ALBANIAN JOURNAL OF MATHEMATICS Volume 8, Number 1, Pages 49–53 ISSN: 1930-1235; (2014)

ON THE CONGRUENT NUMBER PROBLEM OVER INTEGERS OF REAL NUMBER FIELDS

Albertas Zinevičius

Department of Mathematics and Informatics, Vilnius University, Naugarduko 24, Vilnius, LT-03225, Lithuania

and

Institute of Mathematics and Informatics, Akademijos 4, Vilnius, LT-08663, Lithuania Email: albertas.zinevicius@mif.vu.lt

ABSTRACT. Given a real finite field extension K/\mathbb{Q} of degree d and class number h_K and a positive integer a, we show that there is a set of rational prime numbers of relative density at least $1/(2dh_K)$ that have a principal prime factor $\pi \mathcal{O}_K \subset \mathcal{O}_K$ of degree one such that the equation $a\pi^2 = x^4 - y^2$ has no nontrivial solutions in \mathcal{O}_K .

1. INTRODUCTION

The classical congruent number problem asks for an algorithm that would decide if a given positive integer n is the area of a right triangle with rational side lengths. The existence of such a triangle is equivalent to the solvability of the equation

(1) $y^2 = x^4 - 16n^2$

in rational numbers (x, y) with x nonzero. It is known that the existence of such a (surprisingly simple) algorithm would follow from the conjecture of Birch and Swinnerton-Dyer, as was shown in the work of Tunnell [12]. It was noted by Jedrze-jak [6] that, under assumption of the same conjecture, Tunnell's theorem together with the work of Tada [10] imply that every positive integer is the area of some right triangle with side lengths in the quartic extension $\mathbb{Q}(\sqrt{3}, \sqrt{5})$.

It is difficult to expect, on the other hand, that the equation (1) could have solutions among the integers \mathcal{O}_K of a fixed number field K for all n. Indeed, as it was remarked by Stoll [9], the conjecture of Bombieri-Lang suggests the opposite.

©2014 albanian-j-math.com

²⁰¹⁰ Mathematics Subject Classification. 11D45, 11H06.

Key words and phrases. Congruent numbers, real number fields, rings of integers, prime ideals.

Albanian J. Math. 8 (2014), no. 2, 49-53.

That this can never happen when K is a cyclic extension, can be concluded from the following statement that we showed in [13]:

Theorem A. Let K be a finite Galois extension of the field of rational numbers with cyclic Galois group $\operatorname{Gal}(K/\mathbb{Q})$ and let a be a nonzero (rational) integer. Then the set of rational prime numbers p for which the equation

$$ap^2 = x^4 - y^2$$

in unknowns x, y does not have a solution $(x, y) \in \mathcal{O}_K \times \mathcal{O}_K$ with $x \neq 0$, has lower relative density at least 1/2 in the set of (rational) prime numbers that remain inert in K.

The conjectural solvability of (1) in some number fields for all positive integers n raises the question of whether one could expect to find a number field K in which all the equations (1) were solvable when the parameter n also varies over K (rather than \mathbb{Q}). This still has the same geometric interpretation when the extension K is real. The analogous question for integers of number fields becomes easier and can be settled:

Theorem 1. Let K be a finite real extension of the field of rational numbers, of degree d and class number h_K , and let a be a positive integer. Then there is a set of rational prime numbers p of relative density at least $1/(2dh_K)$, such that the principal ideal $p\mathcal{O}_K$ has a principal prime factor $\pi\mathcal{O}_K$ of degree one for which the equation

$$a\pi^2 = x^4 - y^2$$

in unknowns x, y does not have a solution $(x, y) \in \mathcal{O}_K \times \mathcal{O}_K$ with $x \neq 0$.

Most of the proof of this observation translates *mutatis mutandis* from the proof of Theorem A, which is indebted to the results of Jarden-Narkiewicz and Green-Tao. Additionally, a fundamental result of class field theory is employed in Lemma 3. The proof does not suggest that the density $1/(2dh_K)$ could be precise for some number fields K. The author of this note would find it interesting to see a demonstration that (1) does not have solutions over \mathcal{O}_K for many rational integer values of the parameter n.

2. Proof of Theorem 1

For the proof of the theorem we borrow two statements from [4] and [5], respectively, that we state here as lemmas:

Lemma 1. Let A be any subset of the prime numbers of positive relative upper density. Then A contains infinitely many arithmetic progressions of length l for all l.

Lemma 2. If R is a finitely generated integral domain of zero characteristic and l is an integer, then there exists a constant $A_l(R)$ such that every arithmetic progression in R having more than $A_l(R)$ elements contains an element which is not a sum of l units.

In addition, we will use the following lemma:

Lemma 3. The relative density of prime numbers $p \subset \mathbb{Z}$ such that the principal ideal $p\mathcal{O}_K \subset \mathcal{O}_K$ has a principal prime factor $\mathfrak{p} = \pi \mathcal{O}_K$ of degree one that remains inert in the quadratic extension $K(\sqrt{-a})/K$, is at least $1/(2dh_K)$.

Proof of Lemma 3. Notice first that, since K is a subfield of the real numbers, its Hilbert class field $\operatorname{Cl}(K)$ is also a subfield of the real numbers (as $\operatorname{Cl}(K)/K$ must be unramified at the infinite prime). Therefore there is an element $\sigma \in \operatorname{Gal}(\operatorname{Cl}(K)(\sqrt{-a})/K)$ that fixes $\operatorname{Cl}(K)$ but is not the identity automorphism.

Let *L* be the Galois closure of the extension $\operatorname{Cl}(K)(\sqrt{-a})/\mathbb{Q}$. Since the extension $L/\operatorname{Cl}(K)(\sqrt{-a})$ is Galois and $\sigma \in \operatorname{Aut}(\operatorname{Cl}(K)(\sqrt{-a}))$, one can extend σ to an element of $\operatorname{Gal}(L/\operatorname{Cl}(K))$. More precisely, there are $[L : \operatorname{Cl}(K)(\sqrt{-a})]$ distinct elements $\sigma_j \in \operatorname{Gal}(L/\operatorname{Cl}(K)), j = 1, \ldots, [L : \operatorname{Cl}(K)(\sqrt{-a})]$, that coincide with σ on the subfield $\operatorname{Cl}(K)(\sqrt{-a})$.

Recall that for any tower of number fields $E \subset E' \subset E''$, where E''/E is Galois, the decomposition type of a prime ideal $\mathfrak{q} \subset \mathcal{O}_E$, that does not divide $\Delta_{E''/E}$, in the extension E'/E coincides with the cycle structure of the permutation of $\operatorname{Gal}(E''/E)/\operatorname{Gal}(E''/E')$ that is induced by the action of (any) Frobenius element $\operatorname{Frob}_{\mathfrak{q}}$ of the prime ideal \mathfrak{q} .

When $E = \mathbb{Q}, E' = K, E'' = L$ and p is a rational prime that does not divide the discriminant $\Delta_{L/\mathbb{Q}}$, it follows that the ideal $p\mathcal{O}_K \subset \mathcal{O}_K$ has a prime factor $\mathfrak{p} \subset \mathcal{O}_K$ of degree one if and only if the conjugacy class of the Frobenius element $\operatorname{Frob}_p \in \operatorname{Gal}(L/\mathbb{Q})$ intersects the subgroup $\operatorname{Gal}(L/K)$ (see, e.g., [7]). In particular, when the conjugacy class of Frob_p contains one of σ_j as above, $p\mathcal{O}_K$ has a prime factor \mathfrak{p} of degree one.

Likewise, when $E = K, E' = \operatorname{Cl}(K), E'' = L$, it follows that a prime ideal $\mathfrak{p} \subset \mathcal{O}_K$ as above splits completely in the extension $\operatorname{Cl}(K)/K$. Indeed, we may assume, without a loss of generality, that

$$\operatorname{Frob}_p(x) \equiv x^{\#\mathbb{Z}/p\mathbb{Z}} \mod \mathfrak{q}$$

for all $x \in \mathcal{O}_L$ and a prime ideal $\mathfrak{q} \subset \mathcal{O}_L$ that lies over \mathfrak{p} (by replacing Frob_p , if necessary, with another element from the conjugacy class of Frob_p). Since \mathfrak{p} is of degree 1, we have $\#\mathbb{Z}/p\mathbb{Z} = \#\mathcal{O}_K/\mathfrak{p}$. Hence holds

$$\operatorname{Frob}_p(x) \equiv x^{\#\mathcal{O}_K/\mathfrak{p}} \mod \mathfrak{q},$$

for all $x \in \mathcal{O}_L$. Thus Frob_p is also a Frobenius element Frob_p of \mathfrak{p} (with respect to the extension L/K). The cycle structure of the permutation of the group $\operatorname{Gal}(L/K)/\operatorname{Gal}(L/\operatorname{Cl}(K))$ induced by Frob_p is then the same as that induced by any σ_j that is in the same conjugacy class as Frob_p . Consequently, it is the product of 1-cycles (since $\sigma_j \in \operatorname{Gal}(L/\operatorname{Cl}(K))$ acts on $\operatorname{Gal}(L/K)/\operatorname{Gal}(L/\operatorname{Cl}(K))$ trivially).

On the other hand, the permutation of $\operatorname{Gal}(L/K)/\operatorname{Gal}(L/K(\sqrt{-a}))$ induced by the σ_j is not the trivial one since $\sigma_j \notin \operatorname{Gal}(L/K(\sqrt{-a}))$. Consequently, the prime ideal \mathfrak{p} remains inert in the extension $K(\sqrt{-a})/K$.

A fundamental result of class field theory asserts that prime ideals of K that split completely in the extension $\operatorname{Cl}(K)/K$ are principal [8]. Thus $\mathfrak{p} = \pi \mathcal{O}_K$ for some prime element $\pi \in \mathcal{O}_K$ that remains prime in $\mathcal{O}_{K(\sqrt{-a})}$.

By the Chebotarev density theorem [11], the density of rational prime numbers p with Frobenius symbol Frob_p (with respect to the extension L/\mathbb{Q}) in the same conjugacy class as some σ_i is equal to the number of elements in those conjugacy

Albanian J. Math. 8 (2014), no. 2, 49-53.

classes of $\operatorname{Gal}(L/\mathbb{Q})$ that contain some σ_j , divided by the size of the Galois group $\operatorname{Gal}(L/\mathbb{Q})$. It is therefore, at least

$$\#\{\sigma_j\}/\#\operatorname{Gal}(L/\mathbb{Q}) = ([L:\operatorname{Cl}(K)]/2)/([\operatorname{Cl}(K):\mathbb{Q}][L:\operatorname{Cl}(K)]) = 1/(2dh_K).$$

Proof of Theorem 1. Let $\mathfrak{p} = \pi \mathcal{O}_K$ be a prime ideal as in Lemma 3. If the equation $a\pi^2 = x^4 - y^2 = (x^2 + y)(x^2 - y)$

has a solution in \mathcal{O}_K with $x \neq 0$ then either both $x^2 - y, x^2 + y$ are divisible by π or not. In the first case,

$$\begin{cases} x^2 - y = \pi r\\ x^2 + y = \pi a r^{-1} \end{cases}$$

for some $r \in \mathcal{O}_K$ that divides *a*. Denote by σ the generator of $\operatorname{Gal}(K(\sqrt{-a})/K)$. By adding the equations one obtains

$$2x^{2}r = \pi(r^{2} + a) = \pi(r + \sqrt{-1})(r - \sqrt{-a}) = \pi(r + \sqrt{-1})\sigma(r + \sqrt{-a}).$$

We thus can see that, since π is a prime element of the ring of integers of $K(\sqrt{-a})$ that is mapped to an associate of itself by σ , the highest power of π that divides the right-hand side must be odd. On the other hand, the highest power of any prime element that divides the left-hand side and does not divide 2a is even. Therefore, the first case may hold for at most finitely many prime ideals $\pi \mathcal{O}_K$. We thus may restrict ourselves to the second case, i.e., assume that

$$\begin{cases} x^2 - y = \pi^2 a r^{-1} \\ x^2 + y = r \end{cases}$$

holds for some $r \in \mathcal{O}_K$ that divides a. By adding the equations again, one obtains

$$2x^2r = r^2 + \pi^2 a.$$

Let K' be a field extension of K that is generated by elements of the form \sqrt{r} , where $r \in \mathcal{O}_K$ divide a. Up to multiplication by units, there are only finitely many such r. Let $r_1, ..., r_v$ be their representatives. The Dirichlet unit theorem [2] tells also that the multiplicative group of units of \mathcal{O}_K is finitely generated. Let $e_1, ..., e_s$ be its generators. Then $K' = K(\sqrt{2}, \sqrt{e_1}, ..., \sqrt{e_s}, \sqrt{r_1}, ..., \sqrt{r_v})$ is a finite extension of K. Over $\mathcal{O}_{K'}$ one can write

$$(x\sqrt{2r} - \pi\sqrt{a})(x\sqrt{2r} + \pi\sqrt{a}) = r^2.$$

Hence both $x\sqrt{2r} - \pi\sqrt{a}, x\sqrt{2r} + \pi\sqrt{a}$ are divisors of a^2 in $\mathcal{O}_{K'}$. Consequently, $2\pi\sqrt{a}$ is a sum of two divisors of a^2 .

We claim that such ideals $\mathfrak{p} = \pi \mathcal{O}_K$ have density zero among the prime ideals of the ring \mathcal{O}_K . Let M denote the Galois closure of the field extension K'/\mathbb{Q} . Note that there is a subset $G_{\pi} \subset \operatorname{Gal}(M/\mathbb{Q})$ of cardinality d such that $Nm_{K/\mathbb{Q}}(\pi) =$ $\prod_{\sigma \in G_{\pi}} \sigma(\pi)$. Thus,

$$\prod_{\sigma \in G_{\pi}} \sigma(2\pi\sqrt{a}) = Nm_{K/\mathbb{Q}}(\pi) \prod_{\sigma \in G_{\pi}} \sigma(2\sqrt{a}).$$

On the other hand, $\sigma(2\pi\sqrt{a})$ is a sum of two divisors of a^2 in \mathcal{O}_M , and hence $\prod_{\sigma \in G_{\pi}} \sigma(2\pi\sqrt{a})$ is a sum of 2^d divisors of a^{2d} in \mathcal{O}_M . Furthermore, since \mathfrak{p} is of degree one,

$$|Nm_{K/\mathbb{Q}}(\pi)| = \#\mathcal{O}_K/\mathfrak{p} = p.$$

Had prime ideals of the form $\mathfrak{p} = \pi \mathcal{O}_K$ positive upper density among the prime ideals of \mathcal{O}_K , then the upper density of rational prime numbers of the form $|Nm_{K/\mathbb{Q}}(\pi)|$ would also be positive in the set of rational prime numbers. Moreover, there would exist a fixed $G \subset \operatorname{Gal}(M/\mathbb{Q})$ such that $G_{\pi} = G$ for a positive fraction of the prime numbers $|Nm_{K/\mathbb{Q}}(\pi)|$. It would follow from the Lemma 1 that there must exist arbitrarily long arithmetic progressions with elements of the form $Nm_{K/\mathbb{Q}}(\pi) \prod_{\sigma \in G} \sigma(2\sqrt{a})$.

Let $r'_1, \ldots, r'_l \in \mathcal{O}_M$ be the representatives of the divisors of a^{2d} modulo the multiplicative group of units of \mathcal{O}_M . Notice that the ring $\mathcal{O}_M[1/r'_1, \ldots, 1/r'_l]$ is finitely generated. Furthermore, any term of an arithmetic progression as above is a sum of 2^d units in this ring. However, by Lemma 2, the length of such arithmetic progressions cannot be arbitrarily large, a contradiction. Thus, prime ideals $\pi \mathcal{O}_K$ as in Lemma 3 for which (3) holds have density zero.

References

- [1] Chandrasekar V., The congruent number problem, Resonance **3**(8), 33-45 (1998).
- [2] Narkiewicz W., Elementary and analytic theory of algebraic numbers, 3rd ed., p. 98, Springer-Verlag, Berlin-Heidelberg (2004).
- [3] Girondo E., Gonzalez-Diez G., Gonzalez-Jimenez E., Steuding R., Steuding J., Right triangles with algebraic sides and elliptic curves over number fields, Math. Slovaca 59(3), 299-306 (2009).
- [4] Green B., Tao T., The primes contain arbitrarily long arithmetic progressions, Annals of Mathematics 167(2), 481-547 (2008).
- [5] Jarden M., Narkiewicz W., On sums of units, Monatsh. Math. 150(4), 327-332 (2006).
- [6] Jedrzejak T., Congruent numbers over real number fields, Colloquium Mathematicum 128(2), 179-186 (2012).
- [7] Neukirch J., Algebraische Zahlentheorie, p. 570, Springer-Verlag, Berlin-Heidelberg (2007).
- [8] Neukirch J., Algebraische Zahlentheorie, p. 429, Springer-Verlag, Berlin-Heidelberg (2007).
- [9] Stoll M., personal communication (2014).
- [10] Tada M., Congruent numbers over real quadratic fields, Hiroshima Math. J. 31(2), 331-343 (2001).
- [11] Tschebotareff N., Die Bestimmung der Dichtigkeit einer Menge von Primzahlen, welche zu einer gegebenen Substitutionsklasse gehören, Math. Ann. 95, 191-228 (1925).
- [12] Tunnell J.B., A Classical Diophantine problem and modular forms of Weight 3/2, Inventiones Mathematicae 72, 323-334 (1983).
- [13] Zinevičius A., On the congruent number problem over integers of cyclic extensions (to appear in Mathematica Slovaca).