SYMMETRIC TENSOR RANK AND THE IDENTIFICATION OF A POINT USING LINEAR SPANS OF AN EMBEDDED VARIETY

Edoardo Ballico
Department of Mathematics
University of Trento
38123 Povo (TN), Italy
Email: ballico@science.unitn.it

Abstract

Let $X \subset \mathbb{P}^{n}$ be an integral and non-degenerate variety. Fix $P \in$ \mathbb{P}^{n}. In this paper we discuss the minimal integer $\sum_{i=1}^{k} \sharp\left(S_{i}\right)$ such that $S_{i} \subset X$ and $\{P\}=\cap_{i=1}^{k}\left\langle S_{i}\right\rangle$, where \rangle denote the linear span (in positive characteristic sometimes this integer is $+\infty)$. We use tools introduced for the study of the X-rank of P. Our main results are when X is a Veronese embedding of \mathbb{P}^{m} (it is related to the symmetric tensor rank of P) or when X is a curve.

1. Introduction

Let $X \subseteq \mathbb{P}^{n}$ be an integral and non-degenerate variety defined over an algebraically closed field \mathbb{K}. For any $P \in \mathbb{P}^{n}$ the X-rank $r_{X}(P)$ of P is the minimal cardinality of a finite set $S \subset X$ such that $P \in\langle S\rangle$, where \rangle denote the linear span. Let $\operatorname{ir}_{X}(P)$ be the minimal integer s such that there are finite sets $S_{i} \subset X, i \geq 1$, such that $\sharp\left(S_{i}\right) \leq s$ for all i and $\{P\}=\cap_{i \geq 1}\left\langle S_{i}\right\rangle$. We prove that $i r_{X}(P)<+\infty$ if $\operatorname{char}(\mathbb{K})=0$ (Proposition 3), but we show that in positive characteristic this is not true in a few cases (Proposition 3). We call $i r_{X}(P)$ the identification rank of P with respect to X or the X-identification rank of P. Let $\alpha(X, P)$ be the minimal integer x such that there are finitely many finite sets $S_{i} \subset X$, say S_{1}, \ldots, S_{k}, such that $\{P\}=\cap_{i=1}^{k}\left\langle S_{i}\right\rangle$ and $\sum_{i=1}^{k} \sharp\left(S_{i}\right)=x$ (we don't fix the integer k and we don't assume that the sets S_{i} are disjoint, although the last condition is always satisfied if $k=2$). The integer $\alpha(X, P)$ is the minimal number of points of X needed to identify P among all the points of \mathbb{P}^{n} using only the operations of linear algebra: first taking several linear spans of points of X and then taking the intersection of these linear subspaces. It is the analogous in projective geometry of the minimal number of photos needed to identify a point of \mathbb{R}^{3}. With a smaller number of points we may only identify a linear subspace, L, containing P, but we cannot distinguish P from the other points of \mathbb{P}^{n}. One could allow both intersections and unions of

2000 Mathematics Subject Classification. 14N05; 14H99; 15A69.
Key words and phrases. X-rank; symmetric tensor rank; strange curve; Veronese varieties.

Albanian J. Math. 8 (2014), no. 1, 9-21.
linear spaces $\left\langle S_{i}\right\rangle, S_{i} \subset X$, but obviously in this way the minimal number $\sum_{i} \sharp\left(S_{i}\right)$ is at least the integer $\alpha(X, P)$ as we defined it. We say that $\alpha(X, P)$ is the identification number of P with respect to X. This concept has an obvious geometric meaning, but as in the case of the usual X-rank other related technical definitions may help to compute it. The integer $\operatorname{ir}_{X}(P)$ is quite useful to get an upper bound for the integer $\alpha(X, P)$.

These two integers $\operatorname{ir}_{X}(P)$ and $\alpha(X, P)$ are the key definitions introduced in this paper. We also add other related numerical invariants related to $\operatorname{ir}_{X}(P)$ and $\alpha(X, P)$. We will see in the proofs that these invariants are quite useful to compute $i r_{X}(P)$ and $\alpha(X, P)$. First of all, several times it is important to look at zerodimensional subschemes, not just finite sets, to take the linear span. This was a key ingredient for the study of binary forms ([14], [8], §3, [20], §4) and it is very useful also for multivariate polynomials ([8]). The cactus rank $z_{X}(P)$ of P with respect to X is the minimal degree of a zero-dimensional scheme $Z \subset X$ such that $P \in\langle Z\rangle$ ([10], [9]). Let $i z_{X}(P)$ be the minimal integer t such that there are zero-dimensional subschemes $Z_{i} \subset X, i \geq 1$, such that $\{P\}=\cap_{i}\left\langle Z_{i}\right\rangle$. Obviously $i z_{X}(P) \leq i r_{X}(P)$ and $i z_{X}(P)=1$ if and only if $P \in X$. Let $\gamma(X, P)$ be the minimal integer x such that there are finitely many zero-dimensional schemes $Z_{i} \subset X$, say Z_{1}, \ldots, Z_{k}, such that $\{P\}=\cap_{i=1}^{k}\left\langle Z_{i}\right\rangle$ and $\sum_{i=1}^{k} \operatorname{deg}\left(Z_{i}\right)=x$. Obviously

$$
P \in X, \Leftrightarrow \alpha(X, P)=\Leftrightarrow \gamma(X, P)=1
$$

Most of our results are for curves and Veronese varieties (in the latter case the X-rank of P is called the symmetric tensor rank of X) (see [2],[8],[15],[19],[20]). In the case of Veronese varieties we give a complete classification of the possible integers $i r_{X}(P), i z_{X}(P)$ and $\alpha(X, P)$ when either P has border rank 2 (Theorem 4) or $r_{X}(P)=3$ (Theorem 5).

We prove the following results.
Proposition 1. Let $X \subset \mathbb{P}^{2 k}, k \geq 1$, be an integral and non-degenerate curve. For a general $P \in \mathbb{P}^{2 k}$ we have $r_{X}(P)=i r_{X}(P)=k+1$ and $\alpha(X, P)=2 k+2$.
Theorem 1. Assume char $(\mathbb{K})=0$. Let $X \subset \mathbb{P}^{2 k+1}$ be an integral and nondegenerate curve. Fix a general $P \in \mathbb{P}^{2 k+1}$.
(a) If X is not a rational normal curve, then $r_{X}(P)=i r_{X}(P)=k+1$ and $\alpha(X, P)=2 k+2$.
(b) If X is a rational normal curve, then $r_{X}(P)=z_{X}(P)=k+1$, $i r_{X}(P)=$ $i z_{X}(P)=k+2$ and $\alpha(X, P)=\gamma(X, P)=2 k+3$.

We also have a result on strange curves (Proposition 3), results on space curves (Theorems 2 and 3) and on rational normal curves (Propositions 5 and 6).

2. Arbitrary characteristic

For any integral variety $X \subset \mathbb{P}^{n}$ let $\sigma_{t}(X)$ denote the closure in \mathbb{P}^{n} of the union of all linear spaces $\langle S\rangle$ with $S \subset X$ and $\sharp(S)=t$. Each $\sigma_{t}(X)$ is an integral variety, $\sigma_{1}(X)=X$ and $\operatorname{dim}\left(\sigma_{t}(X)\right) \leq \min \{n, t \cdot \operatorname{dim}(X)-1\}$. For each $P \in \mathbb{P}^{n}$ the X-border rank $b_{X}(P)$ of X is the minimal integer t such that $P \in \sigma_{t}(X)$. Let $\tau(X) \subseteq \mathbb{P}^{n}$ denote the tangent developable of X, i.e. the closure in \mathbb{P}^{n} of all tangent spaces $T_{Q} X \subseteq \mathbb{P}^{n}, Q \in X_{\text {reg }}$. The algebraic set $\tau(X)$ is an integral variety,

$$
\operatorname{dim}(\tau(X)) \leq \min \{n, 2 \cdot \operatorname{dim}(X)\}
$$

and $\tau(X) \subseteq \sigma_{2}(X)$ (it is called the tangent developable of X).

Notation 1. For any linear subspace $V \subseteq \mathbb{P}^{n}$ let $\ell_{V}: \mathbb{P}^{n} \backslash V \rightarrow \mathbb{P}^{n-k-1}, k:=$ $\operatorname{dim}(V)$, denote the linear projection from V. If V is a single point, O, we often write ℓ_{O} instead of $\ell_{\{O\}}$.
Notation 2. Let $\mathcal{Z}(X, P)$ (resp. $\mathcal{S}(X, P)$) denote the set of all zero-dimensional schemes $Z \subset X$ (resp. finite sets $S \subset X$) such that $\operatorname{deg}(Z)=z_{X}(P)$ (resp. $\left.\sharp(S)=r_{X}(P)\right)$ and $P \in\langle Z\rangle$ (resp. $P \in\langle S\rangle$).

As in [11], Lemma 2.1.5, and [8], Proposition 11, we use the following important invariant $\beta(X)$ of the embedded variety $X \subset \mathbb{P}^{n}$.
Notation 3. Let $X \subset \mathbb{P}^{n}$ be an integral and non-degenerate variety. Let $\beta(X)$ denote the maximal integer t such that any zero-dimensional scheme $Z \subset X$ with $\operatorname{deg}(Z) \leq t$ is linearly independent, i.e. $\operatorname{dim}(\langle Z\rangle)=\operatorname{deg}(Z)-1$.

Remark 1. Let $X \subset \mathbb{P}^{n}$ be an integral and non-degenerate subvariety. Fix $P \in$ \mathbb{P}^{n}. If $b_{X}(P) \leq \beta(X)$ and X is either a smooth curve or a smooth surface, then $z_{X}(P)=b_{X}(P)([11]$, Lemma 2.1.5, or [8], Proposition 11).

Take any integral and non-degenerate variety $X \subset \mathbb{P}^{n}$ and any finite set $S \subset X$ such that $\sharp(S) \leq \beta(X)$. By the definition of $\beta(X)$ the set S is linearly independent. It seems better in Notation 3 to prescribe the linearly independence of an arbitrary zero-dimensional scheme $Z \subset X$ with $\operatorname{deg}(Z) \leq \beta(X)$. Anyway, in many important cases (e.g. the Veronese varieties) the set-theoretic definition and the schemetheoretic one chosen in Notation 3 give the same integer.
Remark 2. Obviously $\beta(X) \leq n+1$ and equality holds if X is a rational normal curve. We claim that equality holds if and only if X is a rational normal curve. Indeed, if X is a curve with degree $d \geq n+1$, then a general hyperplane section of X contains d points spanning only a hyperplane. Now assume $\operatorname{dim}(X) \geq 2$. Let $H \subset \mathbb{P}^{n}$ be a general hyperplane. Since $H \cap X$ is infinite, we may find $S \subset H \cap X$ with $\sharp(S)=n+1$. Since S is linearly dependent, $\beta(X) \leq n$ even in this case.
Remark 3. Fix an integral and non-degenerate variety $X \subset \mathbb{P}^{n}$ and $P \in \mathbb{P}^{n}$. Obviously $i r_{X}(P)=+\infty$ if and only if $i r_{X}(P)>n$. Since the intersection of $n-1$ hyperplanes of \mathbb{P}^{n} contains at least a line, if $r_{X}(P)=i r_{X}(P)=n$, then $\alpha(X, P)=n^{2}$. We have $r_{X}(P)=n+1$ if and only if $\operatorname{dim}(X)=1$ and X is a flat curve in the sense of [4]. Obviously if $r_{X}(P)=n+1$, then $r_{X}(P)=+\infty$. See [4], Proposition 1 and Example 1, for two classes of flat curves.

Let $X \subsetneq \mathbb{P}^{n}$ be an integral and non-degenerate variety and $P \in \mathbb{P}^{n}$. We say that P is a strange point of X if for a general $Q \in X_{\text {reg }}$ the Zariski tangent space $T_{Q} X$ contains P (we allow the case in which X is a cone with vertex containing P). The strange set of X is the set of all strange points of X (this set is always a linear subspace, but usually it is empty). If this set is not empty, then either $\operatorname{char}(\mathbb{K})>0$ or X is a cone and the strange set of X is the vertex of $X([7],[22])$. Lines and smooth conics in characteristic two are the only smooth strange curves ([17], Theorem IV.3.9). Now fix $P \in \mathbb{P}^{n} \backslash X$ and set $f_{P, X}:=\ell_{P} \mid X$. Since $P \notin X$, $f_{P, X}$ is a finite morphism and we have $\operatorname{deg}(X)=\operatorname{deg}\left(f_{P, X}\right) \cdot \operatorname{deg}\left(f_{P, X}(X)\right)$. The point P is a strange point of X if and only if $f_{P, X}$ is not separable. We recall that a non-degenerate curve $X \subset \mathbb{P}^{n}, n \geq 3$, is said to be very strange if a general hyperplane section of X is not in linearly general position ([22]). A very strange curve is strange ([22], Lemma 1.1).

Albanian J. Math. 8 (2014), no. 1, 9-21.

Proposition 2. Fix an integral and non-degenerate variety $X \subsetneq \mathbb{P}^{n}$. Set $m:=$ $\operatorname{dim}(X)$ and fix $P \in \mathbb{P}^{n}$. If P is not a strange point of X, then $\operatorname{ir}_{X}(P) \leq n-m+1$.

Proof. We will follow the proof of part (a) of [4], Theorem 1. If $P \in X$, then $\operatorname{ir}_{X}(P)=1$. Hence we may assume $P \notin X$. First assume $m=1$. Let $H \subset \mathbb{P}^{n}$ be a general hyperplane containing P. Since P is not a strange point of X, H is transversal to X, i.e. $H \cap \operatorname{Sing}(X)=\emptyset$ and $\sharp(X \cap H)=\operatorname{deg}(X)$. Since X is reduced and irreducible, we have $h^{1}\left(\mathcal{I}_{X}\right)=0$. From the exact sequence

$$
\begin{equation*}
0 \rightarrow \mathcal{I}_{X} \rightarrow \mathcal{I}_{X}(1) \rightarrow \mathcal{I}_{X \cap H, H}(1) \rightarrow 0 \tag{1}
\end{equation*}
$$

we get that the set $H \cap X$ spans H. Since $P \in H$, we get the existence of $S_{H} \subset X \cap H$ such that $\sharp\left(S_{H}\right) \leq n$ and $P \in\left\langle S_{H}\right\rangle$. Fix general hyperplanes $H_{i}, i \leq i \leq n$, containing P and such that $\{P\}=H_{1} \cap \cdots \cap H_{n}$. Take $S_{H_{i}} \subset X \cap H_{i}$ as above. Since $\{P\}=\cap_{i=1}^{n}\left\langle S_{H_{i}}\right\rangle$, we get $\operatorname{ir}_{X}(P) \leq n$. Now assume $m \geq 2$. We use induction on m. Take a general hyperplane $H \subset \mathbb{P}^{n}$ containing P. Bertini's theorem gives that $X \cap H$ is geometrically integral ([18], part 4) of Th. I.6.3). Fix a general $Q \in(X \cap H)_{\text {reg }}$. For general H we may take as Q a general point of X. Hence $P \notin T_{Q} X$. Hence $P \notin\left(T_{Q} X\right) \cap H=T_{Q}(X \cap H)$. Thus P is not a strange point of $X \cap H$. By the inductive assumption in $H \cong \mathbb{P}^{n-1}$ we get $i r_{X \cap H}(P) \leq n-m+1$. Since $i r_{X}(P) \leq i r_{X \cap H}(P)$, we are done.

Proposition 3. Fix an integral and non-degenerate strange curve $X \subset \mathbb{P}^{n}$. Fix $P \in \mathbb{P}^{n} \backslash X$ and assume that P is the strange point of X. Let s (resp. p^{e}) denote the separable (resp. inseparable) degree of $f_{P, X}$. Set $d:=\operatorname{deg}(X)$ and $c:=\operatorname{deg}\left(f_{P, X}(X)\right)$. We have $d=s p^{e} c$.
(a) If $s \geq 2$, then $\operatorname{ir}_{X}(P)=2$.
(b) If $s=1, c \neq n-1$ and X is not very strange, then $\operatorname{ir}_{X}(P) \leq n$.
(c) If $s=1$ and $c=n-1$, then $r_{X}(P)=n+1$ and $\operatorname{ir}_{X}(P)=+\infty$.

Proof. Since $P \notin X, f_{P, X}$ is a finite morphism. Hence $\operatorname{deg}(X)=\operatorname{deg}\left(f_{P, X}\right)$. $\operatorname{deg}\left(f_{P, X}(X)\right)$, i.e. $d=s p^{e} c$.

First assume $s \geq 2$. Fix general $P_{1}, P_{2} \in f_{P, X}(X)$. By assumptions there are $O_{i j} \in f_{P, X}^{-1}\left(P_{i}\right), i=1,2, j=1,2$, such that $O_{i 1} \neq O_{i 2}$. Set $S_{i}:=\left\{O_{i 1}, O_{i 2}\right\}$. Since $P \in\left\langle S_{i}\right\rangle, i=1,2$, and the two lines $\left\langle S_{i}\right\rangle$ are different, we get $\operatorname{ir}_{X}(P)=2$.

From now on we assume $s=1$ and that X is not very strange. Let $u: Y \rightarrow$ X denote the normalization map. Let \mathcal{H} be the set of all hyperplanes of \mathbb{P}^{n-1} transversal to $f_{P, X}(X)$. We have $\operatorname{dim}(\mathcal{H})=n-1$. Since $f_{P, X}(X)$ is non-degenerate, we have $\operatorname{deg}\left(f_{P, X}(X)\right) \geq n-1$.

First assume $c \neq n-1$. Hence for every $H \in \mathcal{H}$ we may find a set $A_{H} \subset$ $H \cap f_{P, X}(X)$ such that $\sharp\left(A_{H}\right)=n$ and $\left\langle A_{H}\right\rangle=H$. Notice that A_{H} is linearly dependent. Fix $S_{H} \subset X$ such that $\sharp\left(S_{H}\right)=n$ and $f_{P, X}\left(S_{H}\right)=A_{H}$. If $P \notin\left\langle S_{H}\right\rangle$, then S_{H} is linearly dependent. Since X is not very strange, we have $X \cap\langle S\rangle=S$ (as sets) for a general set $S \subset X$ such that $\sharp(S)=n-1$. Hence there is at most an $(n-2)$-dimensional family of linearly dependent subsets of X with cardinality n. Hence there is a non-empty open subset \mathcal{H}^{\prime} of \mathcal{H} such that $P \in\left\langle S_{H}\right\rangle$ for every $H \in \mathcal{H}^{\prime}$. Since $\cap_{H \in \mathcal{H}^{\prime}} H=\emptyset$, we get $\{P\}=\cap_{H \in \mathcal{H}^{\prime}}\left\langle S_{H}\right\rangle$. Hence $\operatorname{ir}_{X}(P) \leq n$.

Now assume $c=n-1$. Hence $f_{P, X}(X)$ is a rational normal curve. In particular $f_{P, X}(X)$ is smooth. Since $f_{P, X} \circ u: Y \rightarrow f_{P, X}(X)$ is a purely inseparable morphism between smooth curves, it is injective. Hence $f_{P, X}$ is injective. Since $f_{P, X}(X)$ is a rational normal curve, for every $S \subset X$ with $\sharp(S) \leq n$, the set $f_{P, X}(S)$ is a linearly
independent set with $\sharp(S)$ elements. Hence $P \notin\langle S\rangle$. Hence $r_{X}(P)=n+1$. Hence $i r_{X}(P)>n$, i.e. $i r_{X}(P)=+\infty$.

All strange curves may be explicitly constructed (see [7] for the case $n=2$ and [3] for the case $n>2$).

3. Curves

We use the following obvious observations (true in arbitrary characteristic) and whose linear algebra proof is left to the reader (parts (a) and (b) of Lemma 1 just say that two distinct lines have at most one common point and that if $P \in\left\langle\left\{P_{1}, P_{2}\right\}\right\rangle$ and $i r_{X}(P)<4$, then there is $S \subset X$ with $\sharp(S) \leq 3, P \in\langle S\rangle$ and $\left\langle\left\{P_{1}, P_{2}\right\}\right\rangle \nsubseteq\langle S\rangle$).

Lemma 1. Let $X \subset \mathbb{P}^{3}$ be an integral and non-degenerate curve. Fix $P \in \mathbb{P}^{3} \backslash X$.
(a) If $r_{X}(P)=i r_{X}(P)=2$, then $\alpha(X, P)=4$.
(b) If $r_{X}(P)=2$ and $i r_{X}(P)=3$, then $\alpha(X, P)=5$.
(c) If $r_{X}(P)=i r_{X}(P)=3$, then $\alpha(X, P)=9$.

Remark 4. Now assume that X is a singular curve, but take a zero-dimensional scheme $Z \subset X_{\text {reg }}$ such that $k:=\operatorname{deg}(Z) \leq \beta(X) / 2$. Since Z is curvilinear, it has finitely many linear subschemes. Since Z is linearly independent, the set $\Psi:=$ $\left.\langle Z\rangle \backslash_{Z^{\prime} \subsetneq Z}\left\langle Z^{\prime}\right\rangle\right)$ is a non-empty open subset of the ($k-1$)-dimensional linear space $\langle Z\rangle$. Fix any $P \in \Psi$. Lemma 3 gives $z_{X}(P)=k$ and that Z is the only degree k subscheme of X whose linear span contains P. Since $Z \subset X_{\text {reg }}, Z$ is smoothable. Hence [8], Proposition 11, give $b_{X}(P)=k$.

Lemma 2. Let $X \subset \mathbb{P}^{n}$ be an integral and non-degenerate curve. Fix $P \in \mathbb{P}^{n}$ such that $z_{X}(P) \leq \beta(X) / 2$. Then:
(i) There is a unique zero-dimensional scheme $A \subset X$ such that $P \in\langle A\rangle$ and $\operatorname{deg}(A) \leq z_{X}(P)$. We have $\operatorname{deg}(A)=z_{X}(P)$.
(ii) Fix any zero-dimensional scheme $W \subset X$ such that $\operatorname{deg}(W) \leq \beta(X)-$ $z_{X}(P)$ and $P \in\langle W\rangle$. Then $W \supseteq A$. We have $i r_{X}(P) \geq i z_{X}(P) \geq$ $\beta(X)-z_{X}(P)+1$.
(iii) Assume that A is not reduced. Then $r_{X}(P) \geq \beta(X)-z_{X}(P)+1$. If $r_{X}(P)=\beta(X)-z_{X}(P)+1$, then $S \cap A=\emptyset$ for all sets $S \subset X$ such that $\sharp(S)=r_{X}(P)$ and $P \in\langle S\rangle$.

Proof. Assume the existence of zero-dimensional schemes A, W such that $A \neq W$, $P \in\langle A\rangle \cap\langle W\rangle, P \notin\left\langle A^{\prime}\right\rangle$ for all $A^{\prime} \subsetneq A$ and $\operatorname{deg}(A)+\operatorname{deg}(W) \leq \beta(X)$. Lemma 3 gives the existence of $W^{\prime} \subsetneq W$ such that $P \in\left\langle W^{\prime}\right\rangle$. If $W^{\prime} \neq W$, then we continue taking W^{\prime} instead of W. We get parts (a) and (b).

The first assertion of part (iii) follows from part (ii), while the second one follows from Lemma 3.

Proposition 4. Let $X \subset \mathbb{P}^{3}$ be a rational normal curve. Then $\operatorname{ir}_{X}(P)=3$ for all $P \in \mathbb{P}^{3} \backslash X$.

Proof. Lines and smooth conics in characteristic two are the only smooth strange curves ([17], Theorem IV.3.9). Fix $P \in \mathbb{P}^{3} \backslash X$. Since X is not strange, we have $i r_{X}(P) \leq 3$ (Proposition 3) (even in positive characteristic). Since $\sigma_{2}(X)=\mathbb{P}^{3}$ ([1], Remark 1.6), Remark 3 gives $z_{X}(P)=2$. Since $\beta(X)=4$, Lemma 3 gives $i r_{X}(P) \geq 3$.

Albanian J. Math. 8 (2014), no. 1, 9-21.

Let X be a smooth elliptic curve defined over \mathbb{K}. We recall that the 2-rank of X is the number, ϵ, of pairwise non-isomorphic line bundles L on X such that $L^{\otimes 2} \cong \mathcal{O}_{X}$ ([23], Chapter III). If $\operatorname{char}(\mathbb{K}) \neq 2$, then $\epsilon=4$, while $\epsilon \in\{1,2\}$ if $\operatorname{char}(\mathbb{K})=2([23]$, Corollary III.6.4).
Theorem 2. Let $X \subset \mathbb{P}^{3}$ be a smooth elliptic curve. Fix $P \in \mathbb{P}^{3} \backslash X$. Let ϵ be the 2 -rank of the elliptic curve X. There are exactly ϵ quadric cones $W_{i}, 1 \leq i \leq \epsilon$ containing X. Call $O_{i}, 1 \leq i \leq \epsilon$, the vertex of W_{i}.
(a) The points $O_{i}, 1 \leq i \leq \epsilon$, are the only points $Q \in \mathbb{P}^{3}$ such that $\mathcal{Z}(X, P)$ and $\mathcal{S}(X, Q)$ are infinite; we have $i r_{X}\left(O_{i}\right)=2$ for all i; each point O_{i} is contained in $T X$.
(b) If $P \in\left(T X \cup \bigcup_{i=1}^{\epsilon} W_{i}\right)$, but $P \neq O_{i}$ for any i, then $i r_{X}(P)=3$.
(c) If $P \notin\left(T X \cup \bigcup_{i=1}^{\epsilon} W_{i}\right)$, then $\operatorname{ir}_{X}(P)=2$.

Proof. Call $R_{i}, 1 \leq i \leq \epsilon$, the pairwise non-isomorphic line bundles on X such that $R_{i}^{\otimes 2} \cong \mathcal{O}_{X}$. Since $\operatorname{deg}(X)$ is even and \mathbb{K} is algebraically closed, there is a line bundle \mathcal{L} on X such that $\mathcal{L}^{\otimes 2} \cong \mathcal{O}_{X}(1)$. Set $L_{i}:=R_{i} \otimes \mathcal{L}$. It is easy to check that the line bundles $L_{i}, 1 \leq i \leq \epsilon$, are pairwise non-isomorphic and that, up to isomorphisms, they are the only line bundles A on X such that $A^{\otimes 2} \cong \mathcal{O}_{X}(1)$.

Since X is not strange, Proposition 3 gives $\operatorname{ir}_{X}(P) \leq 3$. Since $P \notin X$, Remark 3 and [1], Remark 1.6, give $z_{X}(P)=2$. Obviously, if $\sharp(\mathcal{Z}(X, P))=1$, then $\operatorname{ir}_{X}(P)>$ 2. Since $\ell_{P}(X)$ spans \mathbb{P}^{2}, we have $\operatorname{deg}\left(\ell_{P}(X)\right) \geq 2$. Hence either $\operatorname{deg}\left(\ell_{P}(X)\right)=4$ and $\ell_{P} \mid X$ is birational onto its image or $\operatorname{deg}\left(\ell_{P} \mid X\right)=2$.

First assume $\operatorname{deg}\left(\ell_{P} \mid X\right)=2$. In this case we get that $\mathcal{Z}(X, P)$ is infinite. Since $\ell_{P}(X) \cong \mathbb{P}^{1}$, the morphism $\ell_{P} \mid X$ is not purely inseparable. Hence a general fiber of it is formed by two distinct points of X spanning a line through P. Hence $\operatorname{ir}_{X}(P)=3$. We get $\mathcal{O}_{X}(1) \cong \ell_{P}\left(\mathcal{O}_{\ell_{P}(X)}(1)\right)$. Since $\mathcal{O}_{\ell_{P}(X)}(1) \cong R^{\otimes 2}$ with R a degree 1 line bundle on $\ell_{P}(X), \ell_{P}^{*}(R)$ is one of the line bundle $L_{i}, 1 \leq i \leq \epsilon$. Since $X \neq \mathbb{P}^{1}, \ell_{P} \mid X$ has at least one ramification point. Hence $O_{i} \in T X$ for all i. The construction may be inverted in the following sense. Fix one of the line bundles $L_{i}, 1 \leq i \leq \epsilon$. Since X is an elliptic curve, we have $h^{0}\left(X, L_{i}\right)=2$ and the linear map $j: S^{2}\left(H^{0}\left(X, L_{i}\right)\right) \rightarrow H^{0}\left(X, \mathcal{O}_{X}(1)\right)$ is injective with as image a hyperplane of the 4-dimensional linear space $H^{0}\left(X, \mathcal{O}_{X}(1)\right)$, i.e. (by the linear normality of X) a point, \widetilde{O}_{i} of $\mathbb{P}^{3}=\mathbb{P}\left(H^{0}\left(X, \mathcal{O}_{X}(1)\right)^{\vee}\right)$. The definition of j gives that $\ell_{\widetilde{O}_{i}} \mid X$ has degree 2.

Now assume $\operatorname{deg}\left(\ell_{P}(X)\right)=4$. The genus formula for plane curves gives that $\ell_{P}(X)$ has 1 or 2 singular points and that if it has two singular points, then they are either ordinary nodes or ordinary cusps. If $\ell_{P}(X)$ has either a unique singular point or at least one cusp, then $\operatorname{ir}_{X}(P)>2$ and hence $\operatorname{ir}_{X}(P)=3$. In particular this is the case if $P \in T X$. Hence if $P \in T X$ and $P \neq O_{i}$, then $\operatorname{ir}_{X}(P)=3$. Now assume $P \notin T X$. In this case $\operatorname{ir}_{X}(P)=2$ if and only if $\ell_{P}(X)$ has two singular points. If the plane curve $\ell_{P}(X)$ has a unique singular point, then it is an ordinary tacnode. Let $T \subset \mathbb{P}^{3}$ be a line secant to X, but not tangent to X. Since X is the complete intersection of two quadric surfaces, there is a unique quadric surface, W, containing $X \cup\{P\}$. Call T a line in W containing $P . X \cup T$ is contained in a unique quadric surface, W. If W is singular, i.e. if $W=W_{i}$ for some i, then there is a unique line through P and secant to X. If W is smooth, i.e. if $P \notin W_{i}$ for any i, then there are two such lines, both of them containing two distinct points of X, because we assumed $P \notin T X$. Hence $i r_{X}(P)=2$ in this case.

Theorem 3. Let $X \subset \mathbb{P}^{3}$ be an integral and non-degenerate curve. Assume that X is not strange and that X has only planar singularities. There is a non-empty open subset Ω of $\mathbb{P}^{3} \backslash X$ such that $\mathrm{ir}_{X}(P)=2$ for all $P \in \Omega$ if and only if X is not a rational normal curve..

Proof. Set $d:=\operatorname{deg}(X)$ and $q:=p_{a}(X)$. Since Proposition 4 gives that "only if " part, it is sufficient to prove the " if " part. Assume $d \geq 4$. It is easy to check the existence of a non-empty open subset W of $\mathbb{P}^{3} \backslash X$ such that $\ell_{P} \mid X$ is birational onto its image for all $P \in W$. By assumption for each $O \in \operatorname{Sing}(X)$ the Zariski tangent plane $T_{O} X$ of X at O is a plane. Since $\operatorname{Sing}(X)$ is finite, we get finitely many planes $T_{O} X, O \in \operatorname{Sing}(X)$, and we call W^{\prime} the intersection of W with the complement of the union of these planes. Let G be the intersection of W^{\prime} with the complement of the tangent developable $\tau(X)$ of X. For each $P \in G$ the morphism $\ell_{P} \mid X$ is unramified and birational onto its image. Hence the singularities of the degree d plane curve $\ell_{P}(X)$ comes only from the non-injectivity of $\ell_{P} \mid X$ and the singularities of X. To prove Theorem 3 it is sufficient to prove that the set of all $P \in G$ such that $\ell_{P} \mid X$ has at least two fibers with cardinality ≥ 2 contains a non-empty open subset. For any $O \in \operatorname{Sing}(X)$ let $C_{O}(X)$ the cone with vertex O and the plane curve $\overline{\ell_{O}(X \backslash\{O\})}$ as its base. Set $G^{\prime}:=G \backslash G \cap\left(\cup_{O \in \operatorname{Sing}(X)} C_{O}(X)\right)$. The set G^{\prime} is a nonempty open subset of G and for every $P \in G^{\prime}$ no point of $X \backslash \operatorname{Sing}(X)$ is mapped onto a point of $\ell_{P}(\operatorname{Sing}(X))$. Hence for each $P \in G^{\prime}$ the plane curve $\ell_{P}(X)$ has $\sharp(\operatorname{Sing}(X))$ singular points isomorphic to the corresponding singular points of X, plus some other singular points and the integer $p_{a}\left(\ell_{P}(X)\right)-q=(d-1)(d-2) / 2-q$ is the sum of the contributions of the other singular points. Since X is not strange, it is not very strange, i.e. a general secant line of X contains only two points of X ([22], Lemma 1.1). This is equivalent to the existence of a non-empty open subset $G^{\prime \prime}$ of G^{\prime} such that for all $P \in G^{\prime \prime}$ each singular point of $\ell_{P}(X) \backslash \ell_{P}(\operatorname{Sing}(X))$ has only two branches.

Claim: There is a non-empty open subset G_{1} of $G^{\prime \prime}$ such that for every $P \in G_{1}$, $\ell_{P}(X) \backslash \ell_{P}(\operatorname{Sing}(X))$ has only ordinary double points as singularities.

Proof of the Claim: Fix $P \in G^{\prime \prime}$. Fix $O \in \ell_{P}(X) \backslash \ell_{P}(\operatorname{Sing}(X))$. By the definition of $G^{\prime \prime}$ there are exactly two points $Q_{1}, Q_{2} \in X$ such that $\ell_{P}\left(Q_{1}\right)=$ $\ell_{P}\left(Q_{2}\right)=O, X$ is smooth at Q_{1} and Q_{2}, and $\ell_{P} \mid X$ is unramified at each Q_{i}. Hence $\ell_{P}(X) \backslash \ell_{P}(\operatorname{Sing}(X))$ has only ordinary double points as singularities if and only if $\ell_{P}\left(T_{Q_{1}} X\right) \neq \ell_{P}\left(T_{Q_{2}} X\right)$, i.e. if and only if the planes $\left\langle\{P\} \cup T_{Q_{i}} X\right\rangle, i=1,2$, are distinct. This is certainly true if $T_{Q_{1}} X \cap T_{Q_{2}} X=\emptyset$. Let \mathcal{V} denote the set of all $\left(Q_{1}, Q_{2}\right) \in(X \backslash \operatorname{Sing}(X)) \times(X \backslash \operatorname{Sing}(X))$ such that $Q_{1} \neq Q_{2}$. Let \mathcal{U} be the set of all $\left(Q_{1}, Q_{2}\right) \in \mathcal{V}$ such that $T_{Q_{1}} X \cap T_{Q_{2}} X \neq \emptyset$. Since X is not strange, \mathcal{U} is a union of finitely many subvarieties of dimension ≤ 1; it is here that we use the full force of our assumption " X not strange ", not only the far weaker condition " X not very strange ". Let Δ be the closure in \mathbb{P}^{3} of the union of the lines $\left\langle\left\{Q_{1}, Q_{2}\right\}\right\rangle$ with $\left(Q_{1}, Q_{2}\right) \in \mathcal{U}$. We have $\operatorname{dim}(\Delta) \leq 2$. Set $G_{1}:=G^{\prime \prime} \cap\left(\mathbb{P}^{3} \backslash \Delta\right)$. By construction this set G_{1} satisfies the Claim.

Now we prove that we may take $\Omega:=G_{1}$. Fix $P \in G_{1}$ and call x the number of the singular points of $\ell_{P}(X) \backslash \ell_{P}(\operatorname{Sing}(X))$. By the claim it is sufficient to prove the inequality $x \geq 2$. Since $\ell_{P}(X)$ is a plane curve of degree d, it has arithmetic genus $(d-1)(d-2) / 2$. Since each point of $\ell_{P}(X) \backslash \ell_{P}(\operatorname{Sing}(X))$ is an ordinary

Albanian J. Math. 8 (2014), no. 1, 9-21.
node, $\ell_{P} \mid X$ is unramified at each point of $\operatorname{Sing}(X)$ and $\ell_{P}^{-1}\left(\ell_{P}(X) \backslash \ell_{P}(\operatorname{Sing}(X))\right)$, we have $x=p_{a}\left(\ell_{P}(X)\right)-p_{a}(X)=(d-1)(d-2) / 2-q$. Hence it is sufficient to prove that $q \leq(d-1)(d-2) / 2-2$. This is true by the assumption $d \geq 4$ and Castelnuovo's inequality for the arithmetic genus of space curves (use [22], Lemma 1.1, that X is not strange and that the upper bound needs only that a general plane section of X is in linearly general position).

Proof of Proposition 1: Let Δ denote the set of all linearly independent subsets of X with cardinality $k+1$. Since $\sigma_{k+1}(X)=\mathbb{P}^{2 k}$ and $\operatorname{dim}\left(\sigma_{k}(X)\right)=2 k-1$ ([1], Remark 1.6), we have $r_{X}(P)=k+1$. A dimensional count gives that $\mathcal{S}(X, P)$ has a one-dimensional irreducible component, Γ. Fix $A, B \in \Gamma$. It is sufficient to prove that $\{P\}=\langle A\rangle \cap\langle B\rangle$. Since any two k-dimensional linear subspaces meet, the set A may be seen as a general element of Δ and, after fixing A, P may be seen as a general element of $\langle A\rangle$. Hence it is sufficient to prove that $\langle A\rangle \cap\langle B\rangle$ is a single point for a general $(A, B) \in \Delta \times \Delta$, i.e. to check that $A \cup B$ spans $\mathbb{P}^{2 k}$. For fixed A, we have $\langle A \cup B\rangle=\mathbb{P}^{2 k}$ for a general $B \subset X$, because X spans $\mathbb{P}^{2 k}$.

Proof of Theorem 1: Since $\sigma_{k+1}(X)=\mathbb{P}^{2 k+1}$ and P is general, we have $r_{X}(P) \leq k+1$ ([1], Remark 1.6). Since $\operatorname{dim}\left(\sigma_{k}(X)\right)=2 k-1$ ([1], Remark 1.6) and P is general, we have $r_{X}(P) \geq k+1$. Hence $r_{X}(P)=k+1$. X is not a rational normal curve if and only if there are $S_{1}, S_{2} \subset X$ such that $S_{1} \neq S_{2}$, $\sharp\left(S_{1}\right)=\sharp\left(S_{2}\right)=k+1$ and $P \in\left\langle S_{1}\right\rangle \cap\left\langle S_{2}\right\rangle$ ([13], Theorem 3.1). Let Ω be the set of all $Q \in \mathbb{P}^{2 k+1} \backslash \sigma_{k}(X)$ such that there are only finitely many sets $S \subset X$ with $\sharp(S)=k+1$ and $Q \in\langle S\rangle . \Omega$ is a non-empty open subset of $\mathbb{P}^{2 k+1}$. Since P is general, we may assume $P \in \Omega$.
(i) In this step we assume that X is not a rational normal curve. Let Γ denote the set of all finite sets $S \subset X$ such that $\sharp(S)=k+1$ and $\operatorname{dim}(\langle S\rangle)=k$. We proved the existence of $S_{i} \in \Gamma, i=1,2$, such that $P \in\left\langle S_{1}\right\rangle \cap\left\langle S_{2}\right\rangle$. To prove part (a) it is sufficient to prove that $\{P\}=\left\langle S_{1}\right\rangle \cap\left\langle S_{2}\right\rangle$ for a general P. Assume that this is not true, i.e. assume that $\left\langle S_{1}\right\rangle \cap\left\langle S_{2}\right\rangle$ is a linear space of dimension $\rho>0$. Notice that $\mathcal{S}(X, P)=\{S \in \Gamma: P \in\langle S\rangle\}$. Set $\Gamma\left(S_{1}\right):=\left\{S \in \Gamma: S \cap S_{1}=\emptyset,\langle S\rangle \cap\left\langle S_{1}\right\rangle \cap \Omega \neq \emptyset\right\}$. Since $\operatorname{dim}\left\langle S_{1}\right\rangle=k$ and $P \in \Omega \cap\left\langle S_{1}\right\rangle$, then $\Gamma\left(S_{1}\right) \neq \emptyset$ and $\Gamma\left(S_{1}\right)$ has pure dimension k. Since P is general in $\mathbb{P}^{2 k+1}$, we may assume that S_{1} is general in Γ and that S_{2} is general in one of the irreducible components of $\Gamma\left(S_{1}\right)$. We get that for a general $P^{\prime} \in \Omega \cap\left\langle S_{1}\right\rangle$ there is a ρ-dimensional family of sets S with $P^{\prime} \in\langle S\rangle$, absurd.
(ii) In this step we assume that X is a rational normal curve. We know that $r_{X}(P)=k+1$. We proved that $i_{X}(P) \geq k+2$ and hence that $\alpha(X, P) \geq 2 k+3$. For a sufficiently general $P \in \mathbb{P}^{2 k+1}$ we call S_{P} the only subset of X with cardinality $k+1$ and whose linear span contains P. Since $\beta(X)=2 k+2$ and $P \notin \sigma_{k}(X)$, Remark 3 gives $z_{X}(P)=k+1$ and that S_{P} is the only degree $k+1$ zero-dimensional subscheme of X whose linear span contains P. Hence $i z_{X}(P) \geq k+2$ and $\gamma(X, P) \geq 2 k+3$.

Fix a general $Q \in X$ and let $\phi: X \rightarrow \mathbb{P}^{2 k}$ denote the morphism induced from $\ell_{Q} \mid(X \backslash\{Q\})$. The morphism ϕ is an embedding of $X \cong \mathbb{P}^{1}$ as a rational normal curve of $\mathbb{P}^{2 k}$. Fix a general $P^{\prime} \in \mathbb{P}^{2 k}$. Proposition 1 gives the existence of $A_{1}, A_{2} \subset$ $\phi(X)$ such that $\sharp\left(A_{1}\right)=\sharp\left(A_{2}\right)=k+1$ and $\left\langle A_{1}\right\rangle \cap\left\langle A_{2}\right\rangle=\left\{P^{\prime}\right\}$. For a fixed point $\phi(Q)$, but for general P^{\prime} we may also assume $\phi(Q) \notin\left(A_{1} \cup A_{2}\right)$. Hence there is a unique set $B_{i} \subset X \backslash\{Q\}$ such that $\phi\left(B_{i}\right)=A_{i}$. Set $E_{i}:=\{Q\} \cup B_{i}$. Fix $P^{\prime \prime} \in \mathbb{P}^{2 k+1}$ such that $\ell_{Q}\left(P^{\prime \prime}\right)=P^{\prime}$. For fixed Q, but general P^{\prime} we may consider
$P^{\prime \prime}$ as a general point of $\mathbb{P}^{2 k+1}$. We have $\left\langle\left\{Q, P^{\prime \prime}\right\}\right\rangle=\left\langle E_{1}\right\rangle \cap\left\langle E_{2}\right\rangle$. Varying Q in X we get $\operatorname{ir}_{X}(P) \leq k+2$ and hence $\operatorname{ir}_{X}(P)=k+2$. Let Θ be the set of all finite subsets $A \subset X$ such that $\sharp(A)=k+2$ and $P \in\langle A\rangle$. Assume for the moment the existence of $A \in \Theta$ such that $A \cap S_{P}=\emptyset$, i.e. such that $\sharp\left(A \cup S_{P}\right)=2 k+3$. Since $\beta(X)=2 k+2$ and $\sharp\left(A \cup S_{P}\right)=2 k+3$, we get $\left\langle S_{P} \cup A\right\rangle=\mathbb{P}^{2 k+1}$, i.e. $\operatorname{dim}\left(\langle A\rangle \cap\left\langle S_{P}\right\rangle\right)=0$ (Grassmann's formula). Since $P \in\langle A\rangle \cap\left\langle S_{P}\right\rangle$, we get $\{P\}=\langle A\rangle \cap\left\langle S_{P}\right\rangle$, i.e. $\alpha(X, P) \leq 2 k+3$. Hence $\alpha(X, P)=\gamma(X, P)=2 k+3$. Now assume $A \cap S_{P} \neq \emptyset$ for all $A \in \Theta$. Since P is general and $\sigma_{k+2}(X)=\mathbb{P}^{2 k+1}$, Terracini's lemma (or a dimensional count) gives $\operatorname{dim}(\Theta)=2$. For any $Q \in S_{P}$ set $\Theta_{Q}:=\{A \in \Theta: Q \in A\}$. The proof of the inequality $\operatorname{ir}_{X}(P) \leq 2 k+3$ also shows $\operatorname{dim}\left(\Theta_{Q}\right)=1$. Since S_{P} is finite, we get $\operatorname{dim}(\Theta)=1$, a contradiction.

4. Veronese varieties

For all integers $m \geq 1$ and $d \geq 1$ let $\nu_{d}: \mathbb{P}^{m} \rightarrow \mathbb{P}^{n}, n:=\binom{m+d}{m}-1$ denote the order d embedding of \mathbb{P}^{m} induced by the vector space of all degree d homogeneous polynomials in $d+1$ variables. Set $X_{m, d}:=\nu_{d}\left(\mathbb{P}^{m}\right)$.

We often use the following elementary lemma ([5], Lemma 1).
Lemma 3. Fix any $P \in \mathbb{P}^{n}$ and two zero-dimensional subschemes A, B of \mathbb{P}^{n} such that $A \neq B, P \in\langle A\rangle, P \in\langle B\rangle, P \notin\left\langle A^{\prime}\right\rangle$ for any $A^{\prime} \subsetneq A$ and $P \notin\left\langle B^{\prime}\right\rangle$ for any $B^{\prime} \subsetneq B$. Then $h^{1}\left(\mathbb{P}^{n}, \mathcal{I}_{A \cup B}(1)\right)>0$.

We first need the case $m=1$ of Theorem 4, i.e. we need to study the case in which X is a rational normal curve (Propositions 5,6 and 7).
Proposition 5. Let $X \subset \mathbb{P}^{d}, d \geq 3$, be a rational normal curve. Fix a set $A \subset X$ with $\sharp(A)=2$ and any $P \in\langle A\rangle \backslash A$. Then $r_{X}(P)=z_{X}(P)=2$, ir $r_{X}(P)=$ $i z_{X}(P)=d$ and $\alpha(X, P)=\gamma(X, P)=d+2$. Moreover, there is a set $B \subset X$ such that $\sharp(B)=d$ and $\{P\}=\langle A\rangle \cap\langle B\rangle$.
Proof. Since $\beta(X)=d+1 \geq 3$, we have $A=\langle A\rangle \cap X$. Hence $P \notin X$. Hence $i r_{X}(P)=2=i z_{X}(P)$. Fix a zero-dimensional scheme $W \subset X$ such that $P \in\langle W\rangle$, $P \notin\left\langle W^{\prime}\right\rangle$ for any $W^{\prime} \subsetneq W$ and $W \neq A$. Since $\beta(X)=d+1$, Lemma 3 gives $\operatorname{deg}(W) \geq d$. Hence $\operatorname{ir}_{X}(P) \geq i z_{X}(P) \geq d$ and $\alpha(X, P) \geq \gamma(X, P) \geq d+2$. Hence to conclude the proof it is sufficient to find a set $B \subset X$ such that $\sharp(B)=d$ and $\{P\}=\langle A\rangle \cap\langle B\rangle$. Set $Y:=\ell_{P}(X)$. Since $P \in\langle A\rangle$ and $P \notin X$, the curve Y is a linearly normal curve with degree d, arithmetic genus 1 and a unique singular point, which is an ordinary node. Fix a general hyperplane $H \subset \mathbb{P}^{d-1}$ and set $E:=Y \cap X$. Since H is general, it does not contain the singular point of Y and it is transversal to Y. Hence E is a set of d points and there is $B \subset X$ such that $\sharp(B)=d$ and $\ell_{P}(B)=E$. Since $\sharp(B) \leq \beta(X), B$ is linearly independent. Since E is linearly dependent, we have $P \in\langle B\rangle$. Since $\sharp(A \cup B)=d+2=\beta(X)+1$, we have $\langle A \cup B\rangle=\mathbb{P}^{d}$. Hence Grassmann's formula gives $\{P\}=\langle A\rangle \cap\langle B\rangle$.
Proposition 6. Let $X \subset \mathbb{P}^{d}$, $d \geq 3$, be a rational normal curve. Fix $P \in \tau(X) \backslash X$, i.e. fix $P \in \sigma_{2}(X)$ such that $r_{X}(P)>2$. Then $z_{X}(P)=2$, $i z_{X}(P)=d, \gamma(X, P)=$ $d+2, r_{X}(P)=d$, $i r_{X}(P)=d$ and $\alpha(X, P)=d^{2}$. Moreover, there are a zerodimensional $A \subset X$ and a finite set $B \subset X$ such that $\operatorname{deg}(A)=2, \sharp(B)=d$ and $\{P\}=\langle A\rangle \cap\langle B\rangle$.
Proof. First of all we explain the "i.e. " part. Since $\beta(X) \geq 2$, Remark 3 gives that for each $Q \in \sigma_{2}(X) \backslash X$ there is a degree 2 zero-dimensional scheme $A_{Q} \subset X$

Albanian J. Math. 8 (2014), no. 1, 9-21.
such that $Q \in\left\langle A_{Q}\right\rangle$. Since $\beta(X) \geq 4$, we also get the uniqueness of A_{Q}. Hence $P \in \tau(X) \Leftrightarrow A_{P}$ is not reduced $\Leftrightarrow r_{X}(P)>2$. Set $A:=A_{P}$. Lemma 3 gives $r_{X}(P) \geq d$ and $i z_{X}(P) \geq d$. We repeat the proof of Proposition 5 (now Y is a degree d linearly normal curve with a cusp). We get the existence of a set $B \subset X$ such that $\sharp(B)=d$ and $\{P\}=\langle A\rangle \cap\langle B\rangle$. Hence $i z_{X}(P)=d, \gamma(X, P)=d$. Since $d \geq 3, X$ is not strange. Hence $\operatorname{ir}_{X}(P) \leq d$ (Proposition 3). Since $r_{X}(P) \geq d$, we get $r_{X}(P)=\operatorname{ir} r_{X}(P)=d$. Since $r_{X}(P)=d, P$ is contained in no linear space of dimension $\leq d-2$ spanned by a finite subset of X. Hence $\alpha(X, P)=d^{2}$ (Remark $3)$.

Proposition 7. Let $X \subset \mathbb{P}^{d}, d \geq 5$, be a rational normal curve. Fix a set $A \subset X$ such that $\sharp(A)=3$ and any $P \in\langle A\rangle$ such that $P \notin\left\langle A^{\prime}\right\rangle$ for any $A^{\prime} \subsetneq A$. Then $r_{X}(P)=z_{X}(P)=3, i r_{X}(P)=i z_{X}(P)=d-1$ and $\alpha(X, P)=\gamma(X, P)=d+2$.
Proof. Since $\beta(X) \geq 5$, Lemma 3 gives $z_{X}(P)=3, i z_{X}(P) \geq \beta(X)+1-\sharp(A)=d-1$ and hence $r_{X}(P)=3, i r_{X}(P) \geq d-1, \alpha(X, P) \geq \gamma(X, P) \geq d+2$.

Set $Y:=\ell_{P}(X)$. Since $\beta(X)=d+1 \geq 5$ and $P \notin\left\langle A^{\prime}\right\rangle$ for any $A^{\prime} \subsetneq A, \ell_{P} \mid X$ is an embedding. Hence Y is a smooth rational curve of degree d spanning \mathbb{P}^{d-1}. Fix any $E \subset X \backslash A$ with $\sharp(E)=d-4$ and set $F:=\ell_{P}(E)$. Since $\sharp(A \cup E) \leq \beta(X), F$ is a set of $d-4$ points of Y spanning a $(d-5)$-dimensional linear subspace disjoint from the line $\left\langle\ell_{P}(A)\right\rangle$.

Claim: For general E we have $\langle F\rangle \cap Y=F$ (as schemes) and $\ell_{\langle F\rangle} \mid(Y \backslash F)$ extends to an embedding $\phi: Y \rightarrow \mathbb{P}^{3}$ with $\phi(Y) \subset \mathbb{P}^{3}$ a smooth and rational curve of degree 4 with $\phi\left(\ell_{P}(A)\right)$ the union of 3 distinct and collinear points.

Proof of the Claim: The map ϕ is induced by the linear projection of X from the linear subspace $\langle\{P\} \cup E\rangle$. Since $E \cap A=\emptyset$ and $\sharp(E \cup A) \leq \beta(X)$, we have $\langle E\rangle \cap\langle A\rangle=\emptyset$. Hence $\phi(A)$ is the union of 3 distinct collinear points. For degree reasons we get $\langle F\rangle \cap Y=F$ (as schemes), i.e. $\operatorname{deg}(\phi) \cdot \operatorname{deg}(\phi(Y))=\operatorname{deg}(Y)-d+4=$ 4. Since $\phi(Y)$ spans \mathbb{P}^{3}, we get $\operatorname{deg}(\phi)=1$. Since $\phi(Y)$ has a 3 -secant line, the curve Y is not the complete intersection of two quadric surfaces. Hence $\phi(Y)$ is smooth and rational.

Since $h^{0}\left(\mathbb{P}^{3}, \mathcal{O}_{\mathbb{P}^{3}}(2)\right)=10=h^{0}\left(\mathbb{P}^{1}, \mathcal{O}_{\mathbb{P}^{1}}(8)\right)+1$, the Claim implies the existence of a quadric surface T containing $\phi(Y)$. Since $\phi(Y)$ has genus $\neq 1, T$ is not a cone ([17], V.Ex.2.9). Hence $\phi(Y)$ is a curve of type $(1,3)$ on the smooth quadric surface T. The set $\phi\left(\ell_{P}(A)\right)$ is contained in a line of type $(1,0)$. Let G be the intersection of $\phi(Y)$ with a general line of type $(1,0)$ of T. Since any two different lines of T are disjoint, we have $\phi(A) \cap G=\emptyset$. Since $\phi\left(\ell_{P}(A)\right)$ is reduced, in arbitrary characteristic we get that G is reduced. Since the set $\phi(F)$ is finite, for a general line of type $(1,0)$ on T we have $G \cap \phi(F)=\emptyset$. Hence there is $G^{\prime} \subset Y \backslash F$ such that $\phi\left(G^{\prime}\right)=G$. Let $B \subset X$ be the only set such that $\ell_{P}(B)=F \cup G^{\prime}$. Since $\sharp(B) \leq \beta(X)$, we have $\operatorname{dim}(\langle B\rangle)=d-2$. Since G is linearly dependent, $F \cup G^{\prime}$ is linearly dependent. Hence $P \in\langle B\rangle$. Since $A \cap B=\emptyset$ and $\beta(X)=d+1 \leq \sharp(A \cup B)$, we have $\langle A \cup B\rangle=\mathbb{P}^{d}$. Hence Grassmann's formula gives that $\langle A\rangle \cap\langle B\rangle$ is a single point. Hence $\{P\}=\langle A\rangle \cap\langle B\rangle$. Hence $\operatorname{ir}_{X}(P) \leq d-1$ and $\alpha(X, P) \leq d+2$. Since we proved the opposite inequalities, we are done.

Theorem 4. Fix integers $m \geq 1$ and $d \geq 3$. Set $n:=n_{m, d}:=\binom{m+d}{m}-1$ and $X:=X_{m, d}$. Fix $P \in \sigma_{2}\left(X_{m, d}\right) \backslash X$.
(a) Assume $P \notin \tau(X)$, i.e. assume $r_{X}(P)=2$. Then $\operatorname{ir}_{X}(P)=d, z_{X}(P)=2$, $i z_{X}(P)=d$ and $\alpha(X, P)=\gamma(X, P)=d+2$
(b) Assume $P \in \tau(X) \backslash X$. Then $z_{X}(P)=2, i z_{X}(P)=i r_{X}(P)=d, \gamma(X, P)=$ $d+2$. If $m=1$, then $\alpha(X, P)=d^{2}$. If $m \geq 2$, then $\alpha(X, P)=3 d$.

Proof. Since $d \geq 3$, we have $\sigma_{2}(X) \neq \tau(X), \sigma_{2}(X) \backslash \tau(X)=\left\{P \in \sigma_{2}(X): r_{X}(P)=\right.$ $2\}$ and $r_{X}(P)=d$ for each $P \in \tau(X) \backslash X$ ([8], Theorem 32). Since the case $m=1$ is true (Propositions 5 and 6), we assume $m \geq 2$. Since $\beta(X)=d+1$ (e.g. by [8], Lemma 34), Remark 3 and Lemma 3 imply the existence of a unique zerodimensional scheme $Z \subset X$ such that $\operatorname{deg}(Z)=2$ and $P \in\langle Z\rangle$. We have $r_{X}(P)=2$ if and only if Z is reduced. Let $A \subset \mathbb{P}^{m}$ be the degree 2 zero-dimensional scheme such that $\nu_{d}(A)=Z$. Let $L \subset \mathbb{P}^{m}$ be the line spanned by A. Set $R:=\nu_{d}(L)$. Since $Z \subset R$, we have $r_{X}(P) \leq r_{R}(P), z_{X}(P) \leq z_{R}(P), i r_{X}(P) \leq i r_{R}(P)$, $i z_{X}(P) \leq i z_{R}(P), \alpha(X, P) \leq \alpha(R, P)=d$ and $\gamma(X, P) \leq \gamma(R, P)$. Propositions 5 and 6 give $i r_{R}(P)=i z_{R}(P)=d$ and $\gamma(R, P)=d+2$. Let $W \subset \mathbb{P}^{m}$ be a zero-dimensional scheme such that $P \in\left\langle\nu_{d}(W)\right\rangle, P \notin\left\langle\nu_{d}\left(W^{\prime}\right)\right\rangle$ for any $W^{\prime} \subsetneq W$ and $W \neq A$. Since $\beta(X) \geq d+1$, Lemma 3 gives $\operatorname{deg}(W) \geq d$. Hence $i z_{X}(P) \geq d$ and $\gamma(X, P) \geq d+2$. Hence $i r_{X}(P)=i z_{X}(P)=d+2$ and $\gamma(X, P)=d+2$. In case (a) we have $\alpha(X, P)=d+2$, because $\alpha(R, P)=d+2$ (Proposition 5). Now assume that Z is not reduced, i.e. assume $P \in \tau(X)$. Let $C \subset \mathbb{P}^{m}$ be a smooth conic containing A. The curve $\nu_{d}(C)$ is a degree $2 d$ rational normal curve in its linear span. Since $P \in\langle Z\rangle \subset\left\langle\nu_{d}(C)\right\rangle$, the " Moreover" part of Proposition 6 applied to $\nu_{d}(C)$ gives the existence of a set $B \subset C$ such that $\sharp(B)=2 d$ and $\langle Z\rangle \cap\left\langle\nu_{d}(B)\right\rangle=\{P\}$. Let $M \subseteq \mathbb{P}^{m}$ be the plane containing $C \cup L$. Since the restriction maps $H^{0}\left(\mathbb{P}^{m}, \mathcal{O}_{\mathbb{P}^{m}}(d)\right) \rightarrow H^{0}\left(M, \mathcal{O}_{M}(d)\right)$ and $H^{0}\left(M, \mathcal{O}_{M}(d)\right) \rightarrow H^{0}\left(T, \mathcal{O}_{T}(d)\right)$ are surjective for $T=L, T=C$, and $T=C \cup L$, we get $\operatorname{dim}\left(\left\langle\nu_{d}(C \cup L)\right\rangle\right)=3 d-1, \operatorname{dim}\left(\left\langle\nu_{d}(C)\right\rangle\right)=2 d$ and $\operatorname{dim}(\langle R\rangle)=d$. Hence Grassmann's formula gives $\left\langle\nu_{d}(C)\right\rangle \cap\langle R\rangle=\langle Z\rangle$. Fix $E \subset L$ such that $\{P\}=\langle Z\rangle \cap\left\langle\nu_{d}(E)\right\rangle$ (the " Moreover" part of Proposition 6). Since $\nu_{d}(E) \subset R, P$ is the only point in the intersection of $\left\langle\nu_{d}(B)\right\rangle \subset\left\langle\nu_{d}(C)\right\rangle$ and $\left\langle\nu_{d}(E)\right.$. Hence $\alpha(X, P) \leq 3 d$. Now assume $a:=\alpha(X, P)<3 d$ and take $S=S_{1} \cup \cdots \cup S_{k} \subset \mathbb{P}^{m}$ such that $\sharp(S)=a$ and $\{P\}=\cap_{i=1}^{k}\left\langle\nu_{d}\left(S_{i}\right)\right\rangle$. We proved that $\sharp\left(S_{i}\right) \geq d$ for all i. Hence $k=2$, $2 d \leq a \leq 3 d-1$ and $d \leq \sharp\left(S_{i}\right) \leq 2 d-1$ for all i.

Claim: Take a finite set $E \subset \mathbb{P}^{m}$ such that $P \in\left\langle\nu_{d}(E)\right\rangle, P \notin\left\langle E^{\prime}\right\rangle$ for any $E^{\prime} \subsetneq E, E \neq A$, and $\operatorname{deg}(E) \leq 2 d-1$. Then $E \subset L$.

Proof of the Claim: Since $P \in\langle Z\rangle$, Lemma 3 and [8], Lemma 34, give the existence of a line $D \subset \mathbb{P}^{m}$ such that $\operatorname{deg}(D \cap(E \cup A)) \geq d+2$. First we will check that $E \subset D$ and then we will see that $D=L$. Let $H \subset \mathbb{P}^{m}$ be a general hyperplane containing D. Since E is reduced, A is curvilinear and H is general, we have $H \cap(A \cup E)=D \cap(A \cup E)$. Let $\operatorname{Res}_{H}(A \cup E)$ denote the residual scheme of $A \cup E$ with respect to H, i.e. the closed subscheme of \mathbb{P}^{m} with $\mathcal{I}_{A \cup E}: \mathcal{I}_{H}$ as its ideal sheaf. Since $\left.\operatorname{deg}\left(\operatorname{Res}_{H}(A \cup E)\right)=\operatorname{deg}(A \cup E)-\operatorname{deg}((A \cup E) \cap H)\right) \leq d$, we have $h^{1}\left(\mathbb{P}^{m}, \mathcal{I}_{\operatorname{Res}_{H}(A \cup E)}(d-1)\right)=0$. Since A is connected and not reduced, [6], Lemma 4, gives $A \cup E \subset H$. Since this is true for a general H containing D, we get $E \subset D$. We also get $A \subset D$ and hence $D=L$.

Apply the Claim first to S_{1} and then to S_{2}. We get $S \subset L$. Hence $\alpha(X, P)=$ $\alpha(R, P)=d^{2}$, a contradiction.

Albanian J. Math. 8 (2014), no. 1, 9-21.

Remark 5. Fix a linear subspace $U \subsetneq \mathbb{P}^{m}$ and take $P \in\left\langle\nu_{d}(U)\right\rangle$. We have $r_{X_{m, d}}(P)=r_{\nu_{d}(U)}(P)$ ([21], Proposition 3.1) and every $S \subset X$ evincing $r_{X}(P)$ is contained in $\nu_{d}(U)$ ([19], Exercise 3.2.2.2). Part (b) of Theorem 4 shows that sometimes $i r_{X}(P)<i r_{\nu_{d}(U)}(P)$.

Theorem 5. Assume $m \geq 2$ and $d \geq 5$. Fix a finite set $A \subset \mathbb{P}^{m}$ such that $\sharp(A)=3$. Set $X:=X_{m, d}$ and $n:=\binom{m+d}{m}-1$. Fix $P \in\left\langle\nu_{d}(A)\right\rangle$ such that $P \notin\left\langle\nu_{d}\left(A^{\prime}\right)\right\rangle$ for any $A^{\prime} \subsetneq A$.
(a) Assume that A is contained in a line. Then $r_{X}(P)=z_{X}(P)=3$, $i r_{X}(P)=$ $i z_{X}(P)=d-1$ and $\alpha(X, P)=\gamma(X, P)=d+2$.
(b) Assume that A is not contained in a line. Then $r_{X}(P)=z_{X}(P)=3$ and $\alpha(X, P)=2 d+2$.

Proof. Since $\beta(X) \geq 5, \nu_{d}(A)$ is the only subscheme of X with degree ≤ 3 whose linear span contains P. Hence $r_{X}(P)=z_{X}(P)=3$. Since $\beta(X)=d+2$, Lemma 3 also gives $i r_{X}(P) \geq i z_{X}(P) \geq d-1$ and $\alpha(X, P) \geq \gamma(X, P) \geq d+2$.

First assume the existence of a line $L \subset \mathbb{P}^{m}$ such that $A \subset L$. Set $R:=\nu_{d}(L)$. Since $P \in\langle R\rangle$, Proposition 7 gives $i r_{X}(P) \leq i r_{R}(P)=d-1, i z_{X}(P) \leq i z_{R}(P)=$ $d-1, \alpha(X, P) \leq \alpha(R, P)=d+2$ and $\gamma(X, P) \leq \gamma(R, P)=d+2$, concluding the proof of part (a).

Now assume that A is not contained in a line. Write $A=\left\{O_{1}, O_{2}, O_{3}\right\}$. Fix $i \in\{1,2,3\}$ and set $\{j, h\}:=\{1,2,3\} \backslash\{i\}$. Set $L_{i}:=\left\langle\left\{O_{j}, O_{h}\right\}\right\rangle \subset \mathbb{P}^{m}$. Since $P \in$ $\left\langle\nu_{d}(A)\right\rangle$ and $P \notin\left\langle\nu_{d}\left(A^{\prime}\right)\right\rangle$ for any $A^{\prime} \subsetneq A$, the set $\left\langle\left\{P, \nu_{d}\left(O_{i}\right)\right\}\right\rangle \cap\left\langle\left\{\nu_{d}\left(O_{h}\right), \nu_{d}\left(O_{j}\right)\right\}\right\rangle$ is a single point, P_{i}. Notice that $P_{i} \in\left\langle\nu_{d}\left(L_{i}\right)\right\rangle$ and that $r_{\nu_{d}\left(L_{i}\right)}\left(P_{i}\right)=2$. The " Moreover" part of Proposition 5 gives the existence of a set $E_{i} \subset L_{i}$ such that $\sharp\left(S_{i}\right)=d$ and $\left\{P_{i}\right\}=\left\langle\left\{\nu_{d}\left(O_{h}\right), \nu_{d}\left(O_{j}\right)\right\}\right\rangle \cap\left\langle\nu_{d}\left(E_{i}\right)\right\rangle$. Hence $\left\langle\nu_{d}(A)\right\rangle \cap\left\langle\nu_{d}\left(\left\{O_{i}\right\} \cup E_{i}\right)\right\rangle$ is the line $\left\langle\left\{\nu_{d}\left(O_{i}\right), P_{i}\right\}\right\rangle$. Taking the intersection of two of these lines we get $i r_{X}(P) \leq d+1$ and $\alpha(X, P) \leq 2 d+2$. Since $r_{X}(P)=d+1$ (proof of this case in [8], Theorem 37), we get $\operatorname{ir}_{X}(P)=d+1$. Lemma 3 also gives $i z_{X}(P) \geq d+1$ and that for each subscheme $W \subset \mathbb{P}^{m}$ with $\operatorname{deg}(W) \leq d+1$ and $P \in\langle W\rangle$ we have $W \supseteq A$. Hence $i z_{X}(P)=d+1$. Assume $a:=\alpha(X, P) \leq 2 d+1$ and take $S=S_{1} \cup \cdots \cup S_{k}$ with $\{P\}=\cap_{i=1}^{k}\left\langle\nu_{d}\left(S_{i}\right)\right\rangle$ and $\sharp\left(S_{1}\right)+\cdots+\sharp\left(S_{k}\right)=a$. Since $a \leq 2 d+1$ and each subscheme $W \subset \mathbb{P}^{m}$ with $\operatorname{deg}(W) \leq d+1$ and $P \in\langle W\rangle$ contains A, we get $k=2$ and that one of the sets S_{i} is just A. Since $P \in\left\langle S_{1}\right\rangle \cap\left\langle S_{2}\right\rangle$, $P \notin\langle U\rangle$ for any $U \subsetneq S_{i}, i=1,2$, and $\sharp\left(S_{1} \cup S_{2}\right) \leq 2 d+1$, there is a line $D \subset \mathbb{P}^{m}$ such that $\sharp\left(D \cap\left(S_{1} \cup S_{2}\right)\right) \geq d+2$ and $S_{1} \backslash S_{1} \cap D=S_{2} \backslash S_{2} \cap D$ ([6], Lemma 4). Since $S_{1} \cap S_{2}=\emptyset$, we get $S_{1} \cup S_{2} \subset D$. Since A is not contained in a line and $A=S_{i}$ for some i, we get a contradiction.

References

[1] B. Ådlandsvik, Joins and higher secant varieties. Math. Scand. 62 (1987), 213-222.
[2] L. Albera, P. Chevalier, P. Comon and A. Ferreol, On the virtual array concept for higher order array processing. IEEE Trans. Sig. Proc., 53 (2005), no. 4, 1254-1271.
[3] E. Ballico, On strange projective curves. Rev. Roum. Math. Pures Appl. 37 (1992), 741-745.
[4] E. Ballico, An upper bound for the X-ranks of points of \mathbb{P}^{n} in positive characteristic. Albanian J. Math. 5 (2011), no. 1, 3-10.
[5] E. Ballico and A. Bernardi, Decomposition of homogeneous polynomials with low rank. Math. Z. 271 (2012) 1141-1149.
[6] E. Ballico and A. Bernardi, Stratification of the fourth secant variety of Veronese variety via the symmetric rank. Adv. Pure Appl. Math. 4 (2013), no. 2, 215-250; DOI: 10.1515/apam-2013-0015

Albanian J. Math. 8 (2014), no. 1, 9-21.
[7] V. Bayer and A. Hefez, Strange plane curves. Comm. Algebra 19 (1991), no. 11, 3041-3059.
[8] A. Bernardi, A. Gimigliano and M. Idà, On the stratification of secant varieties of Veronese varieties via symmetric rank. J. Symbolic. Comput. 46 (2011), no. 1, 34-53.
[9] A. Bernardi and K. Ranestad, The cactus rank of cubic forms. J. Symbolic. Comput. 50 (2013) 291-297. DOI: 10.1016/j.jsc.2012.08.001
[10] W. Buczyńska and J. Buczyński, Secant varieties to high degree Veronese reembeddings, catalecticant matrices and smoothable Gorenstein schemes. J. Algebraic Geometry 23 (2014) 63-90 S 1056-3911(2013)00595-0
[11] J. Buczyński, A. Ginensky and J. M. Landsberg, Determinantal equations for secant varieties and the Eisenbud-Koh-Stillman conjecture. J. London Math. Soc. (2) 88 (2013), 1-24; doi:10.1112/jlms/jds073
[12] J. Buczyński and J. M. Landsberg, Ranks of tensors and a generalization of secant varieties. Linear Algebra Appl. 438 (2013), no. 2, 668-689.
[13] L. Chiantini and C. Ciliberto, On the concept of k-secant order of a variety. J. London Math. Soc. (2) 73 (2006), no. 2, 436-454.
[14] G. Comas and M. Seiguer, On the rank of a binary form. Found. Comp. Math. 11 (2011), no. $1,65-78$.
[15] P. Comon, G. Golub, L.-H. Lim and B. Mourrain, Symmetric tensors and symmetric tensor rank. SIAM Journal on Matrix Analysis Appl. 30 (2008), no. 3, 1254-1279.
[16] A. Couvreur, The dual minimum distance of arbitrary dimensional algebraic-geometric codes. J. Algebra 350 (2012), no. 1, 84-107.
[17] R. Hartshorne, Algebraic Geometry. Springer, Berlin, 1977.
[18] J.-P. Jouanolou, Théorèmes de Bertini et applications. Progress in Mathematics, 42. Birkhäuser Boston, Inc., Boston, MA, 1983.
[19] J. M. Landsberg, Tensors: Geometry and Applications. Graduate Studies in Mathematics, Vol. 128, Amer. Math. Soc. Providence, 2012.
[20] J. M. Landsberg and Z. Teitler, On the ranks and border ranks of symmetric tensors. Found. Comput. Math. 10 (2010), no. 3, 339-366.
[21] L. H. Lim, V. de Silva, Tensor rank and the ill-posedness of the best low-rank approximation problem. SIAM J. Matrix Anal. Appl. 30 (2008), no. 3, 1084-1127.
[22] J. Rathmann, The uniform position principle for curves in characteristic p. Math. Ann. 276 (1987), no. 4, 565-579.
[23] J. Silverman, The arithmetic of elliptic curves, Springer, Berlin, 1986.

