F_2, F_1, F_4, F_3 F_2 \rangle.$$

The group K_1 is a cyclic-Schottky group of type (g,2;(g-2)/2,1,1). It induces an involution ϕ_1 in the handlebody M uniformized by Γ whose branch locus in $M/\langle \phi_1 \rangle$ consists of 1 loop and one arc of fixed points. Similarly, K_2 is a cyclic-Schottky group of type (g,2;0,g+1,0) inducing an involution ϕ_2 in the same handlebody M uniformized by Γ whose branch locus in $M/\langle \phi_2 \rangle$ consists of g+1 arcs of fixed points.

The groups K, Γ , K_1 and K_2 as above are as desired ones.

References

- V. Chuckrow. On Schottky groups with applications to Kleinian groups. Annals of Math. 88, (1968) 47-61.
- [2] L. Bers. Automorphic forms for Schottky groups. Adv. in Math., 16:332–361, 1975.
- [3] R. Díaz, I. Garijo, G. Gromadzki and R.A. Hidalgo. Structure of Whittaker groups and application to conformal involutions on handlebodies. *Topology and its Applications* 157 (2010), 2347–2361.
- [4] C. J. Earle. The group of biholomorphic self-mappings of Schottky space. Ann. Acad. Sci. Fenn. Ser. A I Math. 16 (1991), no. 2, 399–410.
- [5] R. A. Hidalgo. Cyclic extensions of Schottky uniformizations. Ann. Acad. Scie. Fenn. 29 (2004), 329–344.
- [6] R. A. Hidalgo and M. Izquierdo. On the connectivity of the branch locus of the Schottky space. Annales Academiae Scientiarum Fennicae 39 (2014), 635–654.
- [7] L. Keen. On hyperelliptic Schottky groups. Annales Academiae Scientiarum Fennicae. Series A.I. Mathematica 5, (1980), 165–174.
- [8] B. Maskit. Kleinian Groups. G.M.W. 287, Springer-Verlag, (1988).
- [9] B. Maskit. Self-maps of Kleinian groups. Amer. J. Math. 93 (1971), 840–856.
- [10] B. Maskit. On Klein's combination theorem III. Ann. of Math. Studies 66 (1971), Princeton Univ. Press, 297–316.

- [11] B. Maskit. On Klein's combination theorem. IV. Trans. Amer. Math. Soc. 336 (1993), 265–294.
- [12] B. Maskit. On the classification of Kleinian Groups II-Signatures. Acta Mathematica 138 (1977), 17–42.
- [13] S. Nag. The complex analytic theory of Teichmüller spaces. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York 1988.