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CHARACTER DEGREES OF GROUPS ASSOCIATED WITH
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Abstract. Let A be a finite-dimensional split basic algebra over a finite field
k with odd characteristic, and assume that A is endowed with an involution
σ : A → A. We determine the degrees of the irreducible characters of the
group CG(σ) = {x ∈ G : σ(x−1) = x} where G = A× is the unit group of
A, and prove that every irreducible character of CG(σ) is induced by a linear
character of some subgroup. As a particular case, our results hold for the
Sylow p-subgroups of the finite classical groups of Lie type, and extend (in a
uniform way) the results obtained by B. Szegedy in [11].
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Let p be an odd prime, let k be a finite field of characteristic p, and let A be a
finite-dimensional associative k-algebra (with identity). We recall that an involution
on A is a map σ : A→ A satisfying the following conditions:

(1) σ(a+ b) = σ(a) + σ(b) for all a, b ∈ A;
(2) σ(ab) = σ(b)σ(a) for all a, b ∈ A;
(3) σ2(a) = a for all a ∈ A.

We note that an involution σ is not required to be k-linear; however, we will assume
that the field k = k · 1 is preserved by σ. Then, σ defines a field automorphism of
k which is either the identity or has order 2; we say that σ is of the first kind if σ
fixes k, and of the second kind if its restriction σk to k has order 2. In any case, we
let kσ = {α ∈ k : σ(α) = α} denote the σ-fixed subfield of k, and consider A as a
finite dimensional associative kσ-algebra. We observe that σ is of the second kind
if and only if the field extension kσ ⊆ k has degree 2, and σ : k→ k is the Frobenius
map defined by the mapping α 7→ αq where q = |kσ|; hence, kσ = Fq and k = Fq2 .
For simplicity of writing, we will the bar notation α = αq for α ∈ k.

Let G = A× denote the unit group of the k-algebra A. Then, for any involution
σ : A→ A, the cyclic group 〈σ〉 acts on G as a group of automorphisms by means
of xσ = σ(x−1) for all x ∈ G (xσ should not be confused with σ(x)). For any
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σ-invariant subgroup H ≤ G, we denote by CH(σ) the subgroup of H consisting of
all σ-fixed elements; that is,

CH(σ) = {x ∈ H : xσ = x} = {x ∈ H : σ(x−1) = x}.

The main purpose of this paper is to determine the degree of any irreducible (com-
plex) character of the group CG(σ) in the case where A is an arbitrary basic k-
algebra endowed with an involution σ : A→ A. By definition, a k-algebra A is said
to be basic if the Jacobson radical Rad(A) ≤ A equals the set consisting of all nilpo-
tent elements of A; equivalently, the semisimple k-algebra A/Rad(A) is isomorphic
to a direct sum k1 ⊕ · · · ⊕ kn of field extensions k1, . . . ,kn of k (in the paper [10],
B. Szegedy refers to A as an N-algebra over k; see, in particular, [10, Lemma 2.1]).
We note that every subalgebra (containing the identity) of a basic k-algebra is also
a basic k-algebra; moreover, if I is any (two-sided) ideal of A, then A/I is also a
basic k-algebra. In the case where ki ∼= k for all 1 ≤ i ≤ n, we refer to A as a
split basic k-algebra (or, in the terminology of [10], as a DN-algebra); we observe
that subalgebras (containing the identity) and quotient algebras of a split basic
k-algebra are also slit basic k-algebras (see, for example, [10, Lemmas 2.2 and 2.3]).

As a standard example, let Mn(k) be the full matrix algebra over k consisting
of all n × n matrices with entries in k, so that Mn(k)× = GLn(k) is the general
linear group consisting of all invertible matrices in Mn(k). The k-algebra Mn(k) is
canonically endowed with the transpose involution defined by the mapping a 7→ aT

where aT denotes the transpose of a ∈Mn(k). Let q = |kσ|, let F : Mn(k)→Mn(k)
be the Frobenius morphism defined by F (aij) = (aij) = (aij

q) for all (aij) ∈Mn(k),
and set a∗ = F (a)T for all a ∈ Mn(k). Then, the mapping a 7→ a∗ defines an
involution on Mn(k); notice that, if kσ = k, then a∗ = aT for all a ∈ Mn(k). If
σ : Mn(k)→Mn(k) is an involution of the first kind, then there exists u ∈ GLn(k)
with uT = ±u and such that σ(a) = u−1aTu for all a ∈Mn(k); moreover, the matrix
u is uniquely determined up to a factor in k×. On the other hand, if σ : Mn(k)→
Mn(k) is an involution of the second kind, then there exists u ∈ GLn(k) with
u∗ = u and such that σ(a) = u−1a∗u for all a ∈ Mn(k); moreover, the matrix u is
uniquely determined up to a factor in (kσ)×. (The proofs can be found in the book
[8] by M.-A. Knus et al. where the complete classification of involutions is also
given for arbitrary central k-algebras.) For simplicity, for u ∈ GLn(k) as above, we
will denote by σu the involution on Mn(k) given by the mapping a 7→ u−1a∗u; as
usual, we say that σu is symplectic if σu is of the first kind and uT = −u, orthogonal
if σu is of the first kind and uT = u, and unitary if σu is of the second kind and
u∗ = u.

For an arbitrary involution σ : Mn(k)→Mn(k) the group CGLn(k)(σ) is isomor-
phic to one of the well-known finite classical groups of Lie type (defined over k):
the symplectic group Sp2m(q) if σ is symplectic (and k = Fq), the orthogonal groups
O+

2m(q), O2m+1(q), or O−2m+2(q) if σ is orthogonal (and k = Fq), and the unitary
group Un(q

2) if σ is unitary (and k = Fq2). (For the details on the definition of
the classical groups, we refer to Chapter I the book [2] by R. Carter.) In fact,
up to isomorphism, these groups may be defined by the involution σ = σu where
u ∈ GLn(k) is defined as follows; here, Jm denotes the m×m matrix with 1’s along
the anti-diagonal and 0’s elsewhere.

(1) For Sp2m(q), we choose k = Fq and u =
(

0 Jm
−Jm 0

)
.
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(2) For O+
2m(q) or O2m+1(q), we choose k = Fq and u = Jn where, either

n = 2m, or n = 2m+ 1.
(3) For O−2m+2(q), we choose k = Fq and u =

(
0 0 Jm
0 c 0
Jm 0 0

)
where c =

(
1 0
0 −ε

)
for

ε ∈ F×q − (F×q )2.
(4) For Un(q2), we choose k = Fq2 and u = Jn. (In this case, we have kσ = Fq.)
Let A = bn(k) be the Borel subalgebra ofMn(k) consisting of all upper-triangular

matrices; hence, G = A× is the standard Borel subgroup Bn(k) of GLn(k). Then,
A is a split basic k-algebra; in fact, the Jacobson radical Rad(A) is the (upper)
niltriangular subalgebra utn(k) ≤ bn(k) consisting of all upper-triangular matrices
with 0’s on the main diagonal, and A/Rad(A) is isomorphic to a direct sum of
n copies of k; indeed, A/Rad(A) is isomorphic to the diagonal subalgebra dn(k)
consisting of all diagonal matrices in Mn(k). Further, A is a σ-invariant subalgebra
of Mn(k), and the CG(σ) is a (standard) Borel subgroup of the corresponding finite
classical group.

In the general situation, let A be a split basic k-algebra with an involution
σ : A→ A. For any (nilpotent) subalgebra J of Rad(A), the set 1+J is a p-subgroup
of the unit group G = A× to which we refer as an algebra subgroup of G (as defined
in [6]). In the particular case where J = Rad(A), it is clear that P = 1 + Rad(A)
is a normal subgroup of G, and that it is the unique Sylow p-subgroup of G.
Furthermore, G is the semidirect productG = TP where T ≤ G is isomorphic to the
unit group of A/Rad(A); hence, T is isomorphic to the direct product k×1 ×· · ·×k×n
where k1, . . . ,kn are field extensions of k such that A/Rad(A) ∼= k1⊕· · ·⊕kn. Since
A is split, we have ki ∼= k for all 1 ≤ i ≤ n, and in fact there are nonzero orthogonal
idempotents e1, . . . , en ∈ A with 1 = e1+· · ·+en, and such that A = D⊕Rad(A) for
D = ke1⊕· · ·⊕ken; this follows easily from the usual process of “lifting idempotents”
(see, for example, [9, Chapter VII]; see also [5, Lemma 2.1]). Then, T = D× is
the unit group of the subalgebra D; we will refer to D as the diagonal subalgebra
of A, and to T as the diagonal subgroup of G = A×. In particular, we have
|G| = |k|r(|k| − 1)n where r = dimRad(A).

On the other hand, let x ∈ G be arbitrary, and denote by CG(x) the centraliser
of x in G (with respect to conjugation). It is clear that CG(x) is the unit group of
the subalgebra CA(x) = {a ∈ A : ax = xa} of A. Since every subalgebra of a split
basic k-algebra is also a split basic k-algebra (see [10, Lemma 2.2]), CA(x) is a split
basic k-algebra, and thus |CG(x)| = |k|s(|k| − 1)m for some nonnegative integers s
and m (with s ≤ r and m ≤ n). Since (|k|, |k| − 1) = 1, we deduce the following
result.

Theorem 1 (Szegedy; see [10, Lemma 2.4]). Let A be a split basic k-algebra, let
G = A×, and let K be a conjugacy class of G. Then, |K| = |k|k(|k| − 1)l for some
nonnegative integers k and l.

Next, we consider the involution σ : A → A, and determine the order of the
σ-fixed subgroup CG(σ). We start by proving the following elementary result.

Lemma 1. Let A be a k-algebra with an involution σ : A→ A, let J be a σ-invariant
nilpotent subalgebra of A, and let Q = 1 + J. Then, |CQ(σ)| is a power of |kσ|.

Proof. Let ϕ : J → Q be the Cayley transform defined by ϕ(a) = (1− a)(1 + a)−1

for all a ∈ J. Since p is odd, the map ϕ is bijective, and it is easy to check that
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CQ(σ) = ϕ(CJ(σ)) where CJ(σ) = {a ∈ J : σ(a) = −a}. The result follows because
CJ(σ) is a vector space over kσ. �

On the other hand, we have the following.

Theorem 2. Let A be a split basic k-algebra with an involution σ : A → A, let
G = A× be the unit group of A, and let P = 1+Rad(A). Let kσ be the σ-fixed field
of k, and let q = |kσ|. Then, CG(σ)/CP (σ) ∼= H ×K where H is a direct product
of copies of k×, and K is a direct product of cyclic groups of order (q − 1)/2 if σ
is of the first kind, and q − 1 if σ is of the second kind. In particular, there exist
nonnegative integers k and r such that

|CG(σ) : CP (σ)| =

{
2−k(q − 1)r, if σ is of the first kind,
(q + 1)k(q − 1)r, if σ is of the second kind.

Further, we have CG(σ)P/P = CG/P (σ).

Proof. Let e1, . . . , en ∈ A be nonzero orthogonal idempotents, and consider the
diagonal subalgebra D = ke1 ⊕ · · · ⊕ ken of A; moreover, for simplicity, we set
J = Rad(A).

Let Sn denote the symmetric group on {1, 2, . . . , n}. Since σ(e1), · · · , σ(en) are
nonzero orthogonal idempotents satisfying 1 = σ(e1) + · · · + σ(en), there exist a
permutation π ∈ Sn and an invertible element x ∈ P = 1 + J such that σ(ei) =
xeπ(i)x

−1 for all 1 ≤ i ≤ n (see, for example, [9, Theorem VII.13]). In particular,
we see that σ(ei) ∈ eπ(i)+J, and thus σ(kei) = kσ(ei) ⊆ keπ(i)+J for all 1 ≤ i ≤ n.
Moreover, since σ is an involution, we clearly have π2 = 1.

The involution σ : A→ A defines naturally an involution on the k-algebra A/J;
if we denote this involution also by σ, then σ(a+J) = σ(a)+J for all a ∈ A. Hence,
σ defines an automorphism of the group G/P ∼= (A/J)× by means of (xP )σ = xσP
for all x ∈ G. Since A = D ⊕ J, we have A/J ∼= D, and thus G/P ∼= T where
T = D× is the diagonal subgroup of G. For every t ∈ T , we have tP ∈ CG/P (σ)
if and only if t−1tσ ∈ P , and so CG/P (σ) = {tP : t−1tσ ∈ P}. On the other hand,
since D = ke1 ⊕ · · · ⊕ ken, every element of t ∈ T = D× is uniquely expressed as a
sum t = α1e1+ · · ·+αnen where α1, . . . , αn ∈ k×. In particular, for every 1 ≤ i ≤ n
and every α ∈ k×, the element

ti(α) = αei +
∑

1≤j 6=i≤n

ei

lies in T ; indeed, every t ∈ T factorises uniquely as a product t = t1(α1) · · · tn(αn)
where α1, . . . , αn ∈ k×. For every 1 ≤ i ≤ n, let Ti = {ti(α) : α ∈ k×}; notice
that T1, . . . , Tn are subgroups of T and that T is the (internal) direct product
T = T1 · · ·Tn. Similarly, if we define T i = TiP/P for all 1 ≤ i ≤ n, then G/P is
the direct product G/P = T 1 · · ·Tn; moreover, since σ(kei) ⊆ keπ(i) + J, we must
have (T i)

σ ⊆ Tπ(i), and hence (T i)
σ = Tπ(i) for all 1 ≤ i ≤ n.

Now, if t ∈ T is arbitrary and t = t1 · · · tn where ti ∈ Ti for all 1 ≤ i ≤ n, then
t−1tσ = (t−11 (tπ(1))

σ) · · · (t−1n (tπ(n))
σ) where t−1i (tπ(i))

σ ∈ TiP for all 1 ≤ i ≤ n,
and so t−1tσ ∈ P if and only if t−1i (tπ(i))

σ ∈ P for all 1 ≤ i ≤ n; in other words,
we have tP ∈ CG/P (σ) if and only if t−1i (tπ(i))

σ ∈ P for all 1 ≤ i ≤ n. In
particular, if we set ti(α) = ti(α)P , then ti(α)ti(α)σ ∈ CG/P (σ) for all α ∈ k× and
all 1 ≤ i ≤ n. In fact, it is straightforward to check that, for all 1 ≤ i ≤ n, the
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mapping α 7→ ti(α)ti(α)
σ defines a group homomorphism γi : k× → CG/P (σ), and

that CG/P (σ) =
∏
i∈I Im(γi) where I is a complete set of representatives of the

π-orbits on {1, 2, . . . , n}. In particular, we conclude that

|CG/P (σ)| =
∏
i∈I
| Im(γi)|.

It is clear that γi is injective whenever i ∈ I is such that π(i) 6= i. On the
other hand, let i ∈ I be such that π(i) = i. In this case, (kei + J)/J = kei where
ei = ei + J, and we have σ(αei) = αqei + J for all α ∈ k. In particular, for any
α ∈ k×, we deduce that α ∈ ker(γi) if and only if α = αq, and so

| Im(γi)| =

{
q − 1, if kσ = k,
(q − 1)/2, if kσ 6= k.

Furthermore, we conclude that CG/P (σ) is isomorphic to a direct product H×K
where H is a direct product of copies of k×, and K is a direct product of cyclic
groups of order (q− 1)/2 if σ is of the first kind, or q− 1 if σ is of the second kind.
In particular, there exist nonnegative integers k and r such that

|CG/P (σ)| =

{
2−k(q − 1)r, if σ is of the first kind,
(q + 1)k(q − 1)r, if σ is of the second kind.

If we assume further that the diagonal subalgebra D ≤ A is σ-invariant, we
clearly have a semidirect product CG(σ) = CT (σ)CP (σ) where T = D×, and thus
CG/P (σ) ∼= CT (σ) ∼= CG(σ)/CP (σ). Therefore, in this situation, we conclude that
there exist nonnegative integers k and r such that

|CG(σ) : CP (σ)| =

{
2−k(q − 1)r, if σ is of the first kind,
(q + 1)k(q − 1)r, if σ is of the second kind.

In the general situation, let G̃ be the semidirect product G̃ = G n 〈σ〉 of G by
the cyclic group 〈σ〉. Since G̃ is solvable and σ ∈ G̃ has order 2, Hall’s Theorem
(see [3, Theorem 6.41]) asserts that there exists a Hall p′-subgroup S̃ ≤ G̃ with
σ ∈ S̃. Then, S = S̃ ∩ G is a Hall p′-subgroup of G, and we have G = PS (by
order considerations); moreover, since σ ∈ S̃, the subgroup S is clearly σ-invariant.
It follows that CG(σ) is the semidirect product CG(σ) = CP (σ)CS(σ), and hence
CG(σ)P/P ∼= CS(σ) ∼= CG/P (σ). �

We are now able to determine the size of any conjugacy class of CG(σ).

Theorem 3. Let A be a split basic k-algebra with an involution σ : A → A, let
G = A×, and let K be a conjugacy class of CG(σ). Then, there exist nonnegative
integers k, r and s such that

|K| =

{
2−k(q − 1)rqs, if σ is of the first kind,
(q + 1)k(q − 1)rqs, if σ is of the second kind,

where q = |kσ|.

Proof. Let x ∈ K be arbitrary, and recall that CG(x) is the unit group H = B× of
the subalgebra B = CA(x) of A. Since x ∈ CG(σ), it is clear that B is σ-invariant.
Since CH(σ) = H ∩ CG(σ), we have |K| = |CG(σ) : CH(σ)|, and thus

|K| = |CG(σ) : CP (σ)| |CH(σ) : CQ(σ)|−1|CP (σ) : CQ(σ)|
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where Q = P ∩ H = 1 + Rad(B). The result follows by Lemma 1 and by the
previous theorem. �

Next, we consider the irreducible characters of CG(σ). Our goal is to prove the
following main result. (We observe that, in the case where σ is an involution of the
first kind, this result is essentially [11, Theorem 6].)

Theorem 4. Let A be a split basic k-algebra with an involution σ : A → A, let
G = A× be the unit group of A, and let χ be an arbitrary irreducible character of
CG(σ). Then, there exist nonnegative integers k, r and s such that

χ(1) =

{
2−k(q − 1)rqs, if σ is of the first kind,
(q + 1)k(q − 1)rqs, if σ is of the second kind,

where q = |kσ|.

The following reduction result will be crucial for the proof of this theorem. As
usual, given an arbitrary function χ : G→ C of a group G and an arbitrary element
g ∈ G, we define the function χg : G → C by the rule χg(x) = χ(gxg−1) for all
x ∈ G; similarly, given an arbitrary subset X of G and an arbitrary element g ∈ G,
we define Xg = {xg : x ∈ X} where xg = gxg−1 for all x ∈ G.

Theorem 5. Let A be a split basic k-algebra with an involution σ : A → A, let
G = A× be the unit group of A, and let P = 1 + Rad(A). Let χ be a σ-invariant
irreducible character of P , and let IG(χ) = {g ∈ G : χg = χ} be the inertia group
of χ. Then, IG(χ) = B× for some σ-invariant subalgebra B ≤ A.

Proof. Let G̃ be the semidirect product G̃ = Gn 〈σ〉 of G by the cyclic group 〈σ〉.
Since P = 1+Rad(A) is σ-invariant, P is a normal subgroup of G̃. As in the proof
of Theorem 2, we may choose a Hall p′-subgroup S ≤ G̃ with σ ∈ S and such that
G̃ is the semidirect product G̃ = PS.

The group S acts naturally on the set Irr(P ) of irreducible characters of P and
on the set Cl(P ) of conjugacy classes of P . By [7, Theorem 13.24], these actions
are permutation isomorphic. Let β : Irr(P ) → Cl(P ) be a S-equivariant bijection,
and let K = β(χ). Then, CS(χ) = {s ∈ S : Ks = K}. Since CS(χ) is a p′-
group, Glauberman’s Lemma (see [7, Lemma 13.8]) implies that there exists x ∈ K

such that xs = x for all s ∈ CS(χ); in particular, since χ is σ-invariant, we have
σ ∈ CS(χ), and thus xσ = x.

We now claim that IG(χ) = PCG(x). In fact, let g ∈ G be arbitrary. Since
G̃ = PS, there are uniquely determined elements h ∈ P and s ∈ S ∩ G such that
g = hs; thus, we have Kg = Ks and χg = χs. On the one hand, suppose that
g ∈ CG(x). Then, Ks = Kg = K, and so s ∈ CS∩G(χ) ≤ IG(χ). On the other
hand, suppose that g ∈ IG(χ). Then, χs = χg = χ, and so s ∈ CS(χ). By the
choice of x, we conclude that s ∈ CG(x), and thus g = hs ∈ PCG(x). The claim
follows.

To complete the proof it is enough to take B = CA(x)+Rad(A) where CA(x) =
{a ∈ A : xa = ax}; it is clear that B is a σ-invariant subalgebra of A, and that
B× = PCG(x) = IG(x). �

We now proceed with the proof of Theorem 4.
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Proof of Theorem 4. We start by recalling the Glauberman correspondence be-
tween σ-invariant irreducible characters of P = 1+Rad(A) and irreducible charac-
ters of CP (σ); our main reference is [7, Chapter 13]. As usual, we denote by Irr(P )
the set consisting of all irreducible characters of P (and extend this notation to
any finite group), and by Irrσ(P ) the subset of Irr(P ) consisting of all σ-invariant
irreducible characters. Since p is odd, the Glauberman correspondence asserts that
there exists a uniquely defined bijective map πP : Irrσ(P )→ Irr(CP (σ)) such that,
for any ϕ̂ ∈ Irrσ(P ), the image ϕ = πP (ϕ̂) is the unique irreducible constituent of
the restriction ϕ̂CP (σ) which occurs with odd multiplicity (see [7, Theorem 13.1]).

Now, let χ be an arbitrary irreducible character of CG(σ), let ϕ ∈ Irr(CP (σ)) be
an irreducible constituent of χCP (σ), and let ϕ̂ ∈ Irrσ(P ) be such that πP (ϕ̂) = ϕ.
We consider the inertia group IG(ϕ̂) of ϕ̂, and observe that

ICG(σ)(ϕ) = IG(ϕ̂) ∩ CG(σ).

In fact, let g ∈ CG(σ) be arbitrary. Then, it is clear that ϕ̂ g ∈ Irrσ(P ); moreover, we
have πP (ϕ̂ g) = ϕg (by [7, Theorem 13.1] because 〈ϕg, (ϕ̂ g)CP (σ)〉 = 〈ϕ, ϕ̂CP (σ)〉).
Since πP is bijective, we conclude that ϕ̂ g = ϕ̂ if and only if ϕg = ϕ. On the
other hand, by Theorem 5, IG(ϕ̂) is the unit group H = B× of some subalgebra
B ≤ A; we note that Rad(B) = Rad(A). By Theorem 2, we conclude that there
are nonnegative integers k and r such that

|CG(σ) : ICG(σ)(ϕ)| =

{
2−k(q − 1)r, if σ is of the first kind,
(q + 1)k(q − 1)r, if σ is of the second kind;

in fact, ICG(σ)(ϕ) = CG(σ)∩IG(ϕ̂) = CG(σ)∩H = CH(σ). Since χ is an irreducible
constituent of ϕCG(σ), Clifford correspondence (see [7, Theorem 6.11]) implies that
χ = ψCG(σ) for some irreducible character ψ of ICG(σ)(χ) = CH(σ), and hence

χ(1) =

{
2−k(q − 1)rψ(1), if σ is of the first kind,
(q + 1)k(q − 1)rψ(1), if σ is of the second kind.

Since p - |CH(σ) : CP (σ)|, [7, Corollary 6.28] implies that ϕ is extendible to
CH(σ); in other words, there exists ψ′ ∈ Irr(CH(σ)) such that ψ′CP (σ) = ϕ. Since
CH(σ)/CP (σ) is abelian, we have

ϕCH(σ) =
∑

ω∈Irr(CH(σ)/CP (σ))

ωψ′

(by Gallagher’s Theorem; see [7, Corollary 6.17]), and so ψ = ωψ′ for some ω ∈
Irr(CH(σ)) with CP (σ) ⊆ ker(ω). It follows that ψCP (σ) = ϕ, and hence ψ is an
also extension of ϕ. Therefore,

χ(1) =

{
2−k(q − 1)rϕ(1), if σ is of the first kind,
(q + 1)k(q − 1)rϕ(1), if σ is of the second kind.

The proof of Theorem 4 is complete because ϕ(1) is a power of q (by [1, Theo-
rem 1.3]; see also [11, Theorem 1]). �

Finally, we prove that CG(σ) is in fact anM-group; that is, every irreducible char-
acter χ ∈ Irr(CG(σ)) is induced by a linear character of some subgroup of CG(σ).
More precisely, we shall prove the following result. (For a particular situation, see
[11, Theorem 4].)
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Theorem 6. Let A be a split basic k-algebra with an involution σ : A → A, let
G = A× be the unit group of A, and let χ be an irreducible character of CG(σ).
Then, there exist a σ-invariant subgroup H ≤ G and a linear character ϑ of CH(σ)
such that χ = ϑCG(σ).

Proof. Let P = 1 + J where J = Rad(A), let ϕ ∈ Irr(CP (σ)) be an irreducible
constituent of the restriction χCP (σ), and let ϕ̂ ∈ Irrσ(P ) be the Glauberman
correspondent of ϕ. By Theorem 5 and by the proof of Theorem 4, we may assume
that ϕ̂ is G-invariant; hence, ϕ is also CG(σ)-invariant, and we have χCG(σ) = ϕ

(see the proof of Theorem 4). As in the proof of Theorem 2, let G̃ be the semidirect
product G̃ = Gn 〈σ〉 of G by the cyclic group 〈σ〉, and let S̃ be a Hall p′-subgroup
of G̃ with σ ∈ S̃. Then, S = G ∩ S̃ is a σ-invariant Hall p′-subgroup of G, and
we have a semidirect product G = PS; on the other hand, CG(σ) is the semidirect
product CG(σ) = CP (σ)CS(σ) (see the proof of Theorem 2).

Now, consider the σ-fixed subgroup CS̃(σ), and observe that CS̃(σ) is the direct
product CS̃(σ) = CS(σ) × 〈σ〉; indeed, σ centralizes CS(σ). Thus, by Theorem 2,
CS̃(σ) is an abelian p′-group with exponent dividing q−1 where q = |kσ|; moreover,
it is clear that CS̃(σ) acts on J as a group of kσ-linear ring automorphisms (here,
J is naturally considered as a vector space over kσ). We note that the character
ϕ̂ ∈ Irr(P ) is CS̃(σ)-invariant, and claim that ϕ̂ = τ̂P for some CS̃(σ)-invariant
kσ-algebra subgroup Q of P and some CS̃(σ)-invariant linear character τ̂ of Q; as
in [6], a subgroup Q of P is said to be a kσ-algebra subgroup if Q = 1+U for some
kσ-subalgebra U of J. To prove this, we proceed by induction on the dimension of
J. We consider the (k-)algebra subgroup N = 1 + J2 of P ; in fact, N is an ideal
subgroup (and hence a normal subgroup) of P ; an algebra subgroup of P is said
to be an ideal subgroup if it is of the form 1 + I for some (two-sided) ideal I of
J. Since CS̃(σ) and P have coprime orders, [7, Theorem 13.27] asserts that there
exists η̂ ∈ IrrCS̃(σ)(N) such that 〈ϕ̂N , η̂〉 6= 0.

Firstly, assume that η̂ is not P -invariant. In this case, IP (η̂) is a proper algebra
subgroup of P (see [5, Lemma 3.3]); moreover, since η̂ is CS̃(σ)-invariant, IP (η̂) is
also CS̃(σ)-invariant. By [5, Lemma 3.2], there exists %̂ ∈ IrrCS̃(σ)(IP (η̂)) such that
〈%̂, ϕ̂N 〉 6= 0 and 〈%̂N , η̂〉 6= 0. By Clifford’s correspondence (see [7, Theorem 6.11]),
we must have ϕ̂ = %̂P , and the claim follows by induction.

On the other hand, suppose that η̂ is P -invariant. In this case, we have ϕ̂N = eη̂
for some positive integer e; moreover, [4, Theorem 1.3] asserts that η̂ is a linear
character (and hence e = ϕ̂(1)). Let L be a CS̃(σ)-invariant kσ-algebra subgroup
of P which is maximal with respect to the condition that η̂ is extendible to L. By
[5, Lemma 3.2], there exists τ̂ ∈ IrrCS̃(σ)(L) with 〈τ̂ , ϕ̂L〉 6= 0 and 〈τ̂N , η̂〉 6= 0; since
L/N is abelian, Gallager’s theorem (see [7, Corollary 6.17] implies that τ̂N = η̂.
We shall now prove that ϕ̂ = τ̂P . To see this, we consider the inertia group IP (τ̂)
and assume that IP (τ̂) 6= L. Let I and I′ be the kσ-subalgebras of J such that
L = 1 + I and IP (τ̂) = 1 + I′; notice that IP (τ̂) is a kσ-algebra subgroup of P by
[5, Lemma 3.3] (moreover, since J2 ⊆ I, I′, both I and I′ are necessarily kσ-ideals
of J). Let kσ[CS̃(σ)] denote the group algebra of CS̃(σ) over the σ-fixed field kσ,
and consider the left kσ[CS̃(σ)]-module I′/I. Let V be an irreducible kσ[CS̃(σ)]-
submodule of I′/I; notice that we are assuming that I′/I is non-zero. Since the
exponent of CS̃(σ) divides q − 1 where q = |kσ|, kσ is a splitting field for CS̃(σ)
(see [7, Corollary 9.25]), and thus V is one-dimensional (because CS̃(σ) is abelian).
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It follows that there exists a ∈ I′ \ I such that I + kσa is an CS̃(σ)-invariant kσ-
ideal of J, and hence La = 1 + I+ kσa is an CS̃(σ)-invariant k

σ-algebra subgroup
of 1 + I′ = IP (τ̂) such that L ⊆ La and |La : L| = q. By [7, Theorem 13.28],
there exists τ̂ ′ ∈ IrrCS̃(σ)(La) such that 〈τ̂ ′, τ̂La〉 6= 0; hence, 〈τ̂ ′L, τ̂〉 6= 0. By
[6, Theorem A], both τ̂ and τ̂ ′ have q-power degree, and thus either τ̂ ′L = τ̂ or
τ̂ ′ = τ̂La . The first case cannot occur by the maximal choice of L. Therefore,
τ̂ ′ = τ̂La , and thus ILa

(τ̂) = L (by [7, Problem 6.1]). Since La ⊆ IP (τ̂), we
conclude that La ⊆ L, a contradiction. It follows that IP (τ̂) = L, and this implies
that τ̂P ∈ Irr(P ) (by [7, Problem 6.1]). Since 〈ϕ̂, τ̂P 〉 = 〈ϕ̂L, τ̂〉 6= 0, we conclude
that ϕ̂ = τ̂P , as required.

Our claim is now proved; that is, there exist a CS̃(σ)-invariant k
σ-algebra sub-

group Q of P and a CS̃(σ)-invariant linear character τ̂ of Q such that ϕ̂ = τ̂P . In
particular, Q is σ-invariant, and τ̂ ∈ Irrσ(Q). Let τ = πQ(τ̂) ∈ Irr(CQ(σ)); since
τ̂ is linear, it is clear that τ = τ̂CQ(σ), and hence τ is linear and CS̃(σ)-invariant.
By [1, Proposition 2.8], we conclude that ϕ = τCP (σ); we recall that σ defines an
kσ-linear automorphism of J.

Finally, let H = CS(σ)Q; we note that, since Q is CS̃(σ)-invariant (and CS(σ) ≤
CS̃(σ)), H is a subgroup of G satisfying CH(σ) = CS(σ)CQ(σ). Since τ is CS̃(σ)-
invariant and p - |CH(σ) : CQ(σ)|, [7, Corollary 6.28] implies that τ is extendible
to CH(σ); in other words, there exists τ ′ ∈ Irr(CH(σ)) such that τ ′CQ(σ) = τ . Since
CH(σ)/CQ(σ) is abelian, we have

τCH(σ) =
∑

ω∈Irr(CH(σ)/CQ(σ))

ωτ ′

(by Gallagher’s Theorem; see [7, Corollary 6.17]), and so

ϕCG(σ) = (τCP (σ))CG(σ) = τCG(σ) =
∑

ω∈Irr(CH(σ)/CQ(σ))

(ωτ ′)CG(σ).

On the other hand, since CG(σ) = CH(σ)CP (σ) and CH(σ) ∩ CP (σ) = CQ(σ), we
deduce that

((ωτ ′)CG(σ))CP (σ) = ((ωτ ′)CQ(σ))
CP (σ) = τCP (σ) = ϕ,

and thus (ωτ ′)CG(σ) is irreducible for all ω ∈ Irr(CH(σ)/CQ(σ)). Since χ is an
irreducible constituent of ϕCG(σ), we conclude that χ = (ωτ ′)CG(σ) for some ω ∈
Irr(CH(σ)/CQ(σ)), and this completes the proof of the theorem. �

References

[1] C. André, Irreducible characters of groups associated with finite nilpotent algebras with in-
volution, J. Algebra 324 (2010), no. 9, 2405–2417. MR2684146

[2] R.W. Carter, Simple groups of Lie type, Wiley Classics Library, John Wiley & Sons, Inc.,
New York, 1989. Reprint of the 1972 original, A Wiley-Interscience Publication. MR1013112

[3] D. Gorenstein, Finite groups, Second, Chelsea Publishing Co., New York, 1980. MR569209
[4] Z. Halasi, On the characters and commutators of finite algebra groups, J. Algebra 275 (2004),

no. 2, 481–487. MR2052621
[5] , On the characters of the unit group of DN-algebras, J. Algebra 302 (2006), no. 2,

678–685. MR2293776
[6] I.M. Isaacs, Characters of groups associated with finite algebras, J. Algebra 177 (1995), no. 3,

708–730. MR1358482
[7] , Character theory of finite groups, AMS Chelsea Publishing, Providence, RI, 2006.

Corrected reprint of the 1976 original [Academic Press, New York; MR0460423]. MR2270898

albanian-j-math.com/archives/2018-07.pdf

http://www.ams.org/mathscinet-getitem?mr=2684146
http://www.ams.org/mathscinet-getitem?mr=1013112
http://www.ams.org/mathscinet-getitem?mr=569209
http://www.ams.org/mathscinet-getitem?mr=2052621
http://www.ams.org/mathscinet-getitem?mr=2293776
http://www.ams.org/mathscinet-getitem?mr=1358482
http://www.ams.org/mathscinet-getitem?mr=2270898
http://albanian-j-math.com/archives/2018-07.pdf


Character degrees 88

[8] M.-A. Knus, A. Merkurjev, M. Rost, and J.-P. Tignol, The book of involutions, American
Mathematical Society Colloquium Publications, vol. 44, American Mathematical Society,
Providence, RI, 1998. With a preface in French by J. Tits. MR1632779

[9] B.R. McDonald, Finite rings with identity, Marcel Dekker, Inc., New York, 1974. Pure and
Applied Mathematics, Vol. 28. MR0354768

[10] B. Szegedy, On the characters of the group of upper-triangular matrices, J. Algebra 186
(1996), no. 1, 113–119. MR1418042

[11] , Characters of the Borel and Sylow subgroups of classical groups, J. Algebra 267
(2003), no. 1, 130–136. MR1993470

Centro de Análise Funcional, Estruturas Lineares e Aplicações (CEAFEL) &
Departamento de Matemática, Faculdade de Ciências da Universidade de Lisboa, Cam-
po Grande, Edifício C6, Piso 2, 1749-016 Lisboa, Portugal

E-mail address: caandre@ciencias.ulisboa.pt

Albanian J. Math. 12 (2018), no. 1, 79-88.

http://www.ams.org/mathscinet-getitem?mr=1632779
http://www.ams.org/mathscinet-getitem?mr=0354768
http://www.ams.org/mathscinet-getitem?mr=1418042
http://www.ams.org/mathscinet-getitem?mr=1993470
http://albanian-j-math.com/vol-12.html

	References

