ON THE CONGRUENT NUMBER PROBLEM OVER INTEGERS OF REAL NUMBER FIELDS

Albertas Zinevičius
Department of Mathematics and Informatics, Vilnius University, Naugarduko 24, Vilnius, LT-03225, Lithuania
and
Institute of Mathematics and Informatics, Akademijos 4, Vilnius, LT-08663, Lithuania
Email: albertas.zinevicius@mif.vu.lt

Abstract

Given a real finite field extension K / \mathbb{Q} of degree d and class number h_{K} and a positive integer a, we show that there is a set of rational prime numbers of relative density at least $1 /\left(2 d h_{K}\right)$ that have a principal prime factor $\pi \mathcal{O}_{K} \subset \mathcal{O}_{K}$ of degree one such that the equation $a \pi^{2}=x^{4}-y^{2}$ has no nontrivial solutions in \mathcal{O}_{K}.

1. Introduction

The classical congruent number problem asks for an algorithm that would decide if a given positive integer n is the area of a right triangle with rational side lengths. The existence of such a triangle is equivalent to the solvability of the equation

$$
\begin{equation*}
y^{2}=x^{4}-16 n^{2} \tag{1}
\end{equation*}
$$

in rational numbers (x, y) with x nonzero. It is known that the existence of such a (surprisingly simple) algorithm would follow from the conjecture of Birch and Swinnerton-Dyer, as was shown in the work of Tunnell [12]. It was noted by Jedrzejak [6] that, under assumption of the same conjecture, Tunnell's theorem together with the work of Tada [10] imply that every positive integer is the area of some right triangle with side lengths in the quartic extension $\mathbb{Q}(\sqrt{3}, \sqrt{5})$.

It is difficult to expect, on the other hand, that the equation (1) could have solutions among the integers \mathcal{O}_{K} of a fixed number field K for all n. Indeed, as it was remarked by Stoll [9], the conjecture of Bombieri-Lang suggests the opposite.

[^0]Key words and phrases. Congruent numbers, real number fields, rings of integers, prime ideals.

Albanian J. Math. 8 (2014), no. 2, 49-53.
That this can never happen when K is a cyclic extension, can be concluded from the following statement that we showed in [13]:

Theorem A. Let K be a finite Galois extension of the field of rational numbers with cyclic Galois group $\operatorname{Gal}(K / \mathbb{Q})$ and let a be a nonzero (rational) integer. Then the set of rational prime numbers p for which the equation

$$
\begin{equation*}
a p^{2}=x^{4}-y^{2} \tag{2}
\end{equation*}
$$

in unknowns x, y does not have a solution $(x, y) \in \mathcal{O}_{K} \times \mathcal{O}_{K}$ with $x \neq 0$, has lower relative density at least $1 / 2$ in the set of (rational) prime numbers that remain inert in K.

The conjectural solvability of (1) in some number fields for all positive integers n raises the question of whether one could expect to find a number field K in which all the equations (1) were solvable when the parameter n also varies over K (rather than \mathbb{Q}). This still has the same geometric interpretation when the extension K is real. The analogous question for integers of number fields becomes easier and can be settled:

Theorem 1. Let K be a finite real extension of the field of rational numbers, of degree d and class number h_{K}, and let a be a positive integer. Then there is a set of rational prime numbers p of relative density at least $1 /\left(2 d h_{K}\right)$, such that the principal ideal $p \mathcal{O}_{K}$ has a principal prime factor $\pi \mathcal{O}_{K}$ of degree one for which the equation

$$
\begin{equation*}
a \pi^{2}=x^{4}-y^{2} \tag{3}
\end{equation*}
$$

in unknowns x, y does not have a solution $(x, y) \in \mathcal{O}_{K} \times \mathcal{O}_{K}$ with $x \neq 0$.
Most of the proof of this observation translates mutatis mutandis from the proof of Theorem A, which is indebted to the results of Jarden-Narkiewicz and GreenTao. Additionally, a fundamental result of class field theory is employed in Lemma 3. The proof does not suggest that the density $1 /\left(2 d h_{K}\right)$ could be precise for some number fields K. The author of this note would find it interesting to see a demonstration that (1) does not have solutions over \mathcal{O}_{K} for many rational integer values of the parameter n.

2. Proof of Theorem 1

For the proof of the theorem we borrow two statements from [4] and [5], respectively, that we state here as lemmas:

Lemma 1. Let A be any subset of the prime numbers of positive relative upper density. Then A contains infinitely many arithmetic progressions of length l for all l.

Lemma 2. If R is a finitely generated integral domain of zero characteristic and l is an integer, then there exists a constant $A_{l}(R)$ such that every arithmetic progression in R having more than $A_{l}(R)$ elements contains an element which is not a sum of l units.

In addition, we will use the following lemma:

Lemma 3. The relative density of prime numbers $p \subset \mathbb{Z}$ such that the principal ideal $p \mathcal{O}_{K} \subset \mathcal{O}_{K}$ has a principal prime factor $\mathfrak{p}=\pi \mathcal{O}_{K}$ of degree one that remains inert in the quadratic extension $K(\sqrt{-a}) / K$, is at least $1 /\left(2 d h_{K}\right)$.

Proof of Lemma 3. Notice first that, since K is a subfield of the real numbers, its Hilbert class field $\mathrm{Cl}(K)$ is also a subfield of the real numbers (as $\mathrm{Cl}(K) / K$ must be unramified at the infinite prime). Therefore there is an element $\sigma \in$ $\operatorname{Gal}(\mathrm{Cl}(K)(\sqrt{-a}) / K)$ that fixes $\mathrm{Cl}(K)$ but is not the identity automorphism.

Let L be the Galois closure of the extension $\operatorname{Cl}(K)(\sqrt{-a}) / \mathbb{Q}$. Since the extension $L / \mathrm{Cl}(K)(\sqrt{-a})$ is Galois and $\sigma \in \operatorname{Aut}(\mathrm{Cl}(K)(\sqrt{-a}))$, one can extend σ to an element of $\operatorname{Gal}(L / \mathrm{Cl}(K))$. More precisely, there are $[L: \mathrm{Cl}(K)(\sqrt{-a})]$ distinct elements $\sigma_{j} \in \operatorname{Gal}(L / \mathrm{Cl}(K)), j=1, \ldots,[L: \mathrm{Cl}(K)(\sqrt{-a})]$, that coincide with σ on the subfield $\mathrm{Cl}(K)(\sqrt{-a})$.

Recall that for any tower of number fields $E \subset E^{\prime} \subset E^{\prime \prime}$, where $E^{\prime \prime} / E$ is Galois, the decomposition type of a prime ideal $\mathfrak{q} \subset \mathcal{O}_{E}$, that does not divide $\Delta_{E^{\prime \prime} / E}$, in the extension E^{\prime} / E coincides with the cycle structure of the permutation of $\operatorname{Gal}\left(E^{\prime \prime} / E\right) / \operatorname{Gal}\left(E^{\prime \prime} / E^{\prime}\right)$ that is induced by the action of (any) Frobenius element $\operatorname{Frob}_{\mathfrak{q}}$ of the prime ideal \mathfrak{q}.

When $E=\mathbb{Q}, E^{\prime}=K, E^{\prime \prime}=L$ and p is a rational prime that does not divide the discriminant $\Delta_{L / \mathbb{Q}}$, it follows that the ideal $p \mathcal{O}_{K} \subset \mathcal{O}_{K}$ has a prime factor $\mathfrak{p} \subset \mathcal{O}_{K}$ of degree one if and only if the conjugacy class of the Frobenius element $\operatorname{Frob}_{p} \in \operatorname{Gal}(L / \mathbb{Q})$ intersects the subgroup $\operatorname{Gal}(L / K)$ (see, e.g., [7]). In particular, when the conjugacy class of Frob_{p} contains one of σ_{j} as above, $p \mathcal{O}_{K}$ has a prime factor \mathfrak{p} of degree one.

Likewise, when $E=K, E^{\prime}=\mathrm{Cl}(K), E^{\prime \prime}=L$, it follows that a prime ideal $\mathfrak{p} \subset \mathcal{O}_{K}$ as above splits completely in the extension $\mathrm{Cl}(K) / K$. Indeed, we may assume, without a loss of generality, that

$$
\operatorname{Frob}_{p}(x) \equiv x^{\# \mathbb{Z} / p \mathbb{Z}} \quad \bmod \mathfrak{q}
$$

for all $x \in \mathcal{O}_{L}$ and a prime ideal $\mathfrak{q} \subset \mathcal{O}_{L}$ that lies over \mathfrak{p} (by replacing Frob ${ }_{p}$, if necessary, with another element from the conjugacy class of Frob ${ }_{p}$). Since \mathfrak{p} is of degree 1 , we have $\# \mathbb{Z} / p \mathbb{Z}=\# \mathcal{O}_{K} / \mathfrak{p}$. Hence holds

$$
\operatorname{Frob}_{p}(x) \equiv x^{\# \mathcal{O}_{K} / \mathfrak{p}} \quad \bmod \mathfrak{q}
$$

for all $x \in \mathcal{O}_{L}$. Thus Frob_{p} is also a Frobenius element Frob ${ }_{\mathfrak{p}}$ of \mathfrak{p} (with respect to the extension $L / K)$. The cycle structure of the permutation of the group $\operatorname{Gal}(L / K) / \operatorname{Gal}(L / \mathrm{Cl}(K))$ induced by $\operatorname{Frob}_{\mathfrak{p}}$ is then the same as that induced by any σ_{j} that is in the same conjugacy class as Frob_{p}. Consequently, it is the product of 1-cycles (since $\sigma_{j} \in \operatorname{Gal}(L / \mathrm{Cl}(K))$ acts on $\operatorname{Gal}(L / K) / \mathrm{Gal}(L / \mathrm{Cl}(K))$ trivially).

On the other hand, the permutation of $\operatorname{Gal}(L / K) / \operatorname{Gal}(L / K(\sqrt{-a}))$ induced by the σ_{j} is not the trivial one since $\sigma_{j} \notin \operatorname{Gal}(L / K(\sqrt{-a}))$. Consequently, the prime ideal \mathfrak{p} remains inert in the extension $K(\sqrt{-a}) / K$.

A fundamental result of class field theory asserts that prime ideals of K that split completely in the extension $\mathrm{Cl}(K) / K$ are principal [8]. Thus $\mathfrak{p}=\pi \mathcal{O}_{K}$ for some prime element $\pi \in \mathcal{O}_{K}$ that remains prime in $\mathcal{O}_{K(\sqrt{-a})}$.

By the Chebotarev density theorem [11], the density of rational prime numbers p with Frobenius symbol Frob_{p} (with respect to the extension L / \mathbb{Q}) in the same conjugacy class as some σ_{j} is equal to the number of elements in those conjugacy

Albanian J. Math. 8 (2014), no. 2, 49-53.
classes of $\operatorname{Gal}(L / \mathbb{Q})$ that contain some σ_{j}, divided by the size of the Galois group $\operatorname{Gal}(L / \mathbb{Q})$. It is therefore, at least

$$
\#\left\{\sigma_{j}\right\} / \# \operatorname{Gal}(L / \mathbb{Q})=([L: \mathrm{Cl}(K)] / 2) /([\mathrm{Cl}(K): \mathbb{Q}][L: \mathrm{Cl}(K)])=1 /\left(2 d h_{K}\right)
$$

Proof of Theorem 1. Let $\mathfrak{p}=\pi \mathcal{O}_{K}$ be a prime ideal as in Lemma 3. If the equation

$$
a \pi^{2}=x^{4}-y^{2}=\left(x^{2}+y\right)\left(x^{2}-y\right)
$$

has a solution in \mathcal{O}_{K} with $x \neq 0$ then either both $x^{2}-y, x^{2}+y$ are divisible by π or not. In the first case,

$$
\left\{\begin{array}{l}
x^{2}-y=\pi r \\
x^{2}+y=\pi a r^{-1}
\end{array}\right.
$$

for some $r \in \mathcal{O}_{K}$ that divides a. Denote by σ the generator of $\operatorname{Gal}(K(\sqrt{-a}) / K)$. By adding the equations one obtains

$$
2 x^{2} r=\pi\left(r^{2}+a\right)=\pi(r+\sqrt{-1})(r-\sqrt{-a})=\pi(r+\sqrt{-1}) \sigma(r+\sqrt{-a})
$$

We thus can see that, since π is a prime element of the ring of integers of $K(\sqrt{-a})$ that is mapped to an associate of itself by σ, the highest power of π that divides the right-hand side must be odd. On the other hand, the highest power of any prime element that divides the left-hand side and does not divide $2 a$ is even. Therefore, the first case may hold for at most finitely many prime ideals $\pi \mathcal{O}_{K}$. We thus may restrict ourselves to the second case, i.e., assume that

$$
\left\{\begin{array}{l}
x^{2}-y=\pi^{2} a r^{-1} \\
x^{2}+y=r
\end{array}\right.
$$

holds for some $r \in \mathcal{O}_{K}$ that divides a. By adding the equations again, one obtains

$$
2 x^{2} r=r^{2}+\pi^{2} a
$$

Let K^{\prime} be a field extension of K that is generated by elements of the form \sqrt{r}, where $r \in \mathcal{O}_{K}$ divide a. Up to multiplication by units, there are only finitely many such r. Let r_{1}, \ldots, r_{v} be their representatives. The Dirichlet unit theorem [2] tells also that the multiplicative group of units of \mathcal{O}_{K} is finitely generated. Let e_{1}, \ldots, e_{s} be its generators. Then $K^{\prime}=K\left(\sqrt{2}, \sqrt{e_{1}}, \ldots, \sqrt{e_{s}}, \sqrt{r_{1}}, \ldots, \sqrt{r_{v}}\right)$ is a finite extension of K. Over $\mathcal{O}_{K^{\prime}}$ one can write

$$
(x \sqrt{2 r}-\pi \sqrt{a})(x \sqrt{2 r}+\pi \sqrt{a})=r^{2} .
$$

Hence both $x \sqrt{2 r}-\pi \sqrt{a}, x \sqrt{2 r}+\pi \sqrt{a}$ are divisors of a^{2} in $\mathcal{O}_{K^{\prime}}$. Consequently, $2 \pi \sqrt{a}$ is a sum of two divisors of a^{2}.

We claim that such ideals $\mathfrak{p}=\pi \mathcal{O}_{K}$ have density zero among the prime ideals of the ring \mathcal{O}_{K}. Let M denote the Galois closure of the field extension K^{\prime} / \mathbb{Q}. Note that there is a subset $G_{\pi} \subset \operatorname{Gal}(M / \mathbb{Q})$ of cardinality d such that $N m_{K / \mathbb{Q}}(\pi)=$
$\prod_{\sigma \in G_{\pi}} \sigma(\pi)$. Thus,

$$
\prod_{\sigma \in G_{\pi}} \sigma(2 \pi \sqrt{a})=N m_{K / \mathbb{Q}}(\pi) \prod_{\sigma \in G_{\pi}} \sigma(2 \sqrt{a}) .
$$

On the other hand, $\sigma(2 \pi \sqrt{a})$ is a sum of two divisors of a^{2} in \mathcal{O}_{M}, and hence $\prod_{\sigma \in G_{\pi}} \sigma(2 \pi \sqrt{a})$ is a sum of 2^{d} divisors of $a^{2 d}$ in \mathcal{O}_{M}. Furthermore, since \mathfrak{p} is of degree one,

$$
\left|N m_{K / \mathbb{Q}}(\pi)\right|=\# \mathcal{O}_{K} / \mathfrak{p}=p .
$$

Had prime ideals of the form $\mathfrak{p}=\pi \mathcal{O}_{K}$ positive upper density among the prime ideals of \mathcal{O}_{K}, then the upper density of rational prime numbers of the form $\left|N m_{K / \mathbb{Q}}(\pi)\right|$ would also be positive in the set of rational prime numbers. Moreover, there would exist a fixed $G \subset \operatorname{Gal}(M / \mathbb{Q})$ such that $G_{\pi}=G$ for a positive fraction of the prime numbers $\left|N m_{K / \mathbb{Q}}(\pi)\right|$. It would follow from the Lemma 1 that there must exist arbitrarily long arithmetic progressions with elements of the form $N m_{K / \mathbb{Q}}(\pi) \prod_{\sigma \in G} \sigma(2 \sqrt{a})$.

Let $r_{1}^{\prime}, \ldots, r_{l}^{\prime} \in \mathcal{O}_{M}$ be the representatives of the divisors of $a^{2 d}$ modulo the multiplicative group of units of \mathcal{O}_{M}. Notice that the ring $\mathcal{O}_{M}\left[1 / r_{1}^{\prime}, \ldots, 1 / r_{l}^{\prime}\right]$ is finitely generated. Furthermore, any term of an arithmetic progression as above is a sum of 2^{d} units in this ring. However, by Lemma 2 , the length of such arithmetic progressions cannot be arbitrarily large, a contradiction. Thus, prime ideals $\pi \mathcal{O}_{K}$ as in Lemma 3 for which (3) holds have density zero.

References

[1] Chandrasekar V., The congruent number problem, Resonance 3(8), 33-45 (1998).
[2] Narkiewicz W., Elementary and analytic theory of algebraic numbers, 3rd ed., p. 98, SpringerVerlag, Berlin-Heidelberg (2004).
[3] Girondo E., Gonzalez-Diez G., Gonzalez-Jimenez E., Steuding R., Steuding J., Right triangles with algebraic sides and elliptic curves over number fields, Math. Slovaca 59(3), 299-306 (2009).
[4] Green B., Tao T., The primes contain arbitrarily long arithmetic progressions, Annals of Mathematics 167 (2), 481-547 (2008).
[5] Jarden M., Narkiewicz W., On sums of units, Monatsh. Math. 150(4), 327-332 (2006).
[6] Jedrzejak T., Congruent numbers over real number fields, Colloquium Mathematicum 128(2), 179-186 (2012).
[7] Neukirch J., Algebraische Zahlentheorie, p. 570, Springer-Verlag, Berlin-Heidelberg (2007).
[8] Neukirch J., Algebraische Zahlentheorie, p. 429, Springer-Verlag, Berlin-Heidelberg (2007).
[9] Stoll M., personal communication (2014).
[10] Tada M., Congruent numbers over real quadratic fields, Hiroshima Math. J. 31(2), 331-343 (2001).
[11] Tschebotareff N., Die Bestimmung der Dichtigkeit einer Menge von Primzahlen, welche zu einer gegebenen Substitutionsklasse gehören, Math. Ann. 95, 191-228 (1925).
[12] Tunnell J.B., A Classical Diophantine problem and modular forms of Weight 3/2, Inventiones Mathematicae 72, 323-334 (1983).
[13] Zinevičius A., On the congruent number problem over integers of cyclic extensions (to appear in Mathematica Slovaca).

[^0]: 2010 Mathematics Subject Classification. 11D45, 11H06.

