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ABSTRACT. Given a real finite field extension K/Q of degree d and class num-
ber hx and a positive integer a, we show that there is a set of rational prime
numbers of relative density at least 1/(2dhg ) that have a principal prime fac-
tor TOg C Ok of degree one such that the equation an? = z* — 2 has no
nontrivial solutions in O .

1. INTRODUCTION

The classical congruent number problem asks for an algorithm that would decide
if a given positive integer n is the area of a right triangle with rational side lengths.
The existence of such a triangle is equivalent to the solvability of the equation

(1) y? =z — 16n?

in rational numbers (x,y) with « nonzero. It is known that the existence of such
a (surprisingly simple) algorithm would follow from the conjecture of Birch and
Swinnerton-Dyer, as was shown in the work of Tunnell [12]. It was noted by Jedrze-
jak [6] that, under assumption of the same conjecture, Tunnell’s theorem together
with the work of Tada [10] imply that every positive integer is the area of some
right triangle with side lengths in the quartic extension Q(v/3, V/5).

It is difficult to expect, on the other hand, that the equation (1) could have
solutions among the integers Ok of a fixed number field K for all n. Indeed, as it
was remarked by Stoll [9], the conjecture of Bombieri-Lang suggests the opposite.
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That this can never happen when K is a cyclic extension, can be concluded from
the following statement that we showed in [13]:

Theorem A. Let K be a finite Galois extension of the field of rational numbers
with cyclic Galois group Gal(K/Q) and let a be a nonzero (rational) integer. Then
the set of rational prime numbers p for which the equation

(2) ap® =t — ¢

in unknowns x,y does not have a solution (x,y) € Ok x Ok with x # 0, has lower

relative density at least 1/2 in the set of (rational) prime numbers that remain inert
n K.

The conjectural solvability of (1) in some number fields for all positive integers
n raises the question of whether one could expect to find a number field K in which
all the equations (1) were solvable when the parameter n also varies over K (rather
than @). This still has the same geometric interpretation when the extension K is
real. The analogous question for integers of number fields becomes easier and can
be settled:

Theorem 1. Let K be a finite real extension of the field of rational numbers, of
degree d and class number hg, and let a be a positive integer. Then there is a
set of rational prime numbers p of relative density at least 1/(2dhk), such that the
principal ideal pOy has a principal prime factor 1Ok of degree one for which the
equation

(3) am? =zt — 4?2

in unknowns x,y does not have a solution (z,y) € Ox x Ok with x # 0.

Most of the proof of this observation translates mutatis mutandis from the proof
of Theorem A, which is indebted to the results of Jarden-Narkiewicz and Green-
Tao. Additionally, a fundamental result of class field theory is employed in Lemma
3. The proof does not suggest that the density 1/(2dhg) could be precise for
some number fields K. The author of this note would find it interesting to see a
demonstration that (1) does not have solutions over Ok for many rational integer
values of the parameter n.

2. PROOF OF THEOREM 1

For the proof of the theorem we borrow two statements from [4] and [5], respec-
tively, that we state here as lemmas:

Lemma 1. Let A be any subset of the prime numbers of positive relative upper

density. Then A contains infinitely many arithmetic progressions of length | for all
l.

Lemma 2. If R is a finitely generated integral domain of zero characteristic and [ is
an integer, then there exists a constant Aj(R) such that every arithmetic progression
in R having more than A;(R) elements contains an element which is not a sum of
I units.

In addition, we will use the following lemmas:
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Lemma 3. The relative density of prime numbers p C Z such that the principal
ideal pOx C Ok has a principal prime factor p = 7Ok of degree one that remains
inert in the quadratic extension K(v/—a)/K, is at least 1/(2dh).

Proof of Lemma 3. Notice first that, since K is a subfield of the real numbers,
its Hilbert class field C1(K) is also a subfield of the real numbers (as Cl(K)/K
must be unramified at the infinite prime). Therefore there is an element o €
Gal(Cl(K)(v/—a)/K) that fixes C1(K) but is not the identity automorphism.

Let L be the Galois closure of the extension Cl(K)(y/—a)/Q. Since the extension
L/ Cl(K)(v/—a) is Galois and o € Aut(Cl(K)(y/—a)), one can extend o to an
element of Gal(L/CIl(K)). More precisely, there are [L : CI(K)(y/—a)] distinct
elements o; € Gal(L/Cl(K)),j =1,...,[L : CI(K)(v/—a)], that coincide with o on
the subfield C1(K)(y/—a).

Recall that for any tower of number fields E C E' C E”, where E”/E is Galois,
the decomposition type of a prime ideal ¢ C Op, that does not divide Agy /g,
in the extension E’/FE coincides with the cycle structure of the permutation of
Gal(E"/E)/ Gal(E"” /E") that is induced by the action of (any) Frobenius element
Frobg, of the prime ideal g.

When £ = Q,F' = K,E"” = L and p is a rational prime that does not divide
the discriminant Ay q, it follows that the ideal pOx C O has a prime factor
p C Ok of degree one if and only if the conjugacy class of the Frobenius element
Frob, € Gal(L/Q) intersects the subgroup Gal(L/K) (see, e.g., [7]). In particular,
when the conjugacy class of Frob,, contains one of ¢; as above, pOg has a prime
factor p of degree one.

Likewise, when E = K,E' = ClI(K),E"” = L, it follows that a prime ideal
p C Ok as above splits completely in the extension CI(K)/K. Indeed, we may
assume, without a loss of generality, that

Frob,(z) = ##2/PZ mod q

for all z € Op, and a prime ideal g C Op, that lies over p (by replacing Frob,, if
necessary, with another element from the conjugacy class of Frob,). Since p is of
degree 1, we have #Z/pZ = #Ox /p. Hence holds

Frob, (z) = 2#°%/?  mod q,

for all z € Op. Thus Frob, is also a Frobenius element Frob, of p (with re-
spect to the extension L/K). The cycle structure of the permutation of the group
Gal(L/K)/ Gal(L/ Cl(K)) induced by Frob, is then the same as that induced by
any o; that is in the same conjugacy class as Frob,. Consequently, it is the product
of 1-cycles (since o; € Gal(L/ Cl(K)) acts on Gal(L/K)/ Gal(L/ Cl(K)) trivially).

On the other hand, the permutation of Gal(L/K)/ Gal(L/K (v/—a)) induced by
the o; is not the trivial one since o; ¢ Gal(L/K (v/—a)). Consequently, the prime
ideal p remains inert in the extension K(y/—a)/K.

A fundamental result of class field theory asserts that prime ideals of K that
split completely in the extension Cl(K)/K are principal [8]. Thus p = 7Ok for
some prime element 7 € Ok that remains prime in Oy /=;.

By the Chebotarev density theorem [11], the density of rational prime numbers
p with Frobenius symbol Frob, (with respect to the extension L/Q) in the same
conjugacy class as some o; is equal to the number of elements in those conjugacy
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classes of Gal(L/Q) that contain some o, divided by the size of the Galois group
Gal(L/Q). It is therefore, at least

#{oj}/# Gal(L/Q) = ([L : CI(K)]/2)/([CUK) : QL : CUK)]) = 1/(2dhk).

O

Proof of Theorem 1. Let p = mOf be a prime ideal as in Lemma 3. If the equation
an? =2t —y? = (2% +y)(z* —y)

has a solution in Ok with x # 0 then either both 2% — y, 2% + y are divisible by 7

or not. In the first case,
2?2 —y=mr
2?2 +y=mar!

for some r € Ok that divides a. Denote by o the generator of Gal(K (y/—a)/K).
By adding the equations one obtains

20%r = n(r? + a) = w(r + V=1)(r — vV=a) = 7(r + V=)o (r + v=a).

We thus can see that, since 7 is a prime element of the ring of integers of K (v/—a)
that is mapped to an associate of itself by ¢ , the highest power of 7 that divides the
right-hand side must be odd. On the other hand, the highest power of any prime
element that divides the left-hand side and does not divide 2a is even. Therefore,
the first case may hold for at most finitely many prime ideals 7Og. We thus may
restrict ourselves to the second case, i.e., assume that

mQ—yzﬂ'Qar_l
xQer:r

holds for some r € Ok that divides a. By adding the equations again, one obtains

222%r = r? + r2a.

Let K’ be a field extension of K that is generated by elements of the form /r,
where r € Ok divide a. Up to multiplication by units, there are only finitely many
such r. Let rq,...,r, be their representatives. The Dirichlet unit theorem [2] tells
also that the multiplicative group of units of Ok is finitely generated. Let ey, ..., e
be its generators. Then K’ = K(1/2, VL5 s /€y \/T1, .y \/Ty) Is a finite extension
of K. Over Ok one can write

(2V2r — m/a)(xV2r + mv/a) = 12

Hence both zv/2r — 7 a,x\/ﬂ + m/a are divisors of a® in Ogs. Consequently,
27+/a is a sum of two divisors of a?.

We claim that such ideals p = 7Ok have density zero among the prime ideals of
the ring O. Let M denote the Galois closure of the field extension K’/Q. Note
that there is a subset G C Gal(M/Q) of cardinality d such that Nmg q(r) =
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[l e o(m). Thus,
11 s@nva) = Nmg o) [] o2Va).

ceGr ceGr

On the other hand, o(2m+/a) is a sum of two divisors of a? in Oy, and hence
[loeq, o(2my/a) is a sum of 2¢ divisors of a?? in Oy;. Furthermore, since p is of
degree one,

INmg ()| = #0k /p = p.

Had prime ideals of the form p = 7Ok positive upper density among the prime
ideals of O, then the upper density of rational prime numbers of the form [Nm g /g (7)|
would also be positive in the set of rational prime numbers. Moreover, there
would exist a fixed G C Gal(M/Q) such that G, = G for a positive fraction
of the prime numbers |[Nmg /(7). It would follow from the Lemma 1 that
there must exist arbitrarily long arithmetic progressions with elements of the form
Nmgo(m) [Iyeqo(2Va).

Let r{,...,r] € Oa be the representatives of the divisors of a?? modulo the
multiplicative group of units of Op;. Notice that the ring Op[1/r],...,1/7]] is
finitely generated. Furthermore, any term of an arithmetic progression as above is
a sum of 27 units in this ring. However, by Lemma 2, the length of such arithmetic
progressions cannot be arbitrarily large, a contradiction. Thus, prime ideals 1O
as in Lemma 3 for which (3) holds have density zero.

O
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