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Abstract. In this short paper we present symmetric encryption algorithm
based on family of bipartite graphs D̃(n, q). It is a fast stream cipher with
computation speed O(n) for the key of fixed length. If the key is linear function
from n the efficiency is O(n2). Encryption map has a multivariate nature,
so the security level can be evaluated via degrees and other parameters of
corresponding multivariate polynomials. We show that the degree of graph
based encryption maps are growing with the growth of the dimension of the
plain space. Therefore this algorithm is resistant to linearization attacks.

1. Introduction

Multivariate polynomials are just polynomials in several variables. In this article
we are interested in polynomials over finite fields. Though multivariate polynomial
cryptography is a potential candidate for post quantum cryptography, schemes
based on it are mostly used for digital signature purpose only; see [1] for further
details. Multivariate cryptography is proposed as a tool for public key cryptography,
but only few encryption schemes were developed untill now, see for example [2].

In this paper we explore the possibility of using multivariate polynomial sys-
tems for symmetric encryption. Main security assumption of presented symmetric
scheme is backed by the NP-hardness of the problem to solve nonlinear system of
equations over a finite field. There are many different algorithms where graphs are
used. Graph based algorithms are used, in particular, in cryptography, coding the-
ory, car navigation systems, sociology, mobile robotics and even in computer games.
Families of graphs can be used to create multivariate polynomials for cryptographic
schemes. Graphs were first used in cryptography by Ustimenko in [3,4]. There are
other examples of crypto-systems based on graphs D(n, q), which were introduced
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in [5]. Multivariate maps used in this algorithms were investigated in [6–8]. A.
Wróblewska proved that maps related to D(n, q) are cubical; see [7]. Computer
simulations of multivariate maps based on graph D(n,K) are designed in [9, 10].

2. Families of graphs

For our purposes we are interested only in simple graphs. Simple graph is a
undirected graph containing no graph loops or multiple edges. By Γ(V,E) we
denote graph where V is a set of vertices and E is a set of edges. We say that
graph is connected if for arbitrary pair of vertices v1, v2 ∈ V there is a path from
v1 to v2. The girth of a connected, simple graph is a length of the shortest cycle in
a graph. Graph Γ(V = V1 ∪ V2, E) is bipartite if set of vertices can be divided into
two sets V1 and V2 (V1 ∩ V2 = ∅) such that every edge connects a vertex in V1 to
one in V2.

We refer to bipartite graph Γ(V1 ∪ V2, E) as regular one if every vertex from V1
and V2 has the same constant degree. Mentioned definitions and more facts from
Simple Graphs Theory can be find in [11].

The following interpretation of family of graphs D(n, q) can be find in [5]. Let
Fq be a finite field. Firstly, let us recall the definition of graph D(q) corresponding
to infinite incidence structure (P,L, I), where P is collection of points and L is
collection of lines. By I we denote the incidence relation for this graph. Let us to
use the notions for points and lines introduced in [5]:

(p) = (p1,0, p1,1, p1,2, p2,1, p2,2, p
′
2,2, p2,3, ..., pi,i, p

′
i,i, pi,i+1, pi+1,1...),

[l] = [l0,1, l1,1, l1,2, l2,1, l2,2, l
′
2,2, l2,3, ..., li,i, l

′
i,i, li,i+1, li+1,1...].

Two types of brackets allow us to distinguish points and lines. Points and lines
are elements of two copies of the vector space over Fq. In an infinite incidence
structure (P,L, I) the point (p) is incident with the line [l], and we write (p)I[l], if
the following relations between their coordinates hold:

(1)



l1,1 − p1,1 = l0,1p1,0
l1,2 − p1,2 = l1,1p1,0
l2,1 − p2,1 = l0,1p1,1
li,i − pi,i = l0,1pi−1,i,
l′i,i − p′i,i = li,i−1p1,0
li,i+1 − pi,i+1 = li,i−1p1,0
li+1,i − pi+1,i = l0,1p

′
i,i

where i ≥ 2.
The set of vertices of infinite incidence structure (P,L, I) is V = P ∪ L and the

set of edges E consisting of all pairs {(p), [l]} for which (p)I[l]. Bipartite graphs
D(n, q) have partition sets Pn (collection of points) and Ln (collection of lines)
isomorphic to vector space Fn

q , where n ∈ N+. For each positive integer n > 2 the
finite incidence structures (Pn, Ln, In) can be obtained in a following way. Pn and
Ln are obtained from P and L, respectively, by projecting each vector onto its n
initial coordinates with respect to the natural order. The incidence relations In
are then defined by imposing the first n − 1 incidence equations and ignoring all
others. The graphs corresponding to the finite incidence structures (Pn, Ln, In) are
denoted by D(n, q).
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The family of graphs D̃(n, q) was firstly introduced in [5] as a tool in construction
of family of graphs D(n, q). The applications of this family of graphs weren’t
contemplated before. In the construction of the family of graphs graphs D̃(q)
Cartan matrix (

2 −2
−2 2

)
and Lie algebra are used. Lie algebra is a vector space over finite field with the
bilinear product satisfying certain properties (see [12]). Let us to use the analogical
notions for points and lines in graph D̃(q):

(p) = (p1,0, p1,1, p1,2, p2,1, p2,2, p2,3, ..., pi,i, pi,i+1, pi+1,1...),

[l] = [l0,1, l1,1, l1,2, l2,1, l2,2, l2,3, ..., li,i, li,i+1, li+1,1...].

In infinite incidence structure ˜(P,L, I) the point (p) is incident with the line [l],
and we write (p)I[l], if the following relations between their coordinates hold:

(2)



l1,1 − p1,1 = l0,1p1,0
l1,2 − p1,2 = l0,1p1,1
l2,1 − p2,1 = l1,1p1,0
li,i − pi,i = l0,1pi,i−1 + li−1,ip1,0
li,i+1 − pi,i+1 = l0,1pi,i
li+1,i − pi+1,i = li,ip1,0

where i ≥ 2.
The graphs D̃(n, q) corresponding to the finite incidence structures ˜(Pn, Ln, In)

can be obtained by the same way as for graphs D(n, q).
Graphs from families D(n, q) and D̃(n, q) are bipartite, q-regular, sparse and

without short cycles. The girth in graphs from described families increasing with
growing n. In fact D(n, q) is a family of graphs of large girth and there is a
conjecture that D̃(n, q) is another family of graphs of large girth.

3. Algorithm

The family of graphs D̃(n, q) can be use as a tool for symmetric encryption.
Firstly let v = (v1, v2, v3, v4, . . . , vn) ∈ D̃(n, q) (or v = [v1, v2, v3, v4, . . . , vn] ∈
D̃(n, q)) and Nt(v) be the operator of taking neighbor of vertex v where first coor-
dinate is v1 + t:

Nt(v1, v2, v3, v4, v5)→ [v1 + t, ∗, ∗, ∗, ∗],
Nt[v1, v2, v3, v4, v5]→ (v1 + t, ∗, ∗, ∗, ∗).

The remaining coordinates can be determined uniquely using relations in Eq. (2).
We can construct multivariate map F in a following way:
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Nt1 (x) is given by:

x1 + t1
x2 + x1(x1 + t1)
x3 + x2(x1 + t1)

x4 + x1x2 + x21(x1 + t1)
x5 + x1x3 + (x1x2 + x4)(x1 + t1)

x6 + x5(x1 + t1)
x7 + x1x5 + x21x3 + (x21x2 + x1x4)(x1 + t1)

...
x3i+5 + x1x3i+3 + (x1x3i+2 + x3i+4)(x1 + t1)

x3i+6 + x3i+5(x1 + t1)
x3i+7 + x1x3i+5 + x21x3i+3 + (x21x3i+2 + x1x3i+4)(x1 + t1)

...
1fn(x1, x2, . . . , xn)



=



t1x1
t1x2
t1x3
t1x4
t1x5
t1x6
t1x7
...

t1x3i+5

t1x3i+6

t1x3i+7

...
t1xn


We have Nt2 [t1x] given by:

t1x1 + t2
x2 − (t1 + t2)t1x1
x3 + (t1 + t2)t1x

2
1

x4 − (t1 + t2)t1x2
x5 + (t1x

2
1x1 − x3)(t1 + t2)

x6 − (t1x
2
1x1 − x3)t1x1(t1 + t2)

x7 − (t1 + t2)t1x5
...

x3i+5 + (t1x1
2x3i+1 + x1t1x1t1x3i − x3i+3)(t1 + t2)

x3i+6 − (t1x1
2x3i+1 + x1t1x1t1x3i − x3i+3)t1x1(t1 + t2)
x3i+7 − (t1 + t2)t1x3i+5

...
2fn(x1, x2, . . . , xn)



=



t2x1
t2x2
t2x3
t2x4
t2x5
t2x6
t2x7
...

t2x3i+5

t2x3i+6

t2x3i+7

...
t2xn


Nt3 (t2x) is given by:

t2x1 + t3
t1x2 + (t2 + t3)t2x1
t1x3 + (t2 + t3)t2x2
t1x4 + (t2 + t3)t2x

2
1

t1x5 + (t2 + t3)(t1x4 − t1x1t2x
2
1)

t1x6 + (t2 + t3)t2x5
t1x7 + (t1x4 − t1x1t2x

2
1)(t2 + t3)t2x1

...
t1x3i+5 + (t2 + t3)(t1x3i+4 − t2x1t2x3i+1t1x1 − t1x3it2x

2
2)

t1x3i+6 + (t2 + t3)t2x3i+5

t1x3i+7 + (t2 + t3)(t1x3i+4 − t2x1t2x3i+1t1x1 − t1x3it2x1
2)t2x1

...
3fn(x1, x2, . . . , xn)



=



t3x1
t3x2
t3x3
t3x4
t3x5
t3x6
t3x7
...

t3x3i+5

t3x3i+6

t3x3i+7

...
t3xn
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Nt4 [t3x] is

t3x1 + t4
t2x2 − (t3 + t4)t3x1
t2x3 + (t3 + t4)t3x

2
1

t2x4 − (t3 + t4)t3x2
t2x5 + (t3x

2
1t2x1 − t2x3)(t3 + t4)

t2x6 − (t3x
2
1t2x1 − t2x3)t3x1(t3 + t4)

t2x7 − (t3 + t4)t3x5
...

t2x3i+5 + (t3x
2
1t2x3i+1 + t3x1t2x1t3x3i − t2x3i+3)(t3 + t4)

t2x3i+6 − (t3x
2
1t2x3i+1 + t3x1t2x1t3x3i − t2x3i+3)t3x1(t3 + t4)

t2x3i+7 − (t3 + t4)t3x3i+5

...
4fn(x1, x2, . . . , xn)



=



t4x1
t4x2
t4x3
t4x4
t4x5
t4x6
t4x7
...

t4x3i+5

t4x3i+6

t4x3i+7

...
t4xn


and Nt5 (t4x)

t4x1 + t5
t3x2 + (t4 + t5)t4x1
t3x3 + (t4 + t5)t4x2
t3x4 + (t4 + t5)t4x

2
1

t3x5 + (t4 + t5)(t3x4 − t3x1t4x
2
1)

t3x6 + (t4 + t5)t4x5
t3x7 + (t3x4 − t3x1t4x

2
1)(t4 + t5)t4x1

...
t3x3i+5 + (t4 + t5)(t3x3i+4 − t4x1t4x3i+1t3x1 − t3x3it4x

2
1)

t3x3i+6 + (t4 + t5)t4x3i+5

t3x3i+7 + (t4 + t5)(t3x3i+4 − t4x1t4x3i+1t3x1 − t3x3it4x
2
1)t4x1

...
5fn(x1, x2, . . . , xn)



=



t5x1
t5x2
t5x3
t5x4
t5x5
t5x6
t5x7
...

t5x3i+5

t5x3i+6

t5x3i+7

...
t5xn


and so on. Operator Ntk works as follows:

tk−1
x1 −→ kf1(x1, x2, . . . , xn),

tk−1
x2 −→ kf2(x1, x2, . . . , xn),

tk−1
x3 −→ kf3(x1, x2, . . . , xn),

tk−1
x4 −→ kf4(x1, x2, . . . , xn),

tk−1
x5 −→ kf5(x1, x2, . . . , xn),

tk−1
x6 −→ kf6(x1, x2, . . . , xn),

tk−1
x7 −→ kf7(x1, x2, . . . , xn),

...
tk−1

xn −→ kfn(x1, x2, . . . , xn).

If we calculate the next few vectors we see a regularity and so we can formulate
general formulas for functions fi which are depend from k. Let l = 2, 3, 4, . . . then:

Nt2l+1
(2lx1, 2lx2, 2lx3, . . . ,2l xn) −→
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t2l
x1 + t2l+1

t2l−1
x2 + (t2l + t2l+1)t2lx1

t2l−1
x3 + (t2l + t2l+1)t2lx2

t2l−1
x4 + (t2l + t2l+1)t2lx

2
1

t2l−1
x5 + (t2l + t2l+1)(t2l−1

x4 − t2l−1
x1t2l

x1
2)

t2l−1
x6 + (t2l + t2l+1)t2lx5

t2l−1
x7 + (t2l−1

x4 − t2l−1
x1

t2l
x2
1)(t2l + t2l+1)t2lx1

.

.

.
t2l−1

x3i+5 + (t2l + t2l+1)(t2l−1
x3i+4 − t2l

x1t2l
x3i+1t2l−1

x1 − t2l−1
x3i

t2l
x2
1)

t2l−1
x3i+6 + (t2l + t2l+1)t2lx3i+5

t2l−1
x3i+7 + (t2l + t2l+1)(t2l−1

x3i+4 − t2l
x1t2l

x3i+1t2l−1
x1 − t2l−1

x3i
t2l

x2
1)t2lx1

.

.

.
2l+1fn(x1, x2, . . . , xn)



= [t2l+1
x],

Nt2l [2l−1x1, 2l−1x2, 2l−1x3, . . . , 2l−1xn] −→


t2l−1
x1 + t2l

t2l−2
x2 − (t2l−1 + t2l)t2l−1

x1

t2l−2
x3 + (t2l−1 + t2l)t2l−1

x2
1

t2l−2
x4 − (t2l−1 + t2l)t2l−1

x2

t2l−2
x5 + (t2l−1

x2
1t2l−2

x1 − t2l−2
x3)(t2l−1 + t2l)

t2l−2
x6 − (t2l−1

x2
1t2l−2

x1 − t2l−2
x3)t2l−1

x1(t2l−1 + t2l)

t2l−2
x7 − (t2l−1 + t2l)t2l−1

x5

.

.

.
t2l−2

x3i+5 + (t2l−1
x2
1x3i+1 + t2l−1

x1t2l−2
x1t2l−1

x3i − t2l−2
x3i+3)(t2l−1 + t2l)

t2l−2
x3i+6 − (t2l−1

x2
1x3i+1 + t2l−1

x1t2l−2
x1t2l−1

x3i − t2l−2
x3i+3)t2l−1

x1(t2l−1 + t2l)

t2l−2
x3i+7 − (t2l−1 + t2l)t2l−1

x3i+5

.

.

.
2lfn(x1, x2, . . . , xn)



= (t2lx).

Denote the composition of Nt1 ◦ Nt2 ◦ Nt3 . . . ◦ Ntk as Nt1,t2,...,tk . It is easy to
check that if Nt1,t2,...,tk(x̄) = ȳ then N−tk,−tk−1,...,−t1(ȳ) = x̄.

The following

Nt1,t2,...,tk(x1, x2, . . . xn)→ (kf1, kf2, . . . , kfn),

is a polynomial transformation of Fn
q into itself such that

x1 −→ kf1(x1, x2, . . . , xn),

x2 −→ kf2(x1, x2, . . . , xn),

...
xn −→ kfn(x1, x2, . . . , xn).

Computations show that degkfi is growing independent from the choice of string
t1, t2, . . . , tk.

If charFq 6= 2 then graph D̃(n, q) is connected and there exist a path dependent
of the choice of t1, t2, . . . , tk conducting one vertex (x) to another one (y).

Let S be a matrix containing degrees of polynomials kfi+1, for i = 1, 2, . . . , n−1,
depending on the length of the password k. Position si,j shows the degree of
polynomial kfi+1 if the used password is of length j. The first 5 rows (for n =
2, 3, 4, 5, 6) for matrix S are completed as follows: s1,l = s2,l = 2, s3,2l−1 = 3,
s3,2l = 2, s4,l = 3, s5,2l = 4, s5,2l+1 = 3 and the first column corresponding to
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Table 1. Table contains degree of polynomials kfn for different
length k of key parameter t

k

n

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 . . .
2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 . . .
3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 . . .
4 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 . . .
5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 . . .
6 2 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 . . .
7 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 . . .
8 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 . . .
9 2 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 . . .
10 4 3 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 . . .
11 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 . . .
12 2 5 4 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 . . .
13 4 3 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 . . .
14 3 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 . . .
15 2 5 4 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 . . .
16 4 3 6 5 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 . . .
17 3 4 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 . . .

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
. . .

k = 1 is completed according to the scheme: s3l+1,1 = 3, s3l+2,2 = 2, s3l+3,3 = 4,
l = 1, 2, 3 . . .. The the remaining positions in the matrix S can be completed
recursively:

s3l+3,2l = s3l+3−2,2l−1 = s3l+1,2l−1,

s3l+3,2l+1 = s3l+3−2,2l+1 + 1 = s3l+1,2l+1 + 1,

s3l+4,2l = s3l+4−5,2l−1 + 2 = s3l−1,2l−1 + 2,

s3l+4,2l+1 = s3l+4−4,2l+1−1 + 2 = s3l,2l + 2,

s3l+5,2l = s3l+5−1,2l + 1 = s3l+1,2l + 1,

s3l+5,2l+1 = s3l+5−1,2l+1−1 = s3l+4,2l,

where l = 1, 2, 3, . . ..
Let L1 and L2 be sparse affine transformation of the vector space Fn

q

L1 = TA,b : x̄ −→ x̄A+ b,

L2 = TC,d : x̄ −→ x̄C + d,

where A =
[
ai,j
]
and C =

[
ci,j
]
are n× n matrices with ai,j , ci,j ∈ Fq, |A| 6= 0 and

|C| 6= 0. It is clear that

L−11 = T−1A,b = TA−1,−bA−1 ,

L−12 = T−1C,d = TC−1,−dC−1 .

Alice and Bob agree private encryption key Ke = (L1, L2, t = (t1, t2, . . . , tk), n),
where ti+1 6= −ti for i = 1, . . . , k−1 and they must keep the key in secret. Messages
are written using characters belonging to the alphabet Fq. To encode they use the
composition:

F = L1 ◦Nt1,t2,...,t2s ◦ L2 = L1 ◦Nt1 ◦Nt2 ◦Nt3 . . . ◦Ntk ◦ L2.

Alice and Bob can use their knowledge about quadruple (L1, L2, t,n) for the
decryption. The decryption map is of the form:

L−12 ◦N−tk,−tk−1,...,−t1 ◦ L
−1
1 .
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Let q = pm, where p is prime number. Cipher-text before transmitting should
be rewritten in alphabet Fp to hide key parameter n.

Let g(n, k) denote the degree of polynomial kfn. If k is fixed lim
n→∞

g(n, k) = k+3

and if n is fixed then lim
k→∞

g(n, k) =
⌊
n
3

⌋
+ 2. We propose to use key parameter

t = (t1, t2, . . . , tk) of length k = αn + β, α ∈ (0, 1). This choice of k allows us to
create multivariate map F of unbounded degree.

Theorem 3.1. In password is of length k = αn + β ∈ N then degree (maximal
degree of monomial) of multivariate map F :

x1 −→ kf1(x1, x2, . . . , xn),

x2 −→ kf2(x1, x2, . . . , xn),

...
xn −→ kfn(x1, x2, . . . , xn)

and is unbounded:

degFt,n = degF (L1, L2, t, n,Fq) = g(n, k)

and
lim

k→∞,n→∞
g(n, k) =∞

Proof. The proof in a natural way follows from recursive equations (3) and math-
ematical induction. �

For fixed L1, L2 and 2k ≤ g(D̃(n, q)) different keys produce distinct cipher-
text (g(D̃(n, q)) is the girth of graph). The encoding complexity is O(n2). It is
impractical to decrypt a message on the basis of the cipher-text and knowledge of
the encryption/decryption algorithm. We do not need to keep the algorithm secret.
To decrypt a message without knowledge of secret key we need to solve nonlinear
system of equations over finite field (the maximum degree of this polynomials is
keep in secret). According to Theorem 1 the degree of map F is unbounded if key
parameter t is of length k = αn+β. The degF−1 = degF so Linearization Attacks
on this symmetric-key algorithm are impossible. Solving such system of equation
is a NP-hard problem in general.

Remark 3.2. One can try Dijkstra’s algorithm of finding the shortest pass between
plaintext and cipher-text. Notice that its complexity is O(v log v), but here v is
exponential qn. Therefore we get worse complexity then even brute force search via
the key space.
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