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Abstract. Given a real finite field extension K/Q of degree d and class num-

ber hK and a positive integer a, we show that there is a set of rational prime

numbers of relative density at least 1/(2dhK) that have a principal prime fac-
tor πOK ⊂ OK of degree one such that the equation aπ2 = x4 − y2 has no

nontrivial solutions in OK .

1. Introduction

The classical congruent number problem asks for an algorithm that would decide
if a given positive integer n is the area of a right triangle with rational side lengths.
The existence of such a triangle is equivalent to the solvability of the equation

(1) y2 = x4 − 16n2

in rational numbers (x, y) with x nonzero. It is known that the existence of such
a (surprisingly simple) algorithm would follow from the conjecture of Birch and
Swinnerton-Dyer, as was shown in the work of Tunnell [12]. It was noted by Jedrze-
jak [6] that, under assumption of the same conjecture, Tunnell’s theorem together
with the work of Tada [10] imply that every positive integer is the area of some

right triangle with side lengths in the quartic extension Q(
√

3,
√

5).
It is difficult to expect, on the other hand, that the equation (1) could have

solutions among the integers OK of a fixed number field K for all n. Indeed, as it
was remarked by Stoll [9], the conjecture of Bombieri-Lang suggests the opposite.
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That this can never happen when K is a cyclic extension, can be concluded from
the following statement that we showed in [13]:

Theorem A. Let K be a finite Galois extension of the field of rational numbers
with cyclic Galois group Gal(K/Q) and let a be a nonzero (rational) integer. Then
the set of rational prime numbers p for which the equation

(2) ap2 = x4 − y2

in unknowns x, y does not have a solution (x, y) ∈ OK ×OK with x 6= 0, has lower
relative density at least 1/2 in the set of (rational) prime numbers that remain inert
in K.

The conjectural solvability of (1) in some number fields for all positive integers
n raises the question of whether one could expect to find a number field K in which
all the equations (1) were solvable when the parameter n also varies over K (rather
than Q). This still has the same geometric interpretation when the extension K is
real. The analogous question for integers of number fields becomes easier and can
be settled:

Theorem 1. Let K be a finite real extension of the field of rational numbers, of
degree d and class number hK , and let a be a positive integer. Then there is a
set of rational prime numbers p of relative density at least 1/(2dhK), such that the
principal ideal pOK has a principal prime factor πOK of degree one for which the
equation

(3) aπ2 = x4 − y2

in unknowns x, y does not have a solution (x, y) ∈ OK ×OK with x 6= 0.

Most of the proof of this observation translates mutatis mutandis from the proof
of Theorem A, which is indebted to the results of Jarden-Narkiewicz and Green-
Tao. Additionally, a fundamental result of class field theory is employed in Lemma
3. The proof does not suggest that the density 1/(2dhK) could be precise for
some number fields K. The author of this note would find it interesting to see a
demonstration that (1) does not have solutions over OK for many rational integer
values of the parameter n.

2. Proof of Theorem 1

For the proof of the theorem we borrow two statements from [4] and [5], respec-
tively, that we state here as lemmas:

Lemma 1. Let A be any subset of the prime numbers of positive relative upper
density. Then A contains infinitely many arithmetic progressions of length l for all
l.

Lemma 2. If R is a finitely generated integral domain of zero characteristic and l is
an integer, then there exists a constant Al(R) such that every arithmetic progression
in R having more than Al(R) elements contains an element which is not a sum of
l units.

In addition, we will use the following lemma:
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Lemma 3. The relative density of prime numbers p ⊂ Z such that the principal
ideal pOK ⊂ OK has a principal prime factor p = πOK of degree one that remains
inert in the quadratic extension K(

√
−a)/K, is at least 1/(2dhK).

Proof of Lemma 3. Notice first that, since K is a subfield of the real numbers,
its Hilbert class field Cl(K) is also a subfield of the real numbers (as Cl(K)/K
must be unramified at the infinite prime). Therefore there is an element σ ∈
Gal(Cl(K)(

√
−a)/K) that fixes Cl(K) but is not the identity automorphism.

Let L be the Galois closure of the extension Cl(K)(
√
−a)/Q. Since the extension

L/Cl(K)(
√
−a) is Galois and σ ∈ Aut(Cl(K)(

√
−a)), one can extend σ to an

element of Gal(L/Cl(K)). More precisely, there are [L : Cl(K)(
√
−a)] distinct

elements σj ∈ Gal(L/Cl(K)), j = 1, . . . , [L : Cl(K)(
√
−a)], that coincide with σ on

the subfield Cl(K)(
√
−a).

Recall that for any tower of number fields E ⊂ E′ ⊂ E′′, where E′′/E is Galois,
the decomposition type of a prime ideal q ⊂ OE , that does not divide ∆E′′/E ,
in the extension E′/E coincides with the cycle structure of the permutation of
Gal(E′′/E)/Gal(E′′/E′) that is induced by the action of (any) Frobenius element
Frobq of the prime ideal q.

When E = Q, E′ = K,E′′ = L and p is a rational prime that does not divide
the discriminant ∆L/Q, it follows that the ideal pOK ⊂ OK has a prime factor
p ⊂ OK of degree one if and only if the conjugacy class of the Frobenius element
Frobp ∈ Gal(L/Q) intersects the subgroup Gal(L/K) (see, e.g., [7]). In particular,
when the conjugacy class of Frobp contains one of σj as above, pOK has a prime
factor p of degree one.

Likewise, when E = K,E′ = Cl(K), E′′ = L, it follows that a prime ideal
p ⊂ OK as above splits completely in the extension Cl(K)/K. Indeed, we may
assume, without a loss of generality, that

Frobp(x) ≡ x#Z/pZ mod q

for all x ∈ OL and a prime ideal q ⊂ OL that lies over p (by replacing Frobp, if
necessary, with another element from the conjugacy class of Frobp). Since p is of
degree 1, we have #Z/pZ = #OK/p. Hence holds

Frobp(x) ≡ x#OK/p mod q,

for all x ∈ OL. Thus Frobp is also a Frobenius element Frobp of p (with re-
spect to the extension L/K). The cycle structure of the permutation of the group
Gal(L/K)/Gal(L/Cl(K)) induced by Frobp is then the same as that induced by
any σj that is in the same conjugacy class as Frobp. Consequently, it is the product
of 1-cycles (since σj ∈ Gal(L/Cl(K)) acts on Gal(L/K)/Gal(L/Cl(K)) trivially).

On the other hand, the permutation of Gal(L/K)/Gal(L/K(
√
−a)) induced by

the σj is not the trivial one since σj /∈ Gal(L/K(
√
−a)). Consequently, the prime

ideal p remains inert in the extension K(
√
−a)/K.

A fundamental result of class field theory asserts that prime ideals of K that
split completely in the extension Cl(K)/K are principal [8]. Thus p = πOK for
some prime element π ∈ OK that remains prime in OK(

√
−a).

By the Chebotarev density theorem [11], the density of rational prime numbers
p with Frobenius symbol Frobp (with respect to the extension L/Q) in the same
conjugacy class as some σj is equal to the number of elements in those conjugacy
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classes of Gal(L/Q) that contain some σj , divided by the size of the Galois group
Gal(L/Q). It is therefore, at least

#{σj}/# Gal(L/Q) = ([L : Cl(K)]/2)/([Cl(K) : Q][L : Cl(K)]) = 1/(2dhK).

�

Proof of Theorem 1. Let p = πOK be a prime ideal as in Lemma 3. If the equation

aπ2 = x4 − y2 = (x2 + y)(x2 − y)

has a solution in OK with x 6= 0 then either both x2 − y, x2 + y are divisible by π
or not. In the first case, {

x2 − y = πr

x2 + y = πar−1

for some r ∈ OK that divides a. Denote by σ the generator of Gal(K(
√
−a)/K).

By adding the equations one obtains

2x2r = π(r2 + a) = π(r +
√
−1)(r −

√
−a) = π(r +

√
−1)σ(r +

√
−a).

We thus can see that, since π is a prime element of the ring of integers of K(
√
−a)

that is mapped to an associate of itself by σ , the highest power of π that divides the
right-hand side must be odd. On the other hand, the highest power of any prime
element that divides the left-hand side and does not divide 2a is even. Therefore,
the first case may hold for at most finitely many prime ideals πOK . We thus may
restrict ourselves to the second case, i.e., assume that{

x2 − y = π2ar−1

x2 + y = r

holds for some r ∈ OK that divides a. By adding the equations again, one obtains

2x2r = r2 + π2a.

Let K ′ be a field extension of K that is generated by elements of the form
√
r,

where r ∈ OK divide a. Up to multiplication by units, there are only finitely many
such r. Let r1, ..., rv be their representatives. The Dirichlet unit theorem [2] tells
also that the multiplicative group of units of OK is finitely generated. Let e1, ..., es
be its generators. Then K ′ = K(

√
2,
√
e1, ...,

√
es,
√
r1, ...,

√
rv) is a finite extension

of K. Over OK′ one can write

(x
√

2r − π
√
a)(x
√

2r + π
√
a) = r2.

Hence both x
√

2r − π
√
a, x
√

2r + π
√
a are divisors of a2 in OK′ . Consequently,

2π
√
a is a sum of two divisors of a2.

We claim that such ideals p = πOK have density zero among the prime ideals of
the ring OK . Let M denote the Galois closure of the field extension K ′/Q. Note
that there is a subset Gπ ⊂ Gal(M/Q) of cardinality d such that NmK/Q(π) =
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∏
σ∈Gπ σ(π). Thus, ∏

σ∈Gπ

σ(2π
√
a) = NmK/Q(π)

∏
σ∈Gπ

σ(2
√
a).

On the other hand, σ(2π
√
a) is a sum of two divisors of a2 in OM , and hence∏

σ∈Gπ σ(2π
√
a) is a sum of 2d divisors of a2d in OM . Furthermore, since p is of

degree one,

|NmK/Q(π)| = #OK/p = p.

Had prime ideals of the form p = πOK positive upper density among the prime
ideals ofOK , then the upper density of rational prime numbers of the form |NmK/Q(π)|
would also be positive in the set of rational prime numbers. Moreover, there
would exist a fixed G ⊂ Gal(M/Q) such that Gπ = G for a positive fraction
of the prime numbers |NmK/Q(π)|. It would follow from the Lemma 1 that
there must exist arbitrarily long arithmetic progressions with elements of the form
NmK/Q(π)

∏
σ∈G σ(2

√
a).

Let r′1, . . . , r
′
l ∈ OM be the representatives of the divisors of a2d modulo the

multiplicative group of units of OM . Notice that the ring OM [1/r′1, . . . , 1/r
′
l] is

finitely generated. Furthermore, any term of an arithmetic progression as above is
a sum of 2d units in this ring. However, by Lemma 2, the length of such arithmetic
progressions cannot be arbitrarily large, a contradiction. Thus, prime ideals πOK
as in Lemma 3 for which (3) holds have density zero.

�
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