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ABSTRACT. In this present work, we give an characterization of quasi-symmetric Laguerre-
Hahn orthogonal polynomial sequences of class one through the study of the differential
functional equation fulfilled by its corresponding regular linear form.

1. INTRODUCTION

The study of the Laguerre-Hahn polynomial sequences is one of the interesting popular
problems in the area of orthogonal polynomials. Since the system corresponding to the
problem of determining all the Laguerre-Hahn linear forms of class s ≥ 1 becomes non-
linear, the problem was only solved when s = 1 and for the symmetric case [3]. Thus,
several authors use different processes in order to obtain Laguerre-Hahn linear forms of
class s ≥ 1. For instance, we can mention the adjunction of either a Dirac mass or its
derivative to Laguerre-Hahn linear forms [2], [9], [10], the product and the division of a
linear form by a polynomial [8], [15]. So, some examples of Laguerre-Hahn linear forms
are given in terms of classical ones. But, they are just few examples. The aim of this work
is to study a family of quasi-symmetric Laguerre-Hahn orthogonal polynomial sequences
{Wn}n≥0 of class sw = 1 verifying the following three-term recurrence relation:

(1)
Wn+2(x) = (x− (−1)n+1)Wn+1(x)− γn+1Wn(x) , n ≥ 0 ,

W1(x) = x− 1 , W0(x) = 1 ,

through the study of the Pearson differential functional equation satisfied by its correspond-
ing regular linear form w and using the framework of the quadratic decomposition.

In section 2, the preliminaries results as well as the notations in use throughout the text
are given. One of the properties of the linear form w indicates that there is a relation-
ship between w and a symmetric regular linear form ϑ. In section 3, we deal with the
Laguerre-Hahn character of the symmetric linear form ϑ, which allows us to characterize
the structure of the polynomial elements of the differential functional equation satisfied
by the linear form w. As an exploitation of these results, we treat in detail all Laguerre-
Hahn polynomial sequences of class sw = 1 satisfying (1). The obtained linear forms are
in connection of modified linear forms of the Laguerre-Hahn linear forms of class zero
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SOME LAGUERRE-HAHN ORTHOGONAL POLYNOMIALS OF CLASS ONE 22

analogous to the classical Jacobi’s one. The regularity conditions and the recurrence coef-
ficients γn+1, n ≥ 0 are given.

2. PRELIMINARIES

Let P be the vector space of polynomials with complex coefficients and let P ′ be its
dual. The elements of P ′ will be called either linear form or linear functional. We denote
by 〈v, f〉 the action of v ∈ P ′ on f ∈ P . For n ≥ 0, (v)n = 〈v, xn〉 are the moments of v.
In particular a linear form is called symmetric if all of its moments of odd order are zero
[7].

We define in the space P ′ the derivative v
′

of the form v by 〈v′, f〉 := −〈v, f ′〉, the
left multiplication by a polynomial hv by 〈hv, f〉 := 〈v, hf〉, the shifted form hav, τbv by
〈hav, f〉 := 〈v, haf〉 = 〈v, f(ax)〉, 〈τbv, f〉 := 〈v, τ−bf〉 = 〈v, f(x+ b)〉, the Dirac form
at origin δ0 by 〈δ0, f〉 := f(0) and the inverse multiplication by a polynomial of degree
one (x− c)−1v, through〈

(x− c)−1v, f
〉

:= 〈v, θcf〉 with
(
θcf
)
(x) :=

f(x)− f(c)

x− c
, f ∈ P.

We also denote (f(ξ))(x) = f(x) for the dummy variable ξ.
It is straightforward to prove that for v ∈ P ′ and f ∈ P , we have [13]

x−1(xv) = v − (v)0δ0 ,

x(x−1v) = v ,
(2)

(3) f(x−1v) = x−1(fv) + 〈v, θ0f〉δ0 .
We also define the right-multiplication of a form v by a polynomial h with

(4) (vh)(x) :=
〈
v,
xh(x)− ξh(ξ)

x− ξ

〉
.

Next, it is possible to define the product of two forms through

〈uv, f〉 := 〈u, vf〉 , u, v ∈ P ′, f ∈ P.
For f ∈ P and v ∈ P ′ we have the following result [1]

(5) f2v2 = (fv)2 + 2xf(x)(vθ0f)(x)v .

Let us define the operator σ : P −→ P by (σf)(x) := f(x2) for all f ∈ P . By transposi-
tion we define σv from the following:

〈σv, f〉 = 〈v, σf〉.
Thus we have the well-known formulas [2], [5], [12],

σ
(
f(x2)v

)
= f(x)σv ,

σv
′

= 2
(
σ(xv)

)′
,

σv2 = (σv)2 + x−1
(
σ(xv)

)2
,

σ(x−1v2) = 2x−1(σv)σ(xv) .

(6)

Let us recall that a form w is said to be regular (quasi-definite) if there exists a sequence
{Wn}n≥0 of polynomials with degWn = n, n ≥ 0, such that

〈w,WnWm〉 = rnδn,m , rn 6= 0, n ≥ 0 .
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We can always assume that each Wn is monic, i.e. Wn(x) = xn+ lower degree terms.
Then the sequence {Wn}n≥0 is said to be orthogonal with respect to w (monic orthogonal
polynomial sequence (MOPS) in short). It is a very well-known fact that the sequence
{Wn}n≥0 satisfies a three-term recurrence relation (see, for instance, the monograph by
Chihara [7]

(7)
Wn+2(x) = (x− βn+1)Wn+1(x)− γn+1Wn(x) , n ≥ 0 ,

W1(x) = x− β0 , W0(x) = 1 .

with
(
βn, γn+1

)
∈ C × C\{0} , n ≥ 0 . By convention we set γ0 = (w)0. The form

w is said to be normalized if (w)0 = 1. In this paper, we suppose that any form will be
normalized.

Here, we will be considering a MOPS {Wn}n≥0 with respect to the form w satisfying
a three-term recurrence relation (7) with

(8) βn = (−1)n , n ≥ 0 .

In this case, we have:

Lemma 1. [6], [12] Let {Wn}n≥0 be a MOPS with respect to the form w. The following
statements are equivalents:
(a) {Wn}n≥0 satisfies (7)-(8).
(b) (w)2n+1 = (w)2n, n ≥ 0.
(c) The sequence {Wn}n≥0 has the following quadratic decomposition

W2n(x) = Pn(x2) , W2n+1(x) = (x− 1)Rn(x2) , n ≥ 0 ,

where the sequences {Pn}n≥0 and {Rn}n≥0 are respectively orthogonal with respect to
u = σ(w) and v = γ−1

1 (x−1)σ(w). Moreover, their recurrence elements are respectively,
given by (for all n ≥ 0)

(9)


βP0 = γ1 + 1 ,

βPn+1 = γ2n+2 + γ2n+3 + 1 ,

γPn+1 = γ2n+1γ2n+2 ,


βR0 = γ1 + γ2 + 1 ,

βRn+1 = γ2n+3 + γ2n+4 + 1 ,

γRn+1 = γ2n+2γ2n+3 .

For more details about the quadratic decomposition of MOPS, see [12]. According to
the statement (b) of Lemma 1, the form (x − 1)w is antisymmetric, that is to say ((x −
1)w)2n = 0, n ≥ 0. Equivalently,

(10) σ(xw) = σ(w) .

Let now λ be a non-zero complex number and ϑ be the linear form such that

(11) λxϑ = (x− 1)w .

Equivalently, from (2)

(12) ϑ =
1

λ
(w − x−1w) + (1− 1

λ
)δ0 .

Applying the operator σ in (11) and taking into account of (10), we get σ(xϑ) = 0. Hence
ϑ is a symmetric form. Then, ϑ is regular if and only if σ(ϑ) and xσ(ϑ) are regular [12].
Now, multiplying (11) by x and applying the operator σ, we get λxσ(ϑ) = γ1v. That is
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λxσ(ϑ) is regular since λ 6= 0 and γ1v = (x− 1)σ(w) is regular, see [12]. So, according
to [14], the form ϑ is regular if and only if λ 6= λn where λn , n ≥ 0 is defined by

λn = −γ1

R
(1)
n−1(0)

Rn(0)
, n ≥ 0 ,

with [8]

R(1)
n (x) =

〈
v,
Rn+1(x)−Rn+1(y)

x− y

〉
, n ≥ 0 , R

(1)
−1(x) = 0 .

Proposition 1. [17] There exists a non-zero constant λ such that the form ϑ given by (11)
is regular.

Now, let us recall some features about the Laguerre-Hahn character [2], [?AM)], [4].

Definition 1. A linear formw is said to be Laguerre-Hahn when it is regular and there exist
three polynomials Φ, a monic polynomial, Ψ and B, deg(Φ) = t ≥ 0, deg(Ψ) = p ≥ 1,
deg(B) = r ≥ 0, such that

(13)
(
Φw
)′

+ Ψw +B(x−1w2) = 0 .

The corresponding MOPS {Wn}n≥0 is said to be Laguerre-Hahn.

Remark 1. When B = 0, the form w is semiclassical.

Proposition 2. The Laguerre-Hahn linear form w satisfying (13) is said to be of class
sw = max(t− 2, r − 2, p− 1) if and only if the following condition is satisfied

(14)
∏
c∈ZΦ

(
|Φ′(c) + Ψ(c)|+ |B(c)|+ |〈w, θ2

cΦ + θcΨ + wθ0θcB〉|
)
6= 0 ,

where ZΦ is the set of zeros of Φ.

The Laguerre-Hahn character of a linear form is kept by shifting. Indeed, the shifted
form w̃ = (ha−1 ◦ τ−b)w , a 6= 0 , b ∈ C is also Laguerre-Hahn having the same class as
that w and fulfilling the equation(

Φ̃w̃
)′

+ Ψ̃w̃ + B̃(x−1w̃2) = 0 ,

where

Φ̃(x) = a−tΦ(ax+ b) , Ψ̃(x) = a1−tΨ(ax+ b) , B̃(x) = a−tB(ax+ b) .

The sequence {W̃n}n≥0, where W̃n(x) = a−nWn(ax + b), n ≥ 0 is orthogonal with
respect to w̃. The recurrence coefficients are given by

β̃n =
βn − b
a

, γ̃n+1 =
γn+1

a2
, n ≥ 0 .

The next result [3] characterizes the elements of the functional equation satisfied by any
symmetric Laguerre-Hahn linear form.

Proposition 3. Let w be a symmetric Laguerre-Hahn linear form of class sw satisfying
(13). The following statements hold.
(i) When sw is odd then Φ and B are odd and Ψ is even.
(ii) When sw is even then Φ and B are even and Ψ is odd.
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3. MAIN CHARACTERIZATION PROPERTIES

Let w be a Laguerre-Hahn linear form of class sw = 1 satisfying (13) which its corre-
sponding MOPS {Wn}n≥0 fulfills (8).

Our aim is to characterize the structure of the polynomial elements of the functional
equation (13) satisfied by the linear form w. This is possible through the study of the
Laguerre-Hahn character of the form ϑ.

3.1. Class and functional equation of the form ϑ. The form ϑ define by (13) when it
is regular, is also Laguerre-Hahn of class sϑ such that sϑ ≤ sw + 2 and satisfying the
functional equation [16]

(15) (Eϑ)
′
+ Fϑ+G(x−1ϑ2) = 0 ,

with

(16)
E(x) = x(x− 1)Φ(x) , G(x) = λx2B(x) ,

F (x) = x
(

(x− 1)Ψ(x) + 2(1− λ)B(x)− 2Φ(x)
)
.

Denoting by λ−1 and λ−2 the solutions of the equation

B(0)λ2 + (Φ
′
+ Ψ− 2B)(0)λ+B(0)− Φ

′
(0)−Ψ(0)− 〈w, θ2

0Φ + θ0Ψ + wθ2
0B〉 = 0

if B(0) 6= 0 and λ−1 = λ−2 =
〈w,θ2

0Φ+θ0Ψ+wθ2
0B〉

Φ′ (0)+Ψ(0)
+ 1 otherwise.

Theorem 1. Let λ be a complex number such that λ 6= λn, n ≥ −2. Then, the linear
form ϑ is Laguerre-Hahn of class sϑ satisfying

(Ẽϑ)
′
+ F̃ ϑ+ G̃(x−1ϑ2) = 0 .

Moreover,
(a) If (Φ(1), B(1)) 6= (0, 0), then

Ẽ(x) = E(x) , F̃ (x) = F (x) , G̃(x) = G(x) ,

and sϑ = 3.

(b) If (Φ(1), B(1)) = (0, 0) and (Ψ(1), B
′
(1)) 6= (0, 0), then

Ẽ(x) = xΦ(x) , G̃(x) = λx2(θ1B)(x) ,

F̃ (x) = x
(

Ψ + 2(1− λ)(θ1B)− (θ1Φ)
)

(x) ,

and sϑ = 2.

(c) If (Φ(1), B(1)) = (0, 0) and (Ψ(1), B
′
(1)) = (0, 0), then

Ẽ(x) = x(θ1Φ)(x) , G̃(x) = λx2(θ2
1B)(x) ,

F̃ (x) = x
(

(θ1Ψ) + 2(1− λ)(θ2
1B)

)
(x) ,

and sϑ = 1.

For the proof, we need the following lemma.

Lemma 2. (i) For all root c of Φ, we have

(17)
〈ϑ, θ2

cE + θcF + ϑθ0θcG〉 = 1
λ (c− 1)2〈w, θ2

cΦ + θcΨ + wθ0θcB〉

+(1− 1
λ )
(

(c− 1)(Φ
′
+ Ψ)(c) + (1− λ)B(c)

)
,

(18) E
′
(c) + F (c) = c(c− 1)

(
Φ
′
+ Ψ

)
(c) , G(c) = λc2B(c) .
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(ii) For any λ 6= λn, n ≥ −2, the class of the linear form ϑ depends only the zero x = 1.

Proof. (i) Let c be a root of Φ. Then we can write

(19) E(x) = x(x− 1)(x− c)Φc(x) , Φc(x) = (θcΦ)(x) .

Using the definition of the operator θc, it is easy to prove that, for f , g ∈ P , we have

(20)
(
θc(fg)

)
(x) =

(
θcf
)

(x)g(x) + f(c)
(
θcg
)

(x) .

So, from (12) and (19), we have

〈ϑ, θ2
cE〉 =

1

λ
〈w, θc

(
ξ(ξ−1)Φc

)
(x)〉− 1

λ
〈w, θc

(
(ξ−1)Φc

)
(x)〉+(1− 1

λ
)(c−1)Φ

′
(c) .

Taking f(x) = x(x− 1) and g(x) = Φc(x) in (20), we obtain

〈w, θc
(
ξ(ξ − 1)Φc

)
(x)〉 = 〈w, (x+ c− 1)Φc(x)〉+ c(c− 1)〈w, θ2

cΦ〉 .

Replacing f(x) = x− 1 and g(x) = Φc(x) in (20), we deduce

〈w, θc
(

(ξ − 1)Φc

)
(x)〉 = 〈w,Φc〉+ (c− 1)〈w, θ2

cΦ〉 .

Therefore,

(21) 〈ϑ, θ2
cE〉 =

1

λ
(c− 1)2〈w, θ2

cΦ〉+
1

λ
〈w, (x+ c− 2)Φc(x)〉+ (1− 1

λ
)(c− 1)Φ

′
(c) .

Proceeding as in (21), we can easily prove that

(22)

〈ϑ, θcF 〉 = 1
λ (c− 1)2〈w, θcΨ〉+ 1

λ 〈w, (x+ c− 2)Ψ〉+ 2( 1
λ − 1)〈w,B〉

+2( 1
λ − 1)(c− 1)〈w, θcB〉 − 2

λ 〈w, (x− 1)Φc〉

+(1− 1
λ )
(

(c− 1)Ψ(c) + 2(1− λ)B(c)
)
.

On the other hand, from (12), we obtain
〈ϑ2, θ0θcG〉 = 1

λ2 〈w2 + x−2w2 − 2x−1w2, θ0θcG〉+ 2
λ (1− 1

λ )〈w − x−1w, θ0θcG〉
+ λ(1− 1

λ )2B(c).

By applying the same process as we did to obtain (21), we get after some straightforward
calculations

(23)
〈ϑ2, θ0θcG〉 = 1

λ (c− 1)2〈w2, θ0θcB〉+ 1
λ 〈w

2, θ0

(
(ξ + c− 2)B

)
〉

+2(c− 1)(1− 1
λ )〈w, θcB〉+ 2(1− 1

λ )〈w,B〉+ λ(1− 1
λ )2B(c) .

Adding (21), (22) and (23), we obtain

〈ϑ, θ2
cE + θcF + ϑθ0θcG〉 = 1

λ (c− 1)2〈w, θ2
cΦ + θcΨ + wθ0θcB〉

+ 1
λ 〈(Φw)

′
+ Ψw +B(x−1w2), x+ c− 2〉

+(1− 1
λ )
(

(c− 1)(Φ
′
+ Ψ)(c) + (1− λ)B(c)

)
.

This yields (17), since 〈(Φw)
′
+ Ψw +B(x−1w2), x+ c− 2〉 = 0, from (13). Next, it is

easy to find (18) from (16).
(ii) Let c be a root of E such that c 6= 1. According to (16) we get cΦ(c) = 0.

Two cases occur to discuss:
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• If c 6= 0, then Φ(c) = 0. We suppose |E′(c) +F (c)|+ |G(c)| = 0. According to (17)
and (18), we obtain

〈ϑ, θ2
cE + θcF + ϑθ0θcG〉 =

1

λ
(c− 1)2〈w, θ2

cΦ + θcΨ + wθ0θcB〉 6= 0,

since |Φ′(c) + Ψ(c)|+ |B(c)| = 0.

• If c = 0, then |E′(0) + F (0)|+ |G(0)| = Φ(0). We suppose that Φ(0) = 0.
When |Φ′(0) + Ψ(0)|+ |B(0)| = 0, we get

〈ϑ, θ2
0E + θ0F + ϑθ2

0G〉 =
1

λ
〈w, θ2

0Φ + θ0Ψ + wθ2
0B〉 6= 0,

from (17) and (18).
When |Φ′(0) + Ψ(0)|+ |B(0)| 6= 0, the assumption λ /∈ {λ−1, λ−2} gives 〈ϑ, θ2

0E +
θ0F + ϑθ2

0G〉 6= 0. Therefore, equation (15) is not simplified by x− c for c 6= 1.
�

Proof. (of Theorem 1) We may write E
′
(1) + F (1) = 2(1− λ)B(1)−Φ(1) and G(1) =

λB(1).

(a) If (Φ(1), B(1)) 6= (0, 0), then |E′(1)+F (1)|+|G(1)| 6= 0. Thus, equation (15) cannot
be simplified and so the form ϑ is of class

sϑ = max
(

deg(E)−2,deg(F )−1,deg(G)−2
)

= max
(

deg(Φ),deg(Ψ)+1,deg(B)
)
.

Hence, sϑ = 3.
(b) If (Φ(1), B(1)) = (0, 0), then

|E′(1) + F (1)|+ |G(1)| = 0 and 〈ϑ, θ2
1E + θ1F + ϑθ0θ1G〉 = 0,

according to (17) and (18). So, equation (15) can be simplified by the polynomial x − 1
and becomes

(24) (Ẽϑ)
′
+ F̃ ϑ+ G̃(x−1ϑ2) = 0 ,

where

(25)
Ẽ(x) = xΦ(x) , G̃(x) = λx2(θ1B)(x) ,

F̃ (x) = x
(
Ψ + 2(1− λ)(θ1B)− (θ1Φ)

)
(x) .

It is easy to see that (24) is not simplified, since

(Ẽ
′
(1) + F̃ (1), G̃(1)) = (Ψ(1) + 2(1− λ)B

′
(1), λB

′
(1)) 6= (0, 0).

Therefore sϑ = 2.
(c) If (Φ(1), B(1)) = (0, 0) and (Ψ(1), B

′
(1)) = (0, 0), then

(Ẽ
′
(1) + F̃ (1), G̃(1)) = (Ψ(1) + 2(1− λ)B

′
(1), λB

′
(1)) = (0, 0).

A simple calculation gives 〈ϑ, θ2
1Ẽ + θ1F̃ + ϑθ0θ1G̃〉 = 1

λ 〈w,Ψ〉+
1
λ 〈w

2, θ0B〉 = 0. So,
(24)-(25) is simplified by the polynomial x− 1 and it becomes

(26) (Êϑ)
′
+ F̂ ϑ+ Ĝ(x−1ϑ2) = 0 ,

where

(27)
Ê(x) = x(θ1Φ)(x) , Ĝ(x) = λx2(θ2

1B)(x) ,

F̂ (x) = x
(
(θ1Ψ) + 2(1− λ)(θ2

1B)
)
(x) .
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If 1 is a root of θ1Φ, then Φ
′
(1) + Ψ(1) = B(1) = 0. Assuming that |Ê′(1) + F̂ (1)|+

|Ĝ(1)| = 0. A simple calculations gives

〈ϑ, θ2
1Ê + θ1F̂ + ϑθ0θ1Ĝ〉 =

1

λ
〈w, θ2

1Φ + θ1Ψ + wθ0θ1B〉 6= 0,

sincew is a Laguerre-Hahn and it satisfies (14). Hence, equation (26)-(27) is not simplified
and so sϑ = 1. �

3.2. Structure of the polynomials Φ, Ψ and B. We can decompose the polynomials Φ,
Ψ, B, θ1Φ, θ1Ψ, θ1B and θ2

1B into their odd and even parts. Set

(28)

Φ(x) = Φe(x2) + xΦo(x2) , (θ1Φ)(x) = Φe1(x2) + xΦo1(x2) ,

Ψ(x) = Ψe(x2) + xΨo(x2) , (θ1Ψ)(x) = Ψe
1(x2) + xΨo

1(x2) ,

B(x) = Be(x2) + xBo(x2) , (θ1B)(x) = Be1(x2) + xBo1(x2) ,

(θ2
1B)(x) = Be2(x2) + xBo2(x2) .

Proposition 4. Let w be a Laguerre-Hahn linear form of class sw = 1 satisfying (13) and
{Wn}n≥0 be its corresponding MOPS, such that βn = (−1)n, n ≥ 0. The following
statements hold:
(a) If (Φ(1), B(1)) 6= (0, 0), then Φe(x) = Φo(x) = 1

2

(
xΨo(x)−Ψe(x)

)
and Be = 0.

(b) If (Φ(1), B(1)) = (0, 0) and (Ψ(1), B
′
(1)) 6= (0, 0), then Φe = Bo1 = 0 and Ψo(x) =

Φo1(x).

(c) If (Φ(1), B(1)) = (0, 0) and (Ψ(1), B
′
(1)) = (0, 0), then Φe(x) + Φo(x) = Ψe(x) +

xΨo(x) = 0 and (x+ 1)Be(x) + 2xBo(x) = 0.

Proof. Writing

(29) Ẽ(x) = Ẽe(x) + xẼo(x) , F̃ (x) = F̃ e(x) + xF̃ o(x) , G̃(x) = G̃e(x) + xG̃o(x) .

(a) (Φ(1), B(1)) 6= (0, 0). According to (28), (29) and from the expression of polynomials
Ẽ, F̃ and G̃ given in Theorem 1, we get

Ẽe(x) = x(Φe − Φo)(x) , Ẽo(x) = xΦo(x)− Φe(x) ,

F̃ e(x) = x
(
Ψe −Ψo − 2Φo + 2(1− λ)Bo

)
(x) ,

F̃ o(x) = xΨo(x) +
(
2(1− λ)Be −Ψe − 2Φe

)
(x) ,

G̃e(x) = λxBe(x) , G̃o(x) = λxBo(x) .

Then, Ẽe = F̃ o = G̃e = 0, from Proposition 3, since sϑ = 3. This gives (a).

(b) (Φ(1), B(1)) = (0, 0) and (Ψ(1), B
′
(1)) 6= (0, 0). Similar as above,

Ẽe(x) = xΦo(x) , Ẽo(x) = Φe(x) ,

F̃ e(x) = x
(
Ψo + 2(1− λ)Bo1 − Φo1

)
(x) ,

F̃ o(x) = Ψe(x) + 2(1− λ)Be1(x)− Φe1(x) ,

G̃e(x) = λxBe1(x) , G̃o(x) = λxBo1(x) .

If sϑ = 2, then Ẽo = F̃ e = G̃o = 0. This leads to result (b).
(c) (Φ(1), B(1)) = (0, 0) and (Ψ(1), B

′
(1)) = (0, 0). In this case, we have

Ẽe(x) = xΦo1(x) , Ẽo(x) = Φe1(x) ,

F̃ e(x) = x
(
Ψo

1 + 2(1− λ)Bo2
)
(x) , F̃ o(x) = Ψe

1(x) + 2(1− λ)Be2(x) ,

G̃e(x) = λxBe2(x) , G̃o(x) = λxBo2(x) .
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Since ϑ is of odd class, Ẽe = F̃ o = G̃e = 0. Therefore Φo1 = Be2 = 0 and Ψe
1 = 0.

Moreover we can write Φ(x) = (x − 1)(θ1Φ)(x) = (x − 1)Φe1(x2), B(x) = (x −
1)2(θ2

1B)(x) = (x − 1)2xBo2(x2) and Ψ(x) = (x − 1)xΨo
1(x2). So Φe(x) = −Φe1(x),

Φo(x) = Φe1(x), Be(x) = −2xBo2(x), Bo(x) = (x + 1)Bo2(x), Ψe(x) = xΨo
1(x),

Ψo(x) = −Ψo
1(x). This gives the desired result. �

Theorem 2. Let w be a Laguerre-Hahn linear form of class one satisfying (13) and
{Wn}n≥0 be its corresponding MOPS fulfilling (8). The solutions of the functional equa-
tion (13) are given by

(30) Φ(x) = x(x2 − 1) , Ψ(x) = ax2 + x+ c , B(x) = (x− 1)(dx2 + f) ,

with

(31)
|a+ 2d|+ |d+ f | 6= 0 , |a+ d+ 2|+ |f |+ |c− 1| 6= 0 ,

|a+ c+ 3|+ |a+ d+ 2| 6= 0 , |a+ c+ 1|+ |d+ f | 6= 0 .

For the proof, we use the following lemma.

Lemma 3. We have the following formulas:

(w)1 = 1 ,

(w)2 = (w)3 = γ1 + 1 ,

(w)4 = (w)5 = (1 + γ1)2 + γ1γ2 ,

(w)6 = γ1(γ2 + γ1 + 1)2 + (γ1 + 1)2 + γ1γ2(γ3 + 1) ,

(32)

(w2)1 = 2 ,

(w2)2 = 2γ1 + 3 ,

(w2)3 = 4(γ1 + 1) ,

(w2)4 = 3(γ1 + 1)2 + 2(γ1 + 1) + 2γ1γ2 ,

(w2)5 = 6(γ1 + 1)2 + 4γ1γ2 ,

(w2)6 = 2γ1(γ2 + γ1 + 1)2 + (2γ1 + 7)(γ1 + 1)2 + 2γ1γ2(γ3 + γ1 + 3) .

(33)

Proof. We have (w)2n = (u)n , n ≥ 0. Then we can easily prove that (w)2 = βP0 ,
(w)4 =

(
βP0
)2

+ γP1 and (w)6 =
(
βP0
)3

+
(
2βP0 + βP1

)
γP1 . Hence, from (9) and the

statement (b) of Lemma 1, we can deduce the desired result (32).

Finally, from (4) we have (w2)n =

n∑
k=0

(w)n−k(w)k , n ≥ 0. Thus leads to results (33)

from (32). �

Proof. (of Theorem 2) When deg(Φ) ≤ 2, deg(B) ≤ 3 and deg(Ψ) ≤ 2, we consider
(a, b, c, d, e, f, g) ∈ C7 such that Ψ(x) = ax2 + bx+ c and B(x) = dx3 + ex2 + fx+ g
with (a, d) 6= (0, 0). From Proposition 4, we have the following:

(i) If (Φ(1), B(1)) 6= (0, 0), then Φe(x) = Φo(x) = 1
2 (xΨo(x) − Ψe(x)) and Be =

0. So, from (28), Φ(x) = (x + 1)Φe(x2) and B(x) = xBo(x2). Since Φ is a monic
polynomial of degree at most two, then necessarily Φe(x) = 1. In addition, we have
xΨo(x) − Ψe(x) = 2. This implies that a = b and c = −2. Then Φ(x) = x + 1,
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B(x) = dx3 + fx and Ψ(x) = ax2 + ax− 2 with (a, d) 6= (0, 0). According to equation
(13), we have

(34) 〈(Φw)
′
+ Ψw +B(x−1w2), xn〉 = 0 , n = 0, 1, 2 .

Then, from (30) we deduce

〈w, ax2 + ax− 2〉+ 〈w2, dx2 + f〉 = 0 ,

〈w, ax3 + ax2 − 3x− 1〉+ 〈w2, dx3 + fx〉 = 0 ,

〈w, ax4 + ax3 − 4x2 − 2x〉+ 〈w2, dx4 + fx2〉 = 0 .

Taking into account the Lemma 3, it is equivalent to

(35) (γ1 + 1)(a+ 2d) + a+ d+ f − 2 = 0 ,

(36) (γ1 + 1)(a+ 2d) + f − 2 = 0 ,

(37) (γ1 + 1)
(
(γ1 + 1)d+ f − 2

)
+ (a+ 2d)γ1γ2 = 0 .

Subtracting identities (35) and (36), we obtain
a+ d = 0 ,

d(γ1 + 1) + f − 2 = 0 .
(38)

Hence, relation (37) becomes
dγ1γ2 = 0 .

Then, from the above relation, (38) and taking into account the regularity of w, we obtain
a = d = 0, that is a contradiction with (a, d) 6= (0, 0).

(ii) If (Φ(1), B(1)) = (0, 0) and (Ψ(1), B
′
(1)) 6= (0, 0), then Φe = 0. So, Φ(x) = x,

since Φ is monic polynomial and deg(Φ) ≤ 2. This contradicts Φ(1) = 0.
(iii) If (Φ(1), B(1)) = (0, 0) and (Ψ(1), B

′
(1)) = (0, 0), hence

(39) Φ(x) = x− 1 , Ψ(x) = ax(x− 1) , B(x) = dx(x− 1)2 .

Using (34) and (39), we deduce

(a+ 2d)γ1 = 0 ,

(a+ 2d)(γ2 + γ1 + 1) + (dγ1 − 2)γ1 = 0 .

From the above equation and taking into account the regularity of w, we obtain

(40) a+ 2d = 0 , dγ1 − 2 = 0 .

Now, using (13) and (39), we get

a〈w, x6 − x5〉 − 4〈w, x4 − x3〉+ d〈w2, x6 − 2x5 + x4〉 = 0 .

Hence, from the above equation and taking into account (40) and Lemma 3, we obtain
γ2γ1 = 0. It is a contradiction by virtue of the orthogonality of the sequence {Wn}n≥0.

When deg(Φ) = 3, we obtain from (28) deg(Φe) ≤ 1 and deg(Φo) = 1. According to
Proposition 4, we have the following:

(i) If (Φ(1), B(1)) 6= (0, 0), then Φe(x) = Φo(x), Ψe(x) = xΨo(x) − 2Φe(x) and
Be = 0. We get Φ(x) = (x + 1)Φo(x2), Ψ(x) = x(x + 1)Ψo(x2) − 2Φe(x2) and
B(x) = xBo(x2). Therefore Ψo is constant polynomial, deg(Bo) ≤ 1 and Φo is a monic
polynomial of degree one since deg(Ψ) ≤ 2, deg(B) ≤ 3 and deg(Φ) = 3. Hence, if
denoting Φo(x) = x+ h, we get

(41) Φ(x) = (x+ 1)(x2 + h) , Ψ(x) = (b− 2)x2 + bx− 2h , B(x) = dx3 + fx .
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From (34) and (41), we obtain

〈w, (b− 2)x2 + bx− 2h〉+ 〈w2, dx2 + f〉 = 0 ,

〈w, (b− 2)x3 + bx2 − 2hx〉 − 〈w, (x+ 1)(x2 + h)〉+ 〈w2, dx3 + fx〉 = 0 ,

(42) 〈w, (b− 2)x4 + bx3 − 2hx2〉 − 2〈w, (x2 + x)(x2 + h)〉+ 〈w2, dx4 + fx2〉 = 0 ,

what implies

(b+ 2d− 2)(γ1 + 1) + b+ d+ f − 2h = 0 ,

(b+ 2d− 2)(γ1 + 1) + f − 2h = 0 ,
(43)

(44) (b+3d−4)(γ1 +1)2 +(b+2d−4)γ1γ2 +(b+2d+2f−4h)(γ1 +1)+f−2h = 0 .

Using (43), we get

(45) b+ d = 0 , (d− 2)(γ1 + 1) + f − 2h = 0 .

Now, from (13), we get 〈w, x3Ψ(x)−3x2Φ(x)〉+ 〈w2, x2B(x)〉 = 0. Taking into account
Lemma 3 and the second identity in (45), we obtain

(46) (b+ 3d− 4)(γ1 + 1)2 + (b+ 2d− 4)γ1γ2 + (2f − 4h)(γ1 + 1) = 0 .

Then, from (44), (46) and taking into account the first identity in (45), we have

d(γ1 + 1) + f − 2h = 0 .

Thus, by virtue of (45), we get

(47) γ1 + 1 = 0 , f − 2h = 0 .

Hence, from (46), we can deduce

(48) (d− 2)γ2 = 0 .

Now, from (42), we can write

2〈w,W 2
2 〉 = 〈w, (b− 2)x4 + bx3 − 2hx2〉 − 2〈w, x(x2 + hx+ h)〉+ 〈w2, dx4 + fx2〉 ,

since W2(x) = x2. Thus, from (45), (47), (48) and taking into account Lemma 3, we have
〈w,W 2

2 〉 = 0, that is a contradiction of regularity of the form w.
(ii) If (Φ(1), B(1)) = (0, 0) and (Ψ(1), B

′
(1)) = (0, 0), then Φe = −Φo, Ψe(x) =

−xΨo(x) and 2xBo(x) = −(x+ 1)Be(x). Therefore

(49) Φ(x) = (x− 1)(x2 + h) , Ψ(x) = ax(x− 1) , B(x) = dx(x− 1)2 ,

with a 6= 0 since 1 ≤ deg(Ψ) ≤ 2. Thus, from (34) and (49), we can deduce

(a+ 2d)γ1 = 0 , (a+ 2d− 2)(γ2 + γ1 + 1) + dγ1 − 2h = 0 .

By virtue of the above equations and taking into account the regularity of the form w, we
obtain

(50) a+ 2d = 0 , 2(γ2 + γ1 + h+ 1)− dγ1 = 0 .

Now, using (13) and (49), we get

4〈w, x3(x− 1)(x2 + h)〉 − a〈w, x5(x− 1)〉 − d〈w2, x4(x− 1)2〉 = 0 .

Hence, from the above equation and taking into account (50) and Lemma 3, we obtain
γ2γ3 = 0. It is a contradiction by virtue of the regularity of w.

(iii) If (Φ(1), B(1)) = (0, 0) and (Ψ(1), B
′
(1)) 6= (0, 0), then Φe = 0, Ψo(x) = Φo1(x)

and Bo1 = 0. So Φ(x) = x(x2 − 1), Ψ(x) = ax2 + x+ c and B(x) = (x− 1)(dx2 + f).
If (a+ 2d, d+f) = (0, 0), then a+ c+ 1 = 0 and d = −f since 〈w,Ψ〉+ 〈w2, θ0B〉 = 0.
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Thus Ψ(x) = (x − 1)(ax + a + 1) and B(x) = d(x + 1)(x − 1)2 which contradiction
(Ψ(1), B

′
(1)) 6= (0, 0). Necessarily (a+ 2d, d+ f) 6= (0, 0). Moreover the form w is of

class one, we shall have the condition (14) with ZΦ = {−1, 0, 1}, which leads to relation
(31). �

Remark 2. If d = f = 0, then we obtain the result given in [6], [11], [17]. Indeed the
form w = κ is semiclassical and satisfies the functional equation

(51)
(
x(x2 − 1)κ

)′
+ (ax2 + x+ c)κ = 0 ,

with

(52) a(a+ c+ 1) 6= 0 , |a+ 2|+ |c− 1| 6= 0 , |a+ c+ 3|+ |a+ 2| 6= 0 .

3.3. The Computation of γn+1. We will study the form w given in Theorem 2. The form
w fulfills the following equation

(53)
(
x(x2 − 1)w

)′
+ (ax2 + x+ c)w + (x− 1)(dx2 + f)(x−1w2) = 0 .

On the other hand, while applying the operator σ in (53) and using relations (6) and (10),
the form u = σ(w) is Laguerre-Hahn satisfying

(54)
(
x(x− 1)u

)′
+

1

2
(ax+ c+ 1)u+

1

2
(x− 1)(dx+ f)(x−1u2) = 0 .

Multiplying (54) by (x− 1)2, then the form v = γ−1
1 (x− 1)u fulfills

(55)(
x(x−12)v

)′
+

1

2
(x−1)

(
(2d+a−4)x+2f+c+1

)
v+

γ1

2
(x−1)(dx+f)(x−1v2) = 0 ,

according to (2), (3) and (5).
Two cases arise:
(1) If a+ d+ 2 6= 0, then we distinguish two subcases.

(i) Taking
(56)

a = 2(1− 2
ρ )(α+ β + 2τ)− 4

ρ ,

c = ( 4
ρ − 1)(α+ β + 2τ + 1) + α2−β2−4(τ+1)(τ+β+1)

α+β+2τ+2 ) ,

d = 2( 1
ρ − 1)(α+ β + 2τ + 1) ,

f = (1− 2
ρ )(α+ β + 2τ + 1)− 2ρ (τ+1)(τ+β+1)

α+β+2τ+1 + 4(τ+1)(τ+β+1)+β2−α2

α+β+2τ+2 + 1 .

Moreover, the form v is of class one fulfilling (55), (56) and

(57) u = h− 1
2
oτ−1J1(α, β, ρ, τ, ν1) ,

with

ν1 =
1

(α+ β + 2τ + 2)

(
2ρ

(τ + 1)(τ + β + 1)

α+ β + 2τ + 1
− α2 − β2

α+ β + 2τ

)
− 1 ,

where J1(α, β, ρ, τ, ν) is the non-singular Laguerre-Hahn form of class zero analogous to
the classical Jacobi, this last form satisfies [4](

φ1J1(α, β, ρ, τ, ν)
)′

+ ψ1J1(α, β, ρ, τ, ν) + ϕ1

(
x−1J2

1(α, β, ρ, τ, ν)
)

= 0 ,
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when

φ1(x) = x2 − 1 ,

ψ1(x) =
(
(1− 2

ρ )(α+ β + 2τ)− 2
ρ

)
x+ 2

ρ (α+ β + 2τ + 1)ς − α2−β2

α+β+2τ+2 ,

ϕ1(x) = ( 1
ρ − 1)(α+ β + 2τ + 1)x2 +

{(
(α+ β + 2τ)(1− 2

ρ )− 2( 1
ρ − 1)

)
ς

+ α2−β2

α+β+2τ+2

}
x+ α+β+2τ+1

ρ ς2 − α2−β2

α+β+2τ+2 ς + (α+ β + 2τ + 3)$ − 1 ,

with

ς =
α2 − β2

(α+ β + 2τ)(α+ β + 2τ + 2)
+ ν ,

$ =
4ρ(τ + 1)(τ + α+ 1)(τ + β + 1)(τ + α+ β + 1)

(2τ + α+ β + 1)(2τ + α+ β + 2)2(2τ + α+ β + 3)
.

J1(α, β, ρ, τ, ν) is regular if and only if ρ 6= 0, τ 6= −(n + 1), τ + α 6= −(n + 1),
τ + β 6= −(n + 1), τ + α + β 6= −(n + 1), n ≥ 0. Moreover, the coefficients of its
corresponding MOPS {Z(α,β,ρ,τ,ν)

n }n≥0 are given by (for n ≥ 0)
(58) β

(α,β,ρ,τ,ν)
0 = ς , β

(α,β,ρ,τ,ν)
n+1 = α2−β2

(2n+2τ+α+β+2)(2n+2τ+α+β+4) ,

γ
(α,β,ρ,τ,ν)
1 = $ , γ

(α,β,ρ,τ,ν)
n+2 = 4(n+τ+2)(n+τ+α+2)(n+τ+β+2)(n+τ+α+β+2)

(2n+2τ+α+β+3)(2n+2τ+α+β+4)2(2n+2τ+α+β+5) .

Proposition 5. Let w be a form of class one satisfying (53)-(56). The form w is regular for
ρ 6= 0, τ 6= −(n+1), τ+α 6= −(n+1), τ+β 6= −(n+1), τ+α+β 6= −(n+1), n ≥ 0.
The recurrence coefficient coefficients of its MOPS {Wn}n≥0 are given by (for n ≥ 1)

(59)
γ1 = −ρ (τ+β+1)(τ+1)

(α+β+2τ+1)(α+β+2τ+2) ,

γn+1 = − 1
4

(
(n+2τ+2+(α− 1

2 )(1−(−1)n)
)(

(n+2τ+2β+2+(α− 1
2 )(1−(−1)n)

)
(n+2τ+α+β+1)(n+2τ+α+β+2) .

Proof. Taking into account (9), we obtain

γ2n+3

γ2n+1
=
γRn+1

γPn+1

, n ≥ 0 .

Hence, from the following relation: [8]

γRn+1 =
Pn+2(1)Pn(1)

P 2
n+1(1)

γPn+1 ,

it is to see that
γ2n+3

γ2n+1
=
Pn+2(1)Pn(1)

P 2
n+1(1)

, n ≥ 0 .

Then, we obtain by induction

(60) γ2n+1 = −Pn+1(1)

Pn(1)
, n ≥ 0 .

Therefore, from (9) we can deduce

(61) γ2n+2 = −γPn+1

Pn(1)

Pn+1(1)
, n ≥ 0 .

On the other hand, from (57) we have

(62) Pn+1(1) = (−2)−n−1Z
(α,β,ρ,τ,ν1)
n+1 (−1) , n ≥ 0 .
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Thus, from (7) and (58), we obtain for n ≥ 0

(63) Pn+1(1) = ρ
Γ(2τ + α+ β + 1)Γ(n+ τ + 2)Γ(n+ τ + β + 2)

Γ(τ + 1)Γ(τ + β + 1)Γ(2n+ 2τ + α+ β + 3)
.

By virtue of (60), (61), (63) and from a simple calculation we can deduce (59). �

(ii) Putting

(64)



a = 2(1− 2
ρ )(α+ β + 2τ)− 4

ρ ,

c = ( 4
ρ − 1)(α+ β + 2τ + 1) + α2−β2−4(τ+α+1)(τ+α+β+1)

α+β+2τ+2 ) ,

d = 2( 1
ρ − 1)(α+ β + 2τ + 1) ,

f = (1− 2
ρ )(α+ β + 2τ + 1)− 2ρ (τ+α+1)(τ+α+β+1)

α+β+2τ+1

+ 4(τ+α+1)(τ+α+β+1)+β2−α2

α+β+2τ+2 + 1 .

Moreover, the form v is of class one fulfilling (55)-(64) and

(65) u = h− 1
2
oτ−1J1(α, β, ρ, τ, ν2) ,

with

ν2 =
1

α+ β + 2τ + 2

(
2ρ

(τ + α+ 1)(τ + α+ β + 1)

α+ β + 2τ + 1
− α2 − β2

α+ β + 2τ

)
− 1 .

By applying the same process as we did to obtain (63) and using (65), we get after some
straightforward calculation

Pn+1(1) = ρΓ(2τ+α+β+1)Γ(n+τ++α+2)Γ(n+τ+α+β+2)
Γ(τ+α+1)Γ(τ+α+β+1)Γ(2n+2τ+α+β+3) , n ≥ 0 .

Hence, by virtue of the previous equation, (60) and (61) we get

(66)
γ1 = −ρ (τ+α+β+1)(τ+α+1)

(α+β+2τ+1)(α+β+2τ+2) ,

γn+1 = − 1
4

(
(n+2τ+1+(α+ 1

2 )(1+(−1)n)
)(

(n+2τ+2β+1+(α+ 1
2 )(1+(−1)n)

)
(n+2τ+α+β+1)(n+2τ+α+β+2) .

consequently, The form w is regular for ρ 6= 0, τ 6= −(n + 1), τ + α 6= −(n + 1),
τ + β 6= −(n+ 1), τ + α+ β 6= −(n+ 1), n ≥ 0.

Remark 3. If we take τ = 0 and ρ = 1 in (59) and (66), we obtain w = κ where κ is the
form satisfying (51)-(52).

(2) If a+ d+ 2 = 0, choosing

(67) a = 2(α− 2) , c = −α− µ+ 1 , d = 2(1− α) , f = 2µ
α− 1

α− 2
− αν .

Moreover, v is of class one fulfilling (55)-(67) and

(68) u = h− 1
2
oτ−1J2(α, ρ1, ν, µ) ,

with

ρ1 =
(µ− α)(µ+ 2ν + 2− α− αν)

(α+ 1)(α− 2)
,

where is the singular Laguerre-Hahn form of class zero analogous to the classical Jacobi,
this last form satisfies [4](

φ2J2(α, ρ, ν, µ)
)′

+ ψ2J2(α, ρ, ν, µ) + ϕ2

(
x−1J2

2(α, ρ, ν, µ)
)

= 0 ,
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when

φ2(x) = x2 − 1 ,

ψ2(x) = (α− 2)x+ µ ,

ϕ2(x) = (1− α)x2 +
(
αν − 2µα−1

α−2

)
x− µ2

α−2 + µν + ρ(α+ 1)− 1 .

J2(α, ρ, ν, µ) is regular if and only if ρ 6= 0, α 6= 2, α 6= −n, α 6= ±µ − 2n, n ≥ 1.
Moreover, the coefficients of its corresponding MOPS {Q(α,ρ,ν,µ)

n }n≥0 are given by (for
n ≥ 0)

(69)

 β
(α,ρ,ν,µ)
0 = µ

2−α + ν , β
(α,ρ,ν,µ)
n+1 = − αµ

(2n+α)(2n+α+2) ,

γ
(α,ρ,ν,µ)
1 = ρ , γ

(α,ρ,ν,µ)
n+2 = (n+1)(n+α+1)(2n+α−µ+2)(2n+α+µ+2)

(2n+α+1)(2n+α+2)2(2n+α+3) .

Proposition 6. Let w be a the form of class one satisfying (53)-(67). The form w is regular
for (α − 2)(ν − 1) + µ 6= 0, α 6= 2, α 6= −n, α 6= ±µ − 2n, n ≥ −1. The recurrence
coefficients of its MOPS {Wn}n≥0 are given by

(70)
γ1 = −µ+2+2ν−α−αν

2(2−α) , ,

γn+1 = − 1
4

(
n+(α− 1

2 )(1−(−1)n)
)(
n+α+µ+(1+2µ)(

(−1)n−1
2 )

)
(n+α)(n+α−1) , n ≥ 0 .

Proof. From (68), we have

Pn+1(1) = (−2)−n−1Q
(α,ρ1,ν,µ)
n+1 (−1) , n ≥ 0 .

Hence, by virtue (7), (68) and (69), we get for n ≥ 0

Pn+1(1) =
(µ+ 2 + 2ν − α− αν)Γ(α+ 1)Γ(n+ 1)Γ(n+ 1 + α+ν

2 )

2(2− α)Γ(1 + α+ν
2 ))Γ(2n+ α+ 1)

.

Hence, by virtue of the last equation, (60) and (61) we can deduce (70). �
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