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Abstract. We use Gröbner basis techniques to study the balanced canonical

ribbon in each odd genus g ≥ 5. We obtain equations and syzygies of the
ribbon, give a Gröbner interpretation of part of Alper, Fedorchuk, and Smyth’s

proof of finite Hilbert stability for canonical curves, and discuss the obstacles

in using ribbons to give a new proof of Generic Green’s Conjecture (Voisin’s
Theorem).

1. Introduction

A canonical rational ribbon is a double structure on P1 with a very ample dual-
izing line bundle. As Bayer and Eisenbud show in their seminal paper [2], canonical
rational ribbons arise as flat limits in families of canonically embedded curves spe-
cializing to a hyperelliptic curve in moduli. In [7], Fong proved that every canon-
ically embedded rational ribbon can be smoothed to a canonical curve with the
same Clifford index as the ribbon. Conversely, if one performs stable reduction on
a family of smooth curves specializing to a ribbon, one will obtain as the stable limit
a Deligne-Mumford stable curve in the closure of the hyperelliptic locus. Hence, it
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is useful to think of ribbons as possible replacements of hyperelliptic curves in the
Hilbert scheme of canonical curves.

In [2], Bayer and Eisenbud studied ribbons with a view toward Generic Green’s
Conjecture (now Voisin’s Theorem) on the graded Betti numbers of canonically
embedded curves. By Fong’s Theorem and the upper semicontinuity of Betti num-
bers, proving Green’s Conjecture for ribbons would establish the result for a general
canonical curve as well. However, it seems that the approach suggested in [2] has
never been completed.

More recently, ribbons have appeared in the log minimal model program (LMMP)
for the pair (Mg, δ), where Mg is the moduli space of Deligne-Mumford stable
curves, and δ is the divisor of nodal curves. Geometric invariant theory (GIT)
calculations suggest that at a certain stage of the LMMP, the locus of hyperelliptic
curves in Mg will be flipped to a locus of canonically embedded A2g-curves (see
[6, Section 4]). While ribbons lie in codimension 2 inside the locus of A2g-curves,
their GIT stability analysis is simplified by the fact that some canonically embedded
ribbons admit a Gm-action.

It is conjectured that GIT quotients of the Hilbert scheme of canonical curves are
log canonical models ofMg that appear at later stages of the LMMP (see [16]). In
[1], Alper, Fedorchuk, and Smyth prove that a general odd genus canonical ribbon is
indeed GIT semistable in this setup by proving semistability of a special canonical
ribbon with Gm-action, called the balanced ribbon. We recall the definition of the
balanced ribbon in Section 4. In Section 5.2, we reinterpret certain results of [1] in
terms of Gröbner bases to gain further understanding of the combinatorics involved.

The outline of this paper is as follows. In Section 2, we describe the two problems
we study using ribbons: Generic Green’s Conjecture (Voisin’s Theorem) and finite
Hilbert stability of canonical curves. Section 3 is devoted to a detailed example
of using Gröbner techniques to analyze rational normal curves. We included this
as a model of how one can use Gröbner basis techniques to analyze ribbons. In
Section 4, we describe balanced ribbons in detail and obtain their equations and
first syzygies. The main result of the paper is Theorem 4.4. In Section 5, we discuss
applications of Gröbner basis techniques for ribbons.

1.1. Acknowledgements. We would like to thank the American Institute of Math-
ematics for hosting the workshop “Log minimal model program for moduli spaces”
organized by Jarod Alper, Brendan Hassett, David Smyth, and the second author,
where we began work on this project. The second author is partially supported by
NSF grant DMS-1259226.

2. Two problems involving ribbons

2.1. Ribbons. We begin with the most general definition of ribbons:

Definition 2.1 ([2, §1]). A ribbon on D is a scheme C equipped with an isomor-
phism D ' Cred such that the ideal sheaf I of D in C satisfies I2 = 0, and I is a
line bundle on D.

In the sequel, we will only consider the case D = P1. In fact, we shall only
consider a very special family of ribbons on P1, one in each odd genus, called
balanced ribbons; see Definition 4.1.
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Our motivation for studying ribbons is to gain insight into two problems in alge-
braic geometry: Generic Green’s Conjecture (Voisin’s Theorem) and finite Hilbert
stability. In this section, we state these two problems.

2.2. Generic Green’s Conjecture. Let S = K[x0, . . . , xk], and letM be a finitely
generated graded S-module. Let

· · · → F2 → F1 → F0 →M → 0

be the minimal graded free resolution of M . Since it is a graded free resolution, we
have for each i that

Fi =
⊕

S(−j)⊕βi,j .

The numbers βi,j are called the graded Betti numbers of M . By the definition of

Tor, we also have βi,j = dimK TorSi (M,K)j . (This observation will be important in
the sequel; since the numbers βi,j are dimensions of cohomology groups, they are
upper semicontinuous in flat families.)

The Betti table of M is the collection of Betti numbers. By convention, the
entry in row j column i is βi,i+j so that the table looks as follows:

β0,0 β1,1 β2,2 β3,3 β4,4 · · ·
β0,1 β1,2 β2,3 β3,4 β4,5 · · ·
β0,2 β1,3 β2,4 β3,5 β4,6 · · ·

...
...

...
...

...

Definition 2.2. A free resolution is pure if there is at most one nonzero βi,j for
each Fi. We will say that a homogeneous ideal in S has pure Betti table if its
minimal graded free resolution is pure.

Under the conventions for displaying Betti tables, purity corresponds to the
property that there is at most one nonzero entry in each column.

We may now state the generic version of the famous Green’s Conjecture [11],
which was proven by Voisin in [21] for even genus and in [22] for odd genus.

Theorem 2.3 (Generic Green’s Conjecture). The homogeneous coordinate ring of
a general canonical curve of odd genus has a pure Betti table.

2.3. Finite Hilbert stability. In the 1960’s, Mumford developed geometric in-
variant theory (GIT) to construct the moduli space of smooth curves Mg as a
quasi-projective variety. GIT has been an important (but difficult to wield) tool in
algebraic geometry ever since.

One of Mumford’s foundational insights was that GIT quotients should depend
on two ingredients:

(1) a scheme X with an action of a reductive algebraic group G;
(2) a linearization of the group action, that is, a lifting of the group action to

the action on sections of an ample line bundle L.

Given these two ingredients, the GIT quotient X//LG is defined as Proj(R), where
R is the ring of invariants of the section ring of L. There is a rational map from X
to X//LG which is defined at a point x ∈ X if there exists an invariant section of a
power of L that does not vanish at x. Such points are said to be semistable.

In the early 1980’s, Gieseker built on Mumford’s work and gave a GIT construc-
tion of the moduli space of stable curves Mg [8, 9]. We describe his setup in more
detail now:

c©2014 albanian-j-math.com 57

http://albanian-j-math.com
http://albanian-j-math.com


Albanian J. Math. 8 (2014), no. 2, 55-69.

Consider X ⊂ Pk. Let S = K[x0, . . . , xk] and let I be the ideal of X. We call the
point in the appropriate Grassmannian parameterizing the subspace Im ⊆ Sm the
mth inner Hilbert point of I, and if Sm → H0(X,OX(m)) is surjective, we call the
point in the appropriate Grassmannian parameterizing this quotient the mth outer
Hilbert point of X. (The adjectives “inner” and “outer” will be explained below in
Section 3.4.) In each case, the Plücker line bundle on the relevant Grassmannian
yields a GIT linearization of the natural SL(k + 1)-action.

The terminology Hilbert points comes from the fact that for sufficiently large m
the sequence

0→ Im → Sm → H0(X,OX(m))→ 0

is exact for all subschemes X with a fixed Hilbert polynomial P (t). Therefore, the
assignment

X ⊂ Pk 7→ [Sm → H0(X,OX(m))] ∈ Gr(P (m), Sm)

embeds the Hilbert scheme in the Grassmannian of P (m)-dimensional quotients of
Sm.

Recently, Hassett, Hyeon, and many others have extended Gieseker’s work with
the aim of carrying out the log minimal model program for Mg. Specifically,
Gieseker proved GIT stability of smooth curves of sufficiently high degree when
m � 0, while the more recent work has focused on quotients when the curves
are canonically or bicanonically embedded, and when the linearization parameter
m is small. For example, the interesting values of m in the bicanonical case are
2 ≤ m ≤ 6 [16]. We will refer to the GIT stability problem for small fixed m as
finite Hilbert stability (in contrast with Gieseker’s asymptotic Hilbert stability).

Ribbons play an important role in the proof of finite Hilbert stability. In [1],
Alper, Fedorchuk, and Smyth show that in each odd genus, there is a ribbon called
the balanced ribbon whose mth Hilbert point is semistable for any m ≥ 2. This
implies that mth Hilbert point of a general odd genus canonical curve is also Hilbert
semistable. See Sections 4 and 5 for more details.

3. Motivating example: rational normal curves

In this section, we use Gröbner techniques to analyze the Betti tables and finite
Hilbert stability of rational normal curves. The calculations below are presented as
a model of what could be done for balanced ribbons. Some parts of the calculations
below are standard exercises in commutative algebra. Also, one can give much more
conceptual proofs of the two main results below using some of the additional good
properties of rational normal curves. However, in this section, we use Gröbner basis
calculations because these tools are available for ribbons, too.

3.1. Parametrization. Recall that the rational normal curve of degree k is the
closure of the morphism SpecK[t]→ Pk given by

t 7→ [1 : t : t2 : · · · : tk].

3.2. Elimination. To obtain equations for the rational normal curve of degree k,
we eliminate t from the parameterization above. Let x0, . . . , xk be coordinates on
Pk. The parameterization above yields the equations txi−xi+1 for i = 0, . . . , k−1.
Hence, the elimination ideal is

IE = 〈txi − xi+1 | i = 0, . . . , k − 1〉.
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For the elimination order, we use the Bayer-Stillman 1-elimination order with t
first, followed by grevlex on the variables x0, . . . , xk.

Theorem 3.1. The following quadrics form a Gröbner basis with respect to the
Bayer-Stillman elimination term order for the elimination ideal IE of the rational
normal curve of degree k:

(1) {txi − xi+1 | i = 0, . . . , k − 1}
(2) {xi+1xj − xixj+1 | 0 ≤ i < j ≤ k − 1}

Proof. We use Buchberger’s algorithm to show that Type (1) and Type (2) quadrics
indeed form a Gröbner basis with respect to the specified term order. First, we
compute the S-pairs for a pair of Type (1) generators listed above. Without loss of
generality, suppose that i < j. We have

S(txi − xi+1, txj − xj+1) = xj(txi − xi+1)− xi(txj − xj+1)

= −xjxi+1 + xixj+1.

This cannot be further reduced using the Gröbner basis elements of the form tx`−
x`+1, so we add xi+1xj − xixj+1 to the Gröbner basis.

Next, we consider the S-pairs between a generator of the form txi − xi+1 and
a generator of the form xa+1xb − xaxb+1. The leading terms are coprime unless
i = a+ 1 or i = b. Suppose first that i = a+ 1. Then

S(txi − xi+1, xixb − xi−1xb+1) = xb(txi − xi+1)− t(xixb − xi−1xb+1)

= −xi+1xb + txi−1xb+1.

Subtracting xb+1(txi−1 − xi) yields

− xi+1xb + xixb+1,

which is already in the Gröbner basis.
Similarly, we can argue that if i = b, the S-pair reduces to 0 under the Gröbner

basis.
Finally, we consider the S-pairs between two generators of the form xi+1xj −

xixj+1 and xa+1xb−xaxb+1. The leading terms are coprime unless i = a, j = a+1,
i+ 1 = b, or j = b. Suppose first that i = a. Then

S(xi+1xj − xixj+1, xi+1xb − xixb+1) = xb(xi+1xj − xixj+1)− xj(xi+1xb − xixb+1)

= −xixj+1xb + xixjxk+1.

This reduces to 0 if we add xi(xj+1xb−xjxb+1). The other cases (j = a+1, i+1 = b,
j = b) are similar. �

Corollary 3.2. The generators {xi+1xj − xixj+1 | 0 ≤ i < j ≤ k − 1} form a
Gröbner basis with respect to the grevlex term order for the ideal of the rational
normal curve of degree k.

c©2014 albanian-j-math.com 59

http://albanian-j-math.com
http://albanian-j-math.com


Albanian J. Math. 8 (2014), no. 2, 55-69.

Definition 3.3. For each subset {p, q, r} ⊂ {0, . . . , k − 1}, we define

S′p,q,r := xr(xpxq+1 − xp+1xq)

− xq(xpxr+1 − xp+1xr)

+ xp(xqxr+1 − xq+1xr).(3.4)

S′′p,q,r := xr+1(xpxq+1 − xp+1xq)

− xq+1(xpxr+1 − xp+1xr)

+ xp+1(xqxr+1 − xq+1xr).(3.5)

Corollary 3.6. A Gröbner basis for the module of linear syzygies between the
quadrics of the rational normal curve of degree k is given by S′p,q,r and S′′p,q,r for
each subset {p, q, r} ⊂ {0, . . . , k − 1}.
Proof. This follows from the calculations in the proof of Theorem 3.1 and Schreyer’s
Theorem [4, Theorem 15.10]. �

3.3. Purity of the Betti table. In the proposition below, we outline one ap-
proach to computing the Betti numbers of the rational normal curve. It is based
on a theorem of Hochster for computing the graded Betti numbers of squarefree
monomial ideals.

Proposition 3.7.

(1) The generators {xixj+1−xi+1xj | 0 ≤ i < j ≤ k−1} form a Gröbner basis
with respect to the lex term order for the ideal of the rational normal curve
of degree k.

(2) The lex initial ideal of the rational normal curve of degree k is
{xixj+1 | 0 ≤ i < j ≤ k − 1}. In particular, it is squarefree.

(3) The Stanley-Reisner complex ∆ of inlex I can be identified with the interval
[0, k].

(4) The nonzero Betti numbers of inlex I are β0,0 = 1 and βi,i+1 = i
(
k
i

)
.

(5) The nonzero Betti numbers of I are β0,0 = 1 and βi,i+1 = i
(
k
i

)
.

Proof. All five statements above are exercises using standard results in combina-
torial commutative algebra. We give some hints. For Part (1), run Buchberger’s
algorithm with the lex term order. Part (2) follows immediately from Part (1).

For part (3), see [15, Ch. 1] for the relevant definitions. For part (4), we use
Hochster’s Theorem. A reference for Hochster’s Theorem is [15, Corollary 5.12],
where the notation is also explained. Hochster’s Theorem states that the nonzero
Betti numbers of S/I∆ lie only in squarefree multidegrees σ, and

βi,σ(S/I∆) = dimK H̃
|σ|−i−1(∆|σ;K).

Since ∆ is one-dimensional and contractible, the only nonzero cohomology of any
∆|σ is in degrees −1 or 0. The cohomology in degree −1 gives the first row of
the Betti table, and we can easily show that βii is 1 if i = 0 and is 0 if i 6=
0. The cohomology in degree 0 gives the second row of the Betti table. Here,

dimK H̃
|σ|−i−1(∆|σ;K) is the number of connected components of ∆|σ minus 1.

We use a formula adapted from [10, p. 55]: Let ∆ = [0, k]. The number of subsets
σ ⊂ {0, . . . , k} such that |σ| = i+ 1 and ∆|σ has i−m+ 1 connected components
is

c(m, k + 1, i+ 1) =

(
i

m

)(
k − i+ 1

i−m+ 1

)
.
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Thus

βi,i+1 =
∑
|σ|=i+1

βi,σ(S/I∆)

=

i∑
m=0

(i−m)

(
i

m

)(
k − i+ 1

i−m+ 1

)
.

We then use the following combinatorial identity: let k be an arbitrary positive
integer, and let i be an integer such that 1 ≤ i ≤ k. Then

i∑
m=0

(i−m)

(
i

m

)(
k − i+ 1

i−m+ 1

)
= i

(
k

i+ 1

)
.

Finally, for the last part, since the Betti table of the lex initial ideal is pure, the
Betti table of the rational normal curve is pure, also. Furthermore, these two ideals
have the same Hilbert function. But the Hilbert function of an ideal with a pure
Betti table determines the graded Betti numbers, and so the graded Betti numbers
of the rational normal curve are equal to the graded Betti numbers of the lex initial
ideal. �

Remark 3.8. A more standard way to compute the Betti numbers of a rational
normal curve is to use the fact that it is a determinantal variety and to use the
Eagon-Northcott complex.

3.4. Finite Hilbert semistability. Next, we seek to prove finite Hilbert semista-
bility of a rational normal curve. We follow an approach first proposed by Bayer
and Morrison that uses the state polytope of an ideal.

We first discuss state polytopes of points in a Grassmannian. Let T ' Grm be a
torus. We identify the characters of T with Zr. Suppose V is a T -representation
with a basis {v1, . . . , vn} diagonalizing the T -action. Let {χi}ni=1 be the characters
of T corresponding to {vi}ni=1. For any 0 ≤ p ≤ dim(V ), the Grassmannian (of
p-dimensional quotients) Gr(p, V ) admits a T -action, which is linearized by the
Plücker coordinates

{vi1 ∧ · · · ∧ vip | i1 < · · · < ip}.
The T -state of a Plücker coordinate vi1 ∧ · · · ∧ vip is the associated character∑p
j=1 χij ∈ Zr of T .

Definition 3.9 (State Polytopes for Grassmannian). Consider Q ∈ Gr(p, V ). The
T -state associated to a nonzero Plücker coordinate of Q is called a T -state of Q.
The state polytope State(Q) of Q is defined to be the convex hull in Zr of all T -states
of Q.

Remark 3.10. T -states of Q = [V → W → 0] come from nonzero Plücker co-
ordinates of Q diagonalizing the T -action. These in turn correspond to subsets
{vi1 , . . . , vip | i1 < · · · < ip} ⊂ V such that the images of {vi1 , . . . , vip} span W . By
a slight abuse of language, we will call such a subset a T -basis of W .

We proceed to give a description of the state polytope of an ideal, since this
is what we shall actually use. We refer to [3] and [17] for more details on state
polytopes of ideals, and the original motivation for its definition.
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Definition 3.11. The mth inner state of a monomial ideal J is the sum of the
exponent vectors of the degree m monomials in J :∑

xa∈J: deg(xa)=m

a,

The mth inner state polytope of an ideal I ⊂ K[x0, . . . , xk] is the convex hull of
the mth inner states of the initial ideals of I.

Similarly, we define the mth outer state of a monomial ideal J as the sum of
the exponent vectors of the degree m monomials outside J , and the mth outer state
polytope of an ideal as the convex hull of the mth outer states of the initial ideals
of I.

We now explain the relation between Definitions 3.9 and 3.11. To begin, let
S = K[x0, . . . , xk]. Consider a subscheme X ⊂ Pk defined by homogeneous ideal I
and with Hilbert polynomial P (t). For an integer m such that H1(Pk, I(m)) = 0,
the mth (inner or outer) Hilbert point of X is specified by the short exact sequence

0→ I(m)→ Sm → H0(X,OX(m))→ 0.

Then for m large enough, the state polytope of the outer mth Hilbert point of X
considered as a point in the Grassmannian Gr(P (m), Sm) is the mth outer state
polytope of I; see [3] and [17].

Since for a fixed m, the union of the monomials inside and outside a monomial
ideal must be all the degree m monomials, it follows that the inner and outer states
of a monomial ideal are related by an affine linear transformation. Precisely, the
sum of the mth inner and outer states is(

m
(
k+m
k

)
k + 1

, . . . ,
m
(
k+m
k

)
k + 1

)
.

This allows us to phrase most of the results below in terms of either the inner or
the outer state polytope, whichever is more convenient.

Let P (t) denote the Hilbert polynomial of S/I as before. That is, P (m) =
dimK((S/I)m). Then the mth outer state polytope as we defined it above lies in an
affine hyperplane in Rk+1 with equation z0 + · · ·+ zk = mP (m). In particular, the
trivial character, which we denote 0m, is represented by the point on this hyperplane
with all coordinates equal. That is,

0m =

(
mP (m)

k + 1
, . . . ,

mP (m)

k + 1

)
for outer states. Similarly, when we are working with inner states, a formula for
the trivial character is

0m =

(
m
(
k+m
k

)
−mP (m)

k + 1
, . . . ,

m
(
k+m
k

)
−mP (m)

k + 1

)
.

The connection between Hilbert semistability and state polytopes is given by the
Hilbert-Mumford Numerical Criterion applied to Hilbert points and can be phrased
as follows:

Proposition 3.12 ([3, Theorem 4.1], [17, Criterion 3.4]). Let X ⊂ Pk have ideal
I ⊂ K[x0, . . . , xk], and let T be the maximal torus scaling these variables. The
mth inner (respectively, outer) Hilbert point of X is T -semistable if and only if the
trivial character lies in the mth inner (respectively, outer) state polytope of I.
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Observe that the proposition only gives Hilbert semistability with respect to T .
However, under certain additional hypotheses, T semistability establishes SL(k+1)
semistability.

Proposition 3.13. Consider X ⊂ Pk. Let G ⊆ StabSL(k+1)(X) be a linearly

reductive group. We say that X ⊂ Pk is multiplicity free with respect to G if
no irreducible G-submodule has multiplicity greater than 1 in the representation of
G→ SL(k + 1).

Suppose that X is multiplicity free. Choose coordinates x0, . . . , xk on Pk that are
adapted to the decomposition of Kk+1 into irreducible G-submodules. Let T be the
maximal torus scaling these variables.

Let [X]m be the mth Hilbert point of X ⊂ Pk. Then [X]m is T -semistable if and
only if [X]m is SL(k + 1)-semistable.

Proof. This is proved in [17, Proposition 4.7] using Kempf’s instability results [13].
(Morrison and Swinarski state the result for finite groups G, but their proof applies
verbatim in the case of an arbitrary linearly reductive G.) When G = Gm, as often
is the case, the claim also follows directly from Luna’s criteria for orbit closedness
[Cor. 2 and Rem. 1][14]. �

Our strategy is now clear. To prove Hilbert stability of the rational normal curve
for some finite degree m, we want to show that the trivial character is in the mth

state polytope of the rational normal curve. For this, it is enough to exhibit two
initial ideals (vertices of the inner state polytope) such that the trivial character
lies between them. Not surprisingly, our two choices are the lex and grevlex initial
ideals. We leave the calculations to the reader.

Proposition 3.14.
(1) The mth outer state of the lex initial ideal is(

1

2
m2 +

1

2
m, m2, . . . , m2,

1

2
m2 +

1

2
m

)
.

(2) The mth outer state of the grevlex initial ideal is(
k

2
m2 − k − 2

2
m, m, . . . , m,

k

2
m2 − k − 2

2
m

)
.

(3) For any m ≥ 2, the mth Hilbert point of the rational normal curve of degree
k is SL(k + 1)-semistable.

Remark 3.15. A more conceptual proof of Proposition 3.14 part (3) follows from
the fact that a rational normal curve is a homogeneous variety embedded by a com-
plete linear system [13, Corollary 5.1].

4. Equations and syzygies of balanced ribbons

We now apply to ribbons the techniques illustrated in the previous section for
rational normal curves. In this section, we describe equations and syzygies of
canonically embedded balanced ribbons, which we now define.

Definition 4.1. Let g = 2k+1 be an odd integer with k ≥ 1. The balanced ribbon
of genus g is the nonreduced curve C obtained as follows: Let U := SpecK[u, e]/(e2),
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V := SpecK[v, f ]/(f2), and glue U r {0} and V r {0} via the isomorphism

u 7→ v−1 − v−k−2f,

e 7→ v−g−1f.

In [1, Lemma 3.1], Alper, Fedorchuk, and Smyth describe a basis of differentials
on the balanced ribbon. Their result in our notation is as follows:

Proposition 4.2. A basis of H0(C,ωC) is given by differentials of the form
f(t, e)dt∧dee2 , where f(t, e) ranges over the following functions:

ti i = 0, 1, . . . , k,
t2k−j + (k − j)tk−j−1e, j = k − 1, k − 2, . . . , 0.

This leads to a parametrization of the canonically embedded balanced ribbon of
genus g. Namely, the ribbon C is the closure of the map SpecK[t, e]/(e2) → Pg−1

given by

t 7→ [1 : t : t2 : · · · : tk : tk+1 + e : tk+2 + 2te : · · · : t2k + ktk−1e].

Definition 4.3. Let S = K[t, e, x0, . . . , x2k]. The elimination ideal IE of the canon-
ically embedded balanced ribbon is the ideal generated by the following equations:

tix0 − xi i = 0, 1, . . . , k,
(t2k−j + (k − j)tk−j−1e)x0 − x2k−j , j = k − 1, k − 2, . . . , 0,

e2.

Equations for the canonically embedded balanced ribbon can be obtained from
the parametric description above by eliminating the variables t and e from IE .

Theorem 4.4. The following
(
g−2

2

)
+g quadrics and g cubics form a Gröbner basis

with respect to the Bayer-Stillman elimination term order for the elimination ideal
IE of the balanced ribbon of genus g:

(1) The 2× 2 minors of the catalecticant matrix[
x0 x1 x2 · · · xk−1

x1 x2 x3 · · · xk

]
(2) The 2× 2 minors of the catalecticant matrix[

x2k x2k−1 x2k−2 · · · xk+1

x2k−1 x2k−2 x2k−3 · · · xk

]
(3) For each pair i, j with 0 ≤ i ≤ k − 2 and 0 ≤ j ≤ k − 2 the following

trinomial quadric:

xi+2x2k−j−2 − 2xi+1x2k−j−1 + xix2k−j .

(4) {txi − xi+1 | i = 0, . . . , k − 1}
(5) {exi + txk+i − xk+i+1 | i = 0, . . . , k − 1}
(6) {e(txk+i − xk+i+1) | i = 0, . . . , k − 1}
(7) {t2xk+i − 2txk+i+1 + xk+i+2 | i = 0, . . . , k − 2}
(8) One additional quadric: e2

(9) The cubic exkx2k−1 + tx2k−1x2k − x2
2k

(10) The cubic t2x2k−1 + exk − tx2k
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Proof of Theorem 4.4. First, we show that polynomials listed in the statement of
Theorem 4.4 are in the ideal IE . This is straightforward, so we give just one
example. We verify that a quadric from the third group is in IE :

(ti+2x0 − xi+2)((t2k−j−2 + (k − j − 2)tk−j−3e)x0 − x2k−j−2)

−2(ti+1x0 − xi+1)((t2k−j−1 + (k − j − 1)tk−j−2e)x0 − x2k−j−1)

+(tix0 − xi)((t2k−j + (k − j)tk−j−1e)x0 − x2k−j)

= xi+2x2k−j−2 − 2xi+1x2k−j−1 + xix2k−j .

(4.5)

Next, we show that the polynomials listed generate IE . For this, observe that

(4.6) tix0 − xi =

i−1∑
j=0

ti−j−1(txj − xj+1)

and

(4.7) t2k−jx0 + (k − j)tk−j−1ex0 − x2k−j =

(k − j)tk−j−1(ex0 + txk − xk+1) +

k−1∑
p=0

t2k−j−p−1(txp − xp+1)

−
k−j−2∑
p=0

(k − j − 1− p)tk−j−p−2(t2xk+p − 2txk+p+1 + xk+p+2).

It remains to show that the polynomials listed in the statement of Theorem 4.4
form a Gröbner basis of IE . For this, we use Buchberger’s Algorithm.

There are 10 different types of generators, and hence 55 types of S-pairs. How-
ever, the generator types 8, 9, and 10 contain only one polynomial each, so we do
not need to consider S-pairs of types (8, 8), (9, 9), or (10, 10). This leaves 52 types
of S-pairs that we must reduce to zero. Of these pairs, 18 are coprime. We outline
the calculations needed for the first three of the remaining 34 cases below.

Type (1,1). Consider two polynomials from the first group. Let f = xa+1xb −
xaxb+1, g = xc+1xd − xcxd+1 with a < b and c < d. We have done this calculation
before in the context of the rational normal curve.

Type (1,2). Consider a polynomial from the first group and a quadric from the
second group. The leading terms will be coprime. The only variable that can occur
in both quadrics is xk, and it never occurs in the leading term of the quadric from
the first group.

Type (1,3). Consider a polynomial from the first group and a quadric from the
third group. Let f = xa+1xb−xaxb+1, g = xi+2x2k−j−2−2xi+1x2k−j−1 +xix2k−j .

The leading terms of f and g are coprime unless i+ 2 = a+ 1 or i+ 2 = b.
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Suppose i+ 2 = a+ 1. The S-pair reduction is

x2k−j−2(xi+2xb − xi+1xb+1)− xb(xi+2x2k−j−2 − 2xi+1x2k−j−1 + xix2k−j)

= −xb+1xi+1x2k−j−2 + 2xbxi+1x2k−j−1 − xbxix2k−j

+ xb+1(xi+1x2k−j−2 − 2xix2k−j−1 + xi−1x2k−j)

= 2xbxi+1x2k−j−1 − xbxix2k−j − 2xb+1xix2k−j−1 + xb+1xi−1x2k−j

− 2x2k−j−1(xbxi+1 − xb+1xi)

= −xbxix2k−j + xb+1xi−1x2k−j

+ x2k−j(xbxi − xi−1xb+1)

= 0.

The proof when i+ 2 = b is similar.
All 52 cases are typed up in an appendix to this paper available at the third

author’s website. �

Corollary 4.8. The quadrics of the first three types shown above form a Gröbner
basis with respect to the grevlex term order for the ideal of the balanced ribbon.

Definition 4.9. For each triple (i, j, `) with 0 ≤ i ≤ k − 3, 0 ≤ j ≤ k − 2, and
0 ≤ ` ≤ k − 1, we define

(4.10)

Si,j,l := x`+1(xi+2x2k−j−2 − 2xi+1x2k−j−1 + xix2k−j)

− x`(xi+3x2k−j−2 − 2xi+2x2k−j−1 + xi+1x2k−j)

+ x2k−j−2(xi+3x` − xi+2x`+1)

− 2x2k−j−1(xi+2x` − xi+1x`+1)

+ x2k−j(xi+1x` − xix`+1).

Corollary 4.11. A basis for the module of linear syzygies between quadrics of the
canonically embedded balanced ribbon of genus g is given by the syzygies S′p,q,r,
S′′p,q,r, and Si,j,l defined above and their images under the involution xi ↔ x2k−i.

Proof. This follows from the calculations in the proof of Theorem 4.4. (Not all of
the calculations are shown here, but they are all shown in the appendix.) �

5. Applications

5.1. Betti numbers of ribbons. We may combine the Gröbner basis calculation
of the previous section with Fong’s theorem to obtain amusing new proofs of weak
versions of two classical theorems on canonical curves. The history of algebraic
geometry in the twentieth century most certainly did not proceed via calculations
on a single nonreduced curve in each odd genus!

Proposition 5.1 (Weak version of Petri’s Theorem). The ideal of a general smooth
canonical curve of odd genus is generated by quadrics.

Proof. Since the ideal of the balanced ribbon is generated by quadrics, it has
β1,1+j = 0 for all j ≥ 2. Since graded Betti numbers are upper semicontinuous
in flat families, and ribbons smooth to canonical curves by Fong’s theorem, this
implies the desired result. �

We reprove a weak version of a theorem due to Vishik and Finkelberg [20];
Polishchuk [19]; and Pareschi and Purnaprajna [18].
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Proposition 5.2. The ideal of a very general smooth canonical curve of odd genus
is Koszul.

Proof. Let S = K[x0, . . . , xk]. If I has a quadratic Gröbner basis for some term
order, then S/I is Koszul (see for instance [5, Theorem 6.7]). Since the balanced
ribbon has a quadratic Gröbner basis, it is Koszul. Koszulity is not an open condi-
tion, but it is defined by the vanishing of countably many Ext groups. Since ribbons
smooth to canonical curves by Fong’s theorem, this implies the desired result. �

To execute Bayer and Eisenbud’s original plan of using ribbons to give a new
proof of Generic Green’s Conjecture (Voisin’s Theorem), one would need to show
that the Betti table of the balanced ribbon is pure. Unfortunately, the next propo-
sition shows that the analogue for ribbons of the proof of Proposition 3.7 fails.

Proposition 5.3. The genus 7 balanced ribbon has 50, 913 monomial initial ideals
with 31, 881 unique saturations. None of these monomial initial ideals has a pure
Betti table; in particular, each of these monomial initial ideals has β3,4 > 0.

In summary, to get a new proof of Generic Green’s Conjecture (Voisin’s Theorem)
via ribbons, the Betti numbers of the balanced ribbon would need to be computed
some other way.

5.2. Finite Hilbert stability of ribbons. In [1], Alper, Fedorchuk, and Smyth
show that the mth Hilbert point of a general bicanonical or canonical curve is
semistable for any m ≥ 2. They split the proof into four separate cases, treating odd
genus and even genus separately, and canonical and bicanonical curves separately.
We give a Gröbner interpretation of their proof for one of these cases: the case of
odd genus canonical curves.

Balanced ribbons are used to establish semistability of odd genus canonical
curves in [1, Section 4.1]. There the cases m = 2 and m ≥ 3 are analyzed sep-
arately; for convenience, we will focus on the case m = 2 below. Alper, Fedorchuk,
and Smyth’s approach is to produce two points in the state polytope such that
the trivial character lies between them. Specifically, in [1, (4.1) and (4.2)], they
construct two monomial bases B+ and B− of H0(C,ω2

C) such that the outer state
of B+ overrepresents the coordinates x0, xk, x2k relative to the other coordinates,
and the outer state of B− underrepresents the coordinates x0, xk, x2k relative to
the other coordinates. Namely, these monomial bases are

(5.4) B+ =
{
{x0xi}2ki=0, {xkxi}2ki=1, {x2kxi}k−1

i=1 , {x2kxi}2ki=k+1

}
and

(5.5) B− =

 {x
2
i }2ki=0, {xixi+1}2k−1

i=0 ,

{xixk+i}k−1
i=1 , {xixk+i+1}k−1

i=0

 .

In [1, Lemma 3.6], Alper, Fedorchuk, and Smyth describe arbitrary monomial
bases of H0(C,ωmC ), thus obtaining a complete description of the mth outer state
polytope of IC .

It is natural to wonder if the outer states of B+ and B− are the outer states of
initial ideals of IC . To this end, we have the following result for B+:

Proposition 5.6. For m = 2, B+ is the complement of the set of degree two
generators in the initial ideal of IC arising from the term order given by grevlex
with the variables ordered x0, xk, x2k, x1, . . . , x̂k, . . . , x2k−1.
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Proof. Follows immediately from definitions and (5.4). �

The set B− also has a Gröbner interpretation, but it is more subtle. First, we
give the following easy lemma:

Lemma 5.7. Let T be a torus and V be a T -representation. Suppose

Q = [V →W → 0] ∈ Grass(p, V )

is a point which is invariant under a linear subgroup G ⊂ T . Let

W =
⊕
χ∈S

Wχ

be the weight space decomposition, where S is a finite set of distinct characters of
G. Set

Qχ := [V →Wχ → 0] ∈ Grass(dim(Wχ), V ).

Then

(5.8) State(W ) =
∑
χ∈S

State(Wχ),

where the operation on the right is Minkowski sum of polytopes.

Proof. Let v1, . . . , vn be a basis of V diagonalizing the T -action. A state of Q
corresponds to a T -basis {vi1 , . . . , vip} of W ; see Remark 3.10. Evidently, every
T -basis of W is obtained as the concatenation of T -bases of the summands Wχ.
Hence a T -state of W is a sum of T -states of Wχ, and, conversely, a sum of T -states
of Wχ is a state of W . It follows that State(W ) is the Minkowski sum of State(Wχ),
as desired. �

Proposition 5.9.
(1) For genus 7, there exists no term order for which B− is the complement of

the set of degree two generators of the initial ideal of IC .1

(2) The ideal IC is bigraded, where the first grading is by degree and the second
grading is by the weights of the Gm-action. Let IC =

⊕
Ip be its decom-

position into Gm-weight spaces. There exists a term order ≤p on each Ip
such that B− is the complement of the union of the degree two generators
of the initial ideals in≤p Ip. Specifically:
(a) If p ≤ k+ 2 or p ≥ 3k− 2, let ≤p be the lexicographic term order with

the variables x0, . . . , x2k in the usual order.
(b) If k+3 ≤ p ≤ 3k−3, set q = bp−k2 c and let ≤p be the lexicographic term

order with the variables ordered x0, . . . , x̂q, . . . , xk, xq, xk+1, . . . , x2k.

Proof. For the first part, we can use gfan [12] to compute all 50, 913 initial ideals
for this example, and none of them gives B−.

For the second part, we can compute the initial ideals for each Ip with the given
term orders. Observe that for p ≤ k + 1, Ip(2) only contains binomials, and for
p = k + 2, Ip(2) contains exactly one trinomial, and the initial ideals with respect
to the lex term order are easily computed in these cases. For k + 3 ≤ p ≤ 2k, the
variable xq cannot appear in any binomial in Ip(2), so these leading monomials are
also easily computed. The trinomials in Ip(2) are indexed by i = 0, . . . , p − k − 2
and it is easy to compute the leading monomials under the term orders described.

�

1Presumably the same result is true for all g ≥ 7.
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