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Abstract. In virtue of the Belyi Theorem a complex algebraic curve can be
defined over the algebraic numbers if and only if the corresponding Riemann
surface can be uniformized by a subgroup of a Fuchsian triangle group. Such
surfaces are known as Belyi surfaces. Here we study certain natural actions
of the alternating groups An on them. We show that they are symmetric
and calculate the number of connected components, called ovals, of the cor-
responding real forms. We show that all symmetries with ovals are conjugate
and we calculate the number of purely imaginary real forms both in case of
An considered here and Sn considered in an earlier paper [2].
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1. Introduction

There is a functorial equivalence between smooth irreducible projective complex
algebraic curves and compact Riemann surfaces and in virtue of the Belyi Theorem
[1] an algebraic curve can be defined over the algebraic numbers if and only if the
corresponding Riemann surface can be uniformized by a subgroup of a Fuchsian
triangle group. Such surfaces are known as Belyi surfaces and, by results of Köck,
Lau and Singerman [7] and [8] they are symmetric if and only if the above algebraic
numbers can be simultaneously chosen belonging to R. An important class of
Belyi surfaces is formed by the Riemann surfaces with so called large groups of
automorphisms. More precisely, such a surface of genus g has as least 12(g − 1)
automorphisms. Necessary and sufficient algebraic conditions for these surfaces to
be symmetric were found by Singerman in [10].

In [4], the third author has developed an algebraic method to calculate the
number of connected components of the real forms corresponding to the symmetries
given by the above theorem of Singerman. It is also worth to mention here the paper
[6] which was the first tool to calculate the number of these components and its
recent improvement [11] by Singerman and Watson. In [2], the method from [4] was
successfully applied to study the topological type of real forms of certain symmetric
Riemann surfaces determined by certain canonical actions of the symmetric groups
Sn on them which correspond to certain generating pairs for Sn as described in the
next section.

Here, we study the alternating groups actions within the described framework.
Namely, we take certain canonical pairs of generators for the alternating groups
An and we consider the corresponding actions of An on a Belyi Riemann surface.
We show that such surfaces are symmetric and then we calculate the number of
connected components of the corresponding real forms. We deduce that all symme-
tries with ovals are conjugate. The importance of An in this context follows from
the Cayley embedding theorem which implies that an arbitrary finite group acts
as a group (usually not the full group) of birational automorphisms on some alge-
braic curve defined over algebraic reals. Another important feature of the surfaces
with the actions considered here is that they are particular examples of, so called,
quasi-platonic surfaces which form the principal subject of research concerning the
classical Grothendieck dessins d’enfants theory and inverse Galois problem [3].

The last section is devoted to purely imaginary real algebraic curves which are
the curves which can be defined over the real but which have no R-rational points.
We show there that their number for a symmetric quasi-platonic Riemann surface
X with the action of G = Aut(X) corresponding to a pair of generating cycles α, β
for which the application α 7→ α−1, β 7→ β−1 extends to an automorphism of G
does not depend on this pair if G = Sn, while for G = An it depends on it exactly
up to such extent up to which it forces Aut±(X) to be Sn or An × Z2 which turn
out to be the only cases that can happen for the actions considered in this paper.

2. Preliminaries and known results

We shall use the combinatorial method based on the Riemann uniformization
theorem and on the algebraic theory of Fuchsian groups. Following them, a compact
Riemann surface X of genus g ≥ 2 can be represented as the orbit space H/Γ
of the hyperbolic plane H, with respect to the action of some Fuchsian surface
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group Γ being a discrete and cocompact subgroup of the group of isometries of H,
isomorphic to the fundamental group of the surface. Furthermore, the group of
conformal automorphisms of the surface given in such a way can be represented
as the factor group G = ∆/Γ for some other Fuchsian group ∆. Thus we can
write the faithful action of a finite group G as a group of automorphisms of a
Riemann surface X of genus g ≥ 2 by a smooth epimorphism θ : ∆ → G, which
means that its kernel Γ is torsion free or, equivalently, it preserves the orders of
the canonical elliptic generators of ∆. However since we shall deal with surfaces
with large groups of automorphisms such a group can be assumed to be a triangle
group ∆ with signature (0; k, l,m) which means that its algebraic presentation
is 〈x1, x2 |xk1 , xl2, (x1x2)m〉. Such a Fuchsian group is known to be unique up to
conjugacy in the group of all isometries of H and so the corresponding surface is
determined, up to conformal isomorphism, by a pair of generators a, b of orders
k and l whose product is an element of order m. We shall refer to such surface
and action as to the ones corresponding to a generating pair a, b of G. With these
notations we have the following, mentioned above, result of Singerman from [10].

Theorem 2.1. A Riemann surface X with the full large group of automorphisms
G, corresponding to a generating pair (a, b), is symmetric if and only if there is an
automorphism ϕ of G for which ϕ(a) = a−1, ϕ(b) = b−1 or ϕ(a) = b−1, ϕ(b) = a−1.

The set of fixed points of a symmetry of a Riemann surface of genus g ≥ 2 is
homeomorphic to the set of R-rational points of a real form of the complex algebraic
curve corresponding to this surface and its symmetry. In turn, the latter consists
of k disjoint Jordan curves called ovals for some k ranging between 0 and g + 1 in
virtue of the classical Harnack theorem [5] with some restrictions depending on the
separability of the symmetry given by Weichold in his thesis [12].

Now given an automorphism ϕ of G, two elements x, y ∈ G are said to be ϕ-
conjugate (x ∼ϕ y) if x = wyϕ(w)−1 for some w ∈ G. Observe that for ϕ = 1 this
coincides with the ordinary notion of conjugacy ∼. Recall also that the isotropy
group of ϕ is the subgroup Gϕ of G, consisting of all elements fixed by ϕ. With
these notations we have the following result from [4] which describes the number
of ovals of the conjugacy classes of symmetries from Theorem 2.1.

Theorem 2.2. Let a and b be a generating pair of elements of a finite group G
of orders k = 2k′ + 1 and l = 2l′ + 1 respectively so that ab has order m. Then
the corresponding Riemann surface X has at most two types of symmetries: one
with and one without ovals. Symmetries with ovals always exist, all of them are
conjugate in G and they have N/M ovals, where N is the order of the isotropy
group of ϕ in G and

(1) M/2 is the order of (ab)m′a−k′b−l′(ab)m′bl′ak′ if m = 2m′,
(2) M is the order of (ab)−m′bl′ak′ if m = 2m′ + 1.

A symmetry without ovals exists if and only if ϕ(g) = g−1 for some g ∈ G which is
not ϕ-conjugate to the unit of G.

Proof. For x = ab, y = b−1, we have a generating pair for G of elements of orders
m, l whose product xy = a has order k. So if m = 2m′, by Theorem 4.1 in [4],
the only symmetry up to conjugacy with fixed points has N/M ovals, where N is
the order of the isotropy group of ϕ in G, where ϕ(x) = x−1, ϕ(y) = y−1 and M/2
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is the order of xm′(xy)−k′yl′xm′y−l′(xy)k′ = (ab)m′a−k′b−l′(ab)m′bl′ak′ . The case
(2) follows from [4] in a similar way and we omit it.

�

3. Generating pairs of An defining our actions

We are going to consider two generating pairs for the alternating group An. The
starting point, to consider them, goes back to Moore in 1897 who gave in [9] a
complete presentation of An by means of defining generators and relations. In this
paper we take

(1) α = (1, 2, 3) and β =
{

(1, 2, . . . , n) if n is odd,
(2, 3, . . . , n) if n is even.

Proposition 3.1. The actions of the group An on Belyi Riemann surfaces, corre-
sponding to the above generating pairs are symmetric.

Proof. It is easy to check that for

(2) γ =


(1, 3)(n, 4)(n− 1, 5)(n− 2, 6) . . .

(
n+ 5

2 ,
n+ 3

2

)
if n is odd

(2, 3)(n, 4)(n− 1, 5) . . .
(
n+ 6

2 ,
n+ 2

2

)
if n is even

we have γαγ−1 = α−1 and γβγ−1 = β−1 and therefore the map α 7→ α−1, β 7→ β−1

induces an automorphism ϕ of An. Hence the corresponding surfaces are symmetric
by Theorem 2.1.

�

4. The number of ovals

In this section we find the number of connected components, that is to say ovals,
of real forms corresponding to the symmetries of Riemann surfaces with the action
of An given by the generating pair (α, β) defined in (1). Since, by Proposition 3.1,
ϕ is the conjugation in G = An by γ ∈ Sn, we obtain

Lemma 4.1. For the isotropy group Gϕ of ϕ in An we have

|Gϕ| =
{

2(n−3)/2((n− 1)/2)! if n is odd
2(n−2)/2((n− 2)/2)! if n is even

Proof. Observe first that γ is a product of disjoint transpositions and so the isotropy
group of ϕ in An coincide with the centralizer of γ in An. Let

X =
{
{3, 4, . . . , (n+ 3)/2} if n is odd
{3, 4, . . . , (n+ 2)/2} if n is even

let Y = {1, . . . , n} −X, and let for 1 ≤ i ≤ n, f(i) denotes an element for which
(i, f(i)) is one of the transpositions composing γ. Then it is clear that ξ ∈ An

centralizes γ if and only if
ξ(i) = j ⇔ ξ(f(i)) = f(j)

for arbitrary i, j. Now each permutation ξ of X determines an element ξξ′ ∈ An

centralizing γ, where ξ′ is a permutation of Y defined by
ξ′(i) = j ⇔ ξ(f(i)) = f(j).
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Now it is clear that to get all elements centralizing γ for n odd we need to consider
the products of all of such ξξ′ with even length products of transpositions composing
γ given in (2). The case of even n is a bit different since appart of transpositions
composing γ we have also the transposition (1, (n+ 4)/2) which centralizes it.

�

Theorem 4.2. Let X be a symmetric Riemann surface corresponding to the gen-
erating pair (α, β) defined in (1). Then X has a symmetry without ovals and a
symmetry with 

2(n−5)/2 ((n− 1)/2)! if n ≡ 1 (mod 2)

2(n−2)/2 ((n− 2)/2)!
n− 2 if n ≡ 0 (mod 4)

2(n−4)/2 ((n− 2)/2)!
n− 2 if n ≡ 2 (mod 4)

ovals.

Proof. For odd n, the generators of An from (1) are of (3, n, n) type i.e. α, β, αβ
have orders 3, n, n respectively. Observe that αβ = (2, 1, 3, 4, . . . , n − 1, n). First
we show that the surface has a symmetry without ovals. Let δ = (1, 3)(4, n). Then
ϕ(δ) = δ = δ−1. then for arbitrary η ∈ An, we have ηϕ(η)−1 = ηγη−1γ−1 and so δ
is not ϕ-conjugate to the unit since it does not belong to the commutator of Sn.

Now, in terms of (2) in Theorem 2.2, k = 3, l = m = n, and so k′ = 1,
l′ = m′ = (n−1)/2 and so, all symmetries with ovals are conjugate and the number
of ovals is equal to N/M where N is given in the Lemma 4.1, whilst M is the order
of the element (ab)−(n−1)/2b(n−1)/2a which is equal to (2, 3)((n+ 3)/2, (n+ 5)/2).
So M = 2 and hence the result.

Let now n > 4 be even. The group An is generated by α = (1, 2, 3) and β =
(2, 3, . . . , n). We have αβ = (1, 2)(3, 4, . . . , n) and so these generators are of type
(3, n− 1, n− 2). Therefore (1) of Theorem 2.2 has application here. In particular,
all symmetries with ovals are again conjugate. In term of this theorem k = 3,
l = n− 1, m = n− 2, and so k′ = 1, l′ = m′ = n/2− 1.

As in the case of n odd, the surface has a symmetry without ovals. For, let
δ = (2, 3)(4, n). Then ϕ(δ) = δ−1. Now again, for arbitrary η ∈ An, we have
ηϕ(η)−1 = ηγη−1γ−1 and so δ is not ϕ-conjugate to the unit since it does not
belong to the commutator of Sn. Take now the symmetry with ovals. Lemma 4.1
gives value of N in (1) of Theorem 2.2 and M/2 is the order of

(ab)n/2−1a−1b−(n/2−1)(ab)n/2−1bn/2−1a

which is equal to the product
(1, 2)n/2−1(3, 4, . . . , n)n/2−1(1, 3, 2)(2, 3, . . . , n)−(n/2−1)

(1, 2)n/2−1(3, 4, . . . , n)n/2−1(2, 3, . . . , n)n/2−1(1, 2, 3).
When n is a multiple of 4, this permutation is

(2, 4, 5, . . . , n/2 + 1)(n/2 + 3, 1, n, . . . , n/2 + 4),
and hence has order n/2− 1, whilst in the other case, it is

(2, 4, 5, . . . , n/2 + 1, 1, n, n− 1, . . . , n/2 + 3)(3, n/2 + 2),
and so has order n− 2.
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Therefore M is respectively n − 2 and 2(n − 2), and so we have the respective
results, as claimed.

�

5. Purely imaginary forms

From Theorem 2.2 we know necessary and sufficient conditions for Riemann
surfaces described there to admit a symmetry without ovals which correspond to
purely imaginary forms. Now we shall deal with the number of conjugacy classes of
such symmetries of Riemann surfaces corresponding both to the action of G = An

considered here and to the one for G = Sn which was considered in [2]. By [10]
(see also [4] for explicit statement), G± = Aut±(X) = GoZ2 = 〈a, b〉o 〈t〉, where
tgt = ϕ(g). With these notations we have

Theorem 5.1. Two elements g1, g2 of G give rise to nonconjugate fixed point free
symmetries if and only if

(a) ϕ(gi) = g−1
i and gi 6∼ϕ 1,

(b) g1 6∼ϕ g2 and g1 6∼ϕ ϕ(g2).

Proof. Clearly each element of G± \ G has the form gt for some g ∈ G. Now for
a symmetry, we have 1 = (gt)2 = gϕ(g) and gt has ovals if and only if gt ∼G± t
which in turn means gt = wtw−1 = wtw−1tt. Consequently g ∼ϕ 1 and so (a). Now
g1t ∼G± g2t if and only if g1t = w(g2t)w−1 = wg2ϕ(w)t or g1t = (wt)(g2t)(wt)−1 =
wϕ(g2)ϕ(w)−1t for some w ∈ G which gives (b).

�
We shall not only find the number of purely imaginary real forms of surfaces

considered in this paper but we shall show, actually, that this number for symmetric
quasi-platonic Riemann surfaces with the action of G depends on α and β only up
to a certain extent. For effective use of this theorem for our actions we need some
preparation.

It is obvious that two cycles δ1, δ2 of the same length, say n, are conjugated and
in addition there are n conjugating elements with support contained in supp(δ1) ∩
supp(δ2). Furthermore for δ2 = δ−1

1 all conjugating elements are involutions. In
this case for n odd each such involution has exactly one fixed point, while for n
even half of the involutions do not have fixed points and each of the remainder ones
has exactly two fixed points.

Proposition 5.2. Let α, β be the generating pair for An defined in (1) and let ϕ
be an automorphism of An such that
(3) αϕ = α−1 and βϕ = β−1,

then

An o 〈ϕ〉 ∼=

{
An × Z2 if n ≡ 1, 2 (mod 4)
Sn if n ≡ 0, 3 (mod 4).

Proof. From the proof of Proposition 3.1 we know that ϕ is the conjugation by
γ ∈ Sn defined by (2). Now it is clear that if n ≡ 1, 2 (mod 4), then γ ∈ An and by
standard considerations Ano〈ϕ〉 ∼= An×Z2. If n ≡ 0, 3 (mod 4), then γ ∈ Sn−An

and it cannot be replaced by an involution from An. Therefore An o 〈ϕ〉 ∼= Sn.
�

The case of Sn is simpler.
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Proposition 5.3. Let α = (1, 2) and β = (1, 2, . . . , n) and let ϕ be an automor-
phism of Sn defined by (3). Then Sn o 〈ϕ〉 ∼= Sn × Z2.

Notice that again ϕ is uniquely determined by (3) and is realized by the conju-
gation by π = (1, 2)(3, n)(4, n− 1) . . . (n− 3, n− 2).

Now observe that for a fixed positive even integer m in the range 1 ≤ m ≤ n, the
set of all involutions τ ∈ An such that |supp(τ)| = m form one conjugacy class of
An and Sn as well. The symmetric group Sn has bn/2c different conjugacy classes of
involutions while the alternating group An has bn/4c such classes. So in particular
we get

Lemma 5.4. Let G̃ = Go 〈ϕ〉.
(a) If G = Sn then the number of conjugacy classes of involutions from G̃−G

is equal to bn/2c.
(b) Let G = An. If G̃ ∼= G × Z2 then the number of conjugacy classes from

G̃ − G is equal to bn/4c . If G̃ ∼= Sn then the number of conjugacy classes
of involutions from G̃−G is equal to bn/2c − bn/4c.

Proof. (a) By Proposition 5.3, G̃ − G = Gτ , where τ is an involution centralizing
G. If Cγ is the conjugacy class of γ in G then Cγτ is a conjugacy class of γτ in
G̃. Hence, the number of conjugacy classes of involutions of G is the same as the
number of conjugacy classes of involutions of G̃ contained in G̃−G.

(b) For the case G̃ ∼= G×Z2 the proof is the same as for (a). Let τ ∈ G̃−G be a
fixed involution. Let G̃ = Sn. If τ ∈ An is an involution, then the conjugacy class
of τ in Sn is equal to the conjugacy class of this element in An. Hence the number
of conjugacy classes of involutions of G̃−G is equal to bn/2c − bn/4c.

�
Suppose now that α and β are fixed arbitrary cycles generating G ∈ {An,Sn},

such that τατ = α−1 and τβτ = β−1 for an involution τ . From the proof of
Theorem 5.1, it follows that in order to calculate the number of purely imaginary
forms we have to find in G̃ = Go〈τ〉 the number of conjugacy classes of involutions
of G̃ which are not in G and which are not conjugated to ατ , τ and βτ . Observe
however that for G = Sn with |supp(β)| odd, the elements τ and βτ are conjugated
but τ and ατ not, as |supp(α)| is even. If both |supp(α)| and |supp(β)| are even
then ατ is conjugated to βτ but not conjugated to τ . If G = An then the three
elements τ, ατ, βτ are conjugated with each other. As a consequence we obtain
our final theorem.

Theorem 5.5. Let G be the symmetric group Sn or the alternating group An gen-
erated by two cycles α, β, so that the correspondence ϕ(α) = α−1 and ϕ(β) = β−1

induces an automorphism of G. Then the complex algebraic curve corresponding to
α, β has

bn/2c − 2 if G = Sn,
bn/2c − bn/4c − 1 if G̃ ∼= Sn,
bn/4c − 1 if G̃ ∼= An × Z2,

purely imaginary forms. �

Remark 5.6. If α and β giving the action of G are not cycles, and τατ = α−1

and τβτ = β−1 for some involution τ , then in all three cases the elements τ , ατ ,
βτ may lie in one, two or three conjugacy classes.
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