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ABSTRACT. Let φ be an analytic self-map of the open unit disk D in the complex plane.
Such a map induces through composition the linear composition operator Cφ : H(D) →
H(D). The eigenvalues and the spectrum of such an operator acting on different spaces
of analytic functions have been investigated in several articles, see e.g. [1], [8], [16], [28]
and [29]. In this article we continue this line of research by combining the composition
operator with the differentiation D : H(D) → H(D), f → f ′. Then we obtain two
linear operators DCφ : H(D) → H(D), f 7→ φ′(f ′ ◦ φ) and CφD : H(D) →
H(D), f 7→ f ′ ◦ φ. Now, we calculate the eigenvalues of the operators DCφ and CφD.

1. INTRODUCTION

Let H(D) denote the class of all analytic functions on the unit disk D of the complex
plane C. In this article we consider an analytic self-map φ of D. First, we consider the
differentiation operator D given by

D : H(D)→ H(D), f 7→ f ′.

Then we combine this with the composition operator

Cφ : H(D)→ H(D), f 7→ f ◦ φ
to obtain the differentiation followed by composition

CφD : H(D)→ H(D), f 7→ f ′ ◦ φ
and the composition followed by differentiation

DCφ : H(D)→ H(D), f 7→ φ′(f ′ ◦ φ).

Obviously, the operators CφD : H(D) → H(D), f 7→ f ′ ◦ φ and DCφ : H(D) →
H(D), f 7→ φ′(f ′ ◦φ) are well-defined and bounded. The study of composition operators
has quite a long and rich history. Among other reasons this comes from the fact that com-
position operators link operator theory with complex analysis. A very good introduction
to the theory of composition operators is given in the excellent monographs by Shapiro
[26] and Cowen and MacCluer [14]. Composition operators have been studied by many
authors on various spaces of holomorphic functions, see e.g. [5], [6], [7], [9], [10], [11],
[15], [17], [19], [22], [23], [24] and the references therein. Since the literature is growing
steadily this can only be a sample of articles. The spectrum of the composition operator
Cφ acting on various spaces has been determined by several authors, see e.g. the articles
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[1], [8], [16], [28] and [29]. In this article we continue this line of research by calculating
the eigenvalues of the operators CφD and DCφ. To do this we consider analytic self-maps
of D that are not conformal automorphisms and have a fixed point a ∈ D. For the study of
both operators we need to consider the following two cases:

(a) a is an attracting fixed point of φ: In this case it turns out that both operators do
not have any eigenvalues.

(b) a is a super-attracting fixed point of φ: Here both operators also show the same
behavior, i.e. in case that φ(z) = z2 both operators have the eigenvalue 2 and in
all the other cases both operators have no eigenvalues.

2. RESULTS

We start this section with the introduction of the setting we are working in. In this article
we are mainly interested in analytic self-maps of D that are not conformal automorphisms
of D and have a fixed point a ∈ D. We distinguish the following cases:

(1) a is an attracting fixed point of φ, i.e. φ′(a) 6= 0. Model maps are functions
f(z) = λz for z ∈ D with |λ| < 1.
One can change variables analytically in a neighborhood of a and conjugate φ to
the map f(z) = λz for λ = φ′(a), for details see e.g. [25]. Originally, this was
shown by Koenigs in [18]

(2) a is a super-attracting fixed point of φ, i.e. φ′(a) = 0. In this case model maps
are given by φ(z) = zn, n ≥ 2. Again we can change variables analytically in a
neighborhood of a and conjugate φ to the map φ(z) = zn for some n ≥ 2. The
proof of this fact goes back to Böttcher [4].

2.1. Differentiation followed by composition. We start with investigating the behavior
of the operator

CφD : H(D)→ H(D).

Then, we have the following:

Theorem 1. Suppose that φ is a holomorphic self-map of D with fixed point 0. Moreover,
we assume that CφDf = λf holds for some λ ∈ C and a function f of the type

f(z) =

∞∑
l=n

alz
l ∈ H(D),

for some n ≥ 2. Then, λ = (n− 1)φ′(0)n−2φ′′(0).

Proof. Obviously, the assumption yields

f ′(φ(z)) = λf(z), for every z ∈ D and some λ ∈ C.
Since f(z) =

∑∞
l=n alz

l and therefore f ′(z) =
∑∞
l=n+1 lalz

l−1 we arrive at the following
equation

λ =
f ′(φ(z))

f(z)
=
φ(z)n−1

zn
· nan + an+1φ(z) + . . .

an + an+1z + . . .

=

(
φ(z)

z

)n−1
1

z
· nan + an+1φ(z) + . . .

an + an+1z + . . . .

Now, letting z → 0 and applying the rule of L’Hôpital we have

λ = (n− 1)φ′(0)n−2φ′′(0),

as desired. �
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Next, we study the situation in case that f is either a constant function or a function of
the form f(z) = cz + d for every z ∈ D and some constants c, d ∈ C.

Remark 1. (a) We assume that f(z) = c for every z ∈ D, c 6= 0, and that the
equation CφDf(z) = λf(z) holds for every z ∈ D and some λ ∈ C. Obviously
this yields 0 = λc. Since c 6= 0 this means that λ must be equal to zero.

(b) Now, we suppose that f is a holomorphic function of the form f(z) = cz + d for
every z ∈ D and some c, d ∈ C. Moreover let CφDf(z) = λf(z) for every z ∈ D
and some λ ∈ C. Then f ′(φ(z)) = λf(z) for every z ∈ D is equivalent with
c = λcz + λd. Hence λ must be equal to zero.

Corollary 1. Operators CφD : H(D) → H(D) induced by a rotation φ, i.e. by a map φ
of the form φ(z) = eiΘπz, z ∈ D, where Θ ∈ [0, 2) is fixed, do not have any eigenvalues.

In the following we will determine the eigenvalues of the operator CφD : H(D) →
H(D) induced by a symbol of the form φ(z) = νz for every z ∈ D, where ν ∈ C, |ν| < 1,
or a symbol of the form φ(z) = zn for every z ∈ D and some n ≥ 2. We start with the
first case.

Corollary 2. Let φ be of the form φ(z) = νz for some ν ∈ C with |ν| < 1. Then the
induced operator CφD : H(D)→ H(D) has no eigenvalues.

We can prove this corollary in another way by using a power series argument, which we
will do below.

Theorem 2. Let φ be of the form φ(z) = νz, for every z ∈ D, and some ν ∈ C with
|ν| < 1. Then the operator

CφD : H(D)→ H(D)

has no eigenvalues.

Proof. We show this by contradiction and assume that we can find an eigenvalue µ ∈ C,
µ 6= 0. Then there exists an eigenfunction f given by

f(z) =

∞∑
n=0

anz
n for every z ∈ D,

where an ∈ C, n ∈ N0, are suitable coefficients. Now, we obtain the following derivative

f ′(z) =
∞∑
n=1

nanz
n−1,

and

[CφD](f(z)) =

∞∑
n=1

nanν
n−1zn−1.

Hence, [CφD](f(z)) = µf(z) for every z ∈ D holds if and only if
∞∑
n=1

annν
n−1zn−1 =

∞∑
n=0

µanz
n.

Now, we compare the coefficients. If a0 = 0, then we obtain successively, that an = 0 for
every n ∈ N. In this case we are done. Thus, without loss of generality, we may assume
that a0 6= 0. Next, we have that

a1 = µa0 which is equivalent with µ =
a1

a0
.

Albanian J. Math. 10 (2016), no. 1, 11-19.

https://sites.google.com/site/albjmath/archives/vol-10


EIGENVALUES OF COMPOSITION COMBINED WITH DIFFERENTIATION 14

Moreover, we obtain 2a2ν = µa1 = µ2a0 and hence

a2 =
µa1

2ν
=
µ2a0

2ν
.

For every n ≥ 3 we have the following formula

(2.1) an =
µna0

n!νn(n−2)−
∑n−2

k=2 (n−k)
.

We show this inductively. For n = 3 a comparison of coefficients yields

3a3ν
2 = µa2 =

µ2a1

2ν
⇐⇒ a3 =

µ2a1

6ν3
=
µ3a0

6ν3
.

Next, we assume that (2.1) is satisfied for some n ∈ N. Again, by comparison of coeffi-
cients we get

(n+ 1)an+1ν
n = µan =

µn+1a0

n!νn(n−2)−
∑n−2

k=2 (n−k)

is equivalent to

an+1 =
µn+1a0

(n+ 1)!ν(n−2)n−
∑n−2

k=2 (n−k)+n
.

Easy calculations show

n(n− 2)−
n−2∑
k=2

(n− k) + n = (n− 1)(n+ 1)−
n−1∑
k=2

(n+ 1− k)

is equivalent to −n+ 1 = −n+ 1. Hence, the claim follows.
Next, we compute the radius of convergence of the power series generated by the coef-

ficients we got above and arrive at

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣ µ

(n+ 1)νn

∣∣∣∣ =∞,

since |ν| < 1. Hence the radius is 0 and f is not a holomorphic function in D which is a
contradiction. Finally, the claim follows. �

Next, we turn our attention to symbols of the form φ(z) = zn, for every z ∈ D and
some n ≥ 2. First, again we obtain a corollary of Theorem 1 and Remark 1.

Corollary 3. Let φ be of the form φ(z) = zn for every z ∈ D and some n ≥ 2. If n = 2,
only λ = 2 may be an eigenvalue of the operator CφD : H(D) → H(D). In n ≥ 3 the
operator CφD : H(D)→ H(D) does not have any eigenvalues.

Using the same methods as in Theorem 2 we arrive at:

Theorem 3. Let φ be of the form φ(z) = zn for every z ∈ D with n ≥ 2. Then, in case
of n = 2, CφD : H(D) → H(D) has the unique eigenvalue µ = 2, while for n ≥ 3 the
operator has no eigenvalues.

Proof. First, we treat the case n = 2. Obviously, with the function f(z) = z2, we get

[CφD](f(z)) = 2z2 = 2f(z) for every z ∈ D.
To show that µ is unique, we assume that there is another eigenvalue ν. In that case there
must be an eigenfunction f ∈ H(D) which can be written as

f(z) =

∞∑
k=0

akz
n with some coefficients ak ∈ C.
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Hence

f ′(z) =

∞∑
n=1

akz
k−1 and f ′(φ(z)) = f ′(z2) =

∞∑
k=1

akkz
2k−2.

Then [CφD](f(z)) = νf(z) holds for every z ∈ D if and only if
∞∑
k=1

akkz
2k−2 = ν

∞∑
k=0

akz
k

which is equivalent to

a1 + 2a2z
2 + 3a3z

4 + 4a4z
6 + · · · = νa0 + νa1z + νa2z

2 + . . .

Then a comparison of coefficients yields a1 = νa0, a1 = 0 and hence a0 = 0, 2a2 = νa2

and ak = 0 for every k ≥ 3. Thus, a2 either is 0 but then f ≡ 0 on D which is a
contradiction or ν = 2. Hence the claim follows. Next, we consider the case n ≥ 3. Again
we show this indirectly and assume that there is an eigenvalue µ ∈ C, µ 6= 0. Then, since,
the eigenfunction f must be an element of H(D) we get that

[CφD](f(z)) = µf(z) for every z ∈ D

is equivalent to
∞∑
k=1

akkz
nk−n =

∞∑
k=0

µakz
k for every z ∈ D.

But this is equivalent to

a1 + 2a2z
n + 3a3z

2n + 4a4z
3n + · · · = µa0 + µa1z + µa2z

2 + . . .

Hence a comparison of coefficients yields that ak = 0 for every k ∈ N0. Thus, the claim
follows. �

2.2. Composition followed by differentiation. In this section we study composition fol-
lowed by differentiation DCφ : H(D)→ H(D). We use the same methods and ideas as in
the previous section but for the reader’s benefit we give the full proofs.

Theorem 4. Suppose that φ is a holomorphic self-map of D with fixed point 0. Moreover,
we assume that DCφf = λf holds for some λ ∈ C and a function f of the type

f(z) =

∞∑
l=n

alz
l ∈ H(D),

with n ≥ 2. Then, λ = nφ′(0)n−1φ′′(0).

Proof. By assumption we have that f ′(φ(z))φ′(z) = λf(z) for every z ∈ D and some λ ∈
C. Since f(z) =

∑∞
l=n alz

l and therefore f ′(z) =
∑∞
l=n lalz

l−1 we arrive at the follow-
ing equation

λ =
f ′(φ(z))φ′(z)

f(z)
= φ′(z)

φ(z)n−1

zn
nan + an+1φ(z) + ...

an + an+1z + ...
=

= φ′(z)

(
φ(z)

z

)n−1
1

z

nan + an+1φ(z) + ...

an + an+1z + ...

Now, letting z → 0 we get
λ = nφ′(0)n−1φ′′(0),

as desired. �
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It remains to study the case when f is either a constant function or a function of the
form f(z) = cz + d with c, d ∈ C.

Remark 2. (1) We assume that f(z) = c for every z ∈ D, c 6= 0 and that the equation
DCφf(z) = λf(z) holds for every z ∈ D and some λ ∈ C. Then, obviously,
φ′(z)f ′(φ(z)) = λf(z) for every z ∈ D is equivalent with 0 = λc. Since c 6= 0, λ
must be equal to zero.

(2) Next, we suppose that the equation DCφf(z) = λf(z) holds for every z ∈ D,
some λ ∈ C and a function f(z) = cz + d for every z ∈ D, c, d ∈ C. Then
φ′(z)f ′(φ(z)) = λf(z) holds if and only if φ′(z)c = λ(cz + d) = λcz + λd. But
this is satisfied if and only if φ′(z) = λz + λ

c d for some λ ∈ C. Hence, this is
always fulfilled if φ is given by φ(z) = λz2 + λ

c dz+ k with some constant k ∈ C.

Corollary 4. Operators DCφ : H(D) → H(D) induced by a rotation φ do not have any
eigenvalues.

In the following we will determine the eigenvalues of the operator DCφ : H(D) →
H(D) induced by a symbol of the form φ(z) = νz for every z ∈ D, where ν ∈ C, |ν| < 1,
or a symbol of the form φ(z) = zn for every z ∈ D and some n ≥ 2. We start with the
first case.

Corollary 5. Let φ be of the form φ(z) = νz for some ν ∈ C with |ν| < 1. Then the
induced operator DCφ : H(D)→ H(D) has no eigenvalues.

We can prove this corollary in another way by using a power series argument, which we
will do below.

Theorem 5. Let φ be a holomorphic self-map of D that has an attracting fixed point a ∈ D,
i.e. we assume φ to be of the form φ(z) = νz for some ν ∈ C with |ν| < 1 and every z ∈ D.
Then the operator DCφ : H(D)→ H(D) has no eigenvalues.

Proof. We show this indirectly and assume to the contrary that we can find an eigenvalue
µ ∈ C, µ 6= 0. Then the eigenfunction can be written in the following way

f(z) =

∞∑
n=0

anz
n with suitable coefficients an ∈ C, n ∈ N0.

Now, the derivative is given by

f ′(z) =

∞∑
n=1

nanz
n−1, and

[DCφ](f(z)) =

∞∑
n=1

nanν
nzn−1 = φ′(z)f ′(φ(z)) = ν

∞∑
n=1

nanν
n−1zn−1.

This yields that the equation [DCφ](f(z)) = µf(z) holds for every z ∈ D if and only if
∞∑
n=1

nanν
nzn−1 =

∞∑
n=0

µanz
n.

If a0 = 0, we obtain successively that an = 0 for every n ∈ N. In this case we are done.
Thus, w.l.o.g. we may assume that a0 6= 0. Next, we have that

a1ν = µa0 ⇐⇒ a1 =
µ

ν
a0.
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Furthermore another comparison of coefficients yields

2a2ν
2 = µa1 =

µ

ν
a0 ⇐⇒ a2 =

µ2

2ν3
a0.

For every n ≥ 3 the following formula holds

(2.2) an =
µna0

n!ν(n+1)(n−1)−
∑n−1

k=2 (n+1−k)
.

We prove this formula by induction. In case n = 3 the comparison of coefficients yields

3a3ν
3 = µa2 =

µ3

2ν3
a0 ⇐⇒ a3 =

µ3

6ν6
a0.

Now, we assume that (2.2) holds for some n ∈ N, n ≥ 3. We obtain

(n+ 1)an+1ν
n+1 = µan =

µn+1

n!ν(n+1)(n−1)−
∑n−1

k=2 (n+1−k)
a0,

which means that

an+1 =
µn+1

(n+ 1)!ν(n+1)(n−1)−
∑n−1

k=2 (n+1−k)+n+1
.

Now, easy calculations show

(n+ 1)(n− 1)−
n−1∑
k=2

(n+ 1− k) + n+ 1 = (n+ 2)n−
n∑
k=2

(n+ 2− k)

⇐⇒ −n = −n
and the claim follows. �

Next, we turn our attention to symbols of the form φ(z) = zn for every z ∈ D and some
n ≥ 2. First, again we obtain a corollary of Theorem 4 and Remark 2.

Corollary 6. Let φ be of the form φ(z) = zn for every z ∈ D and some n ≥ 2. If n = 2,
only λ = 2 may be an eigenvalue of the operator CφD : H(D) → H(D). In n ≥ 3 the
operator CφD : H(D)→ H(D) does not have any eigenvalues.

Again, we can prove this using another method involving power series.

Theorem 6. Let φ be an analytic self-map of D that is not a conformal automorphism and
has a super-attracting fixed point a ∈ D, i.e. we assume φ to be of type φ(z) = zn, n ≥ 2.
Then, in case n = 2, DCφ : H(D) → H(D) has the unique eigenvalue µ = 2, while for
n ≥ 3, the operator has no eigenvalues.

Proof. First, we treat the case n = 2. Obviously, with the function f(z) = z we have that

[DCφ](f(z)) = 2z = 2f(z) for every z ∈ D :

Hence µ = 2 is an eigenvalue. To show that it is the only one, we assume to the con-
trary that there is another eigenvalue ν. In this case we can find an eigenfunction f(z) =∑∞
k=0 akz

k for every z ∈ D. Then the derivative can be written as

f ′(z) =

∞∑
k=1

kakz
k−1.

This yields

f ′(z2) = f ′(φ(z)) =

∞∑
k=1

akkz
2k−2

Albanian J. Math. 10 (2016), no. 1, 11-19.
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and thus we obtain

φ′(z)f ′(φ(z)) = 2zf ′(z2) = 2

∞∑
k=1

akkz
2k−1.

Then [DCφ](f(z)) = νf(z) holds for every z ∈ D if and only if

2

∞∑
k=1

akkz
2k−1 = ν

∞∑
k=0

akz
k.

Hence a comparison of coefficients yields that either ν = 0 or ν = 2 and we are done.
Next, we consider the case n ≥ 3. Again, we show this indirectly and assume that there
is an eigenvalue µ ∈ C, µ 6= 0. Then, since the eigenfunction f must be an element of
H(D), [DCφ](f(z)) = µf(z) holds for every z ∈ D if and only if

∞∑
k=1

akknz
nk−1 = µ

∞∑
k=0

akz
k

A comparison of coefficients yields that ak = 0 for every k ∈ N0. Finally, the claim
follows. �
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