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Abstract. Let X ⊂ Pn be an integral and non-degenerate variety. Fix P ∈
Pn. In this paper we discuss the minimal integer

∑k
i=1 ](Si) such that Si ⊂ X

and {P} = ∩ki=1〈Si〉, where 〈 〉 denote the linear span (in positive characteristic
sometimes this integer is +∞). We use tools introduced for the study of the

X-rank of P . Our main results are when X is a Veronese embedding of Pm

(it is related to the symmetric tensor rank of P ) or when X is a curve.

1. Introduction

Let X ⊆ Pn be an integral and non-degenerate variety defined over an alge-
braically closed field K. For any P ∈ Pn the X-rank rX(P ) of P is the minimal
cardinality of a finite set S ⊂ X such that P ∈ 〈S〉, where 〈 〉 denote the linear span.
Let irX(P ) be the minimal integer s such that there are finite sets Si ⊂ X, i ≥ 1,
such that ](Si) ≤ s for all i and {P} = ∩i≥1〈Si〉. We prove that irX(P ) < +∞
if char(K) = 0 (Proposition 3), but we show that in positive characteristic this is
not true in a few cases (Proposition 3). We call irX(P ) the identification rank of P
with respect to X or the X-identification rank of P . Let α(X,P ) be the minimal
integer x such that there are finitely many finite sets Si ⊂ X, say S1, . . . , Sk, such

that {P} = ∩ki=1〈Si〉 and
∑k
i=1 ](Si) = x (we don’t fix the integer k and we don’t

assume that the sets Si are disjoint, although the last condition is always satisfied
if k = 2). The integer α(X,P ) is the minimal number of points of X needed to
identify P among all the points of Pn using only the operations of linear algebra:
first taking several linear spans of points of X and then taking the intersection of
these linear subspaces. It is the analogous in projective geometry of the minimal
number of photos needed to identify a point of R3. With a smaller number of points
we may only identify a linear subspace, L, containing P , but we cannot distinguish
P from the other points of Pn. One could allow both intersections and unions of

2000 Mathematics Subject Classification. 14N05; 14H99; 15A69.
Key words and phrases. X-rank; symmetric tensor rank; strange curve; Veronese varieties.

c©2014 albanian-j-math.com

9

http://albanian-j-math.com


Albanian J. Math. 8 (2014), no. 1, 9-21.

linear spaces 〈Si〉, Si ⊂ X, but obviously in this way the minimal number
∑
i ](Si)

is at least the integer α(X,P ) as we defined it. We say that α(X,P ) is the iden-
tification number of P with respect to X. This concept has an obvious geometric
meaning, but as in the case of the usual X-rank other related technical definitions
may help to compute it. The integer irX(P ) is quite useful to get an upper bound
for the integer α(X,P ).

These two integers irX(P ) and α(X,P ) are the key definitions introduced in
this paper. We also add other related numerical invariants related to irX(P ) and
α(X,P ). We will see in the proofs that these invariants are quite useful to compute
irX(P ) and α(X,P ). First of all, several times it is important to look at zero-
dimensional subschemes, not just finite sets, to take the linear span. This was a
key ingredient for the study of binary forms ([14], [8], §3, [20], §4) and it is very
useful also for multivariate polynomials ([8]). The cactus rank zX(P ) of P with
respect to X is the minimal degree of a zero-dimensional scheme Z ⊂ X such
that P ∈ 〈Z〉 ([10], [9]). Let izX(P ) be the minimal integer t such that there are
zero-dimensional subschemes Zi ⊂ X, i ≥ 1, such that {P} = ∩i〈Zi〉. Obviously
izX(P ) ≤ irX(P ) and izX(P ) = 1 if and only if P ∈ X. Let γ(X,P ) be the minimal
integer x such that there are finitely many zero-dimensional schemes Zi ⊂ X, say

Z1, . . . , Zk, such that {P} = ∩ki=1〈Zi〉 and
∑k
i=1 deg(Zi) = x. Obviously

P ∈ X,⇔ α(X,P ) =⇔ γ(X,P ) = 1.

Most of our results are for curves and Veronese varieties (in the latter case the
X-rank of P is called the symmetric tensor rank of X) (see [2],[8],[15],[19],[20]).
In the case of Veronese varieties we give a complete classification of the possible
integers irX(P ), izX(P ) and α(X,P ) when either P has border rank 2 (Theorem
4) or rX(P ) = 3 (Theorem 5).

We prove the following results.

Proposition 1. Let X ⊂ P2k, k ≥ 1, be an integral and non-degenerate curve. For
a general P ∈ P2k we have rX(P ) = irX(P ) = k + 1 and α(X,P ) = 2k + 2.

Theorem 1. Assume char(K) = 0. Let X ⊂ P2k+1 be an integral and non-
degenerate curve. Fix a general P ∈ P2k+1.

(a) If X is not a rational normal curve, then rX(P ) = irX(P ) = k + 1 and
α(X,P ) = 2k + 2.

(b) If X is a rational normal curve, then rX(P ) = zX(P ) = k + 1, irX(P ) =
izX(P ) = k + 2 and α(X,P ) = γ(X,P ) = 2k + 3.

We also have a result on strange curves (Proposition 3), results on space curves
(Theorems 2 and 3) and on rational normal curves (Propositions 5 and 6).

2. Arbitrary characteristic

For any integral variety X ⊂ Pn let σt(X) denote the closure in Pn of the union
of all linear spaces 〈S〉 with S ⊂ X and ](S) = t. Each σt(X) is an integral
variety, σ1(X) = X and dim(σt(X)) ≤ min{n, t · dim(X) − 1}. For each P ∈ Pn
the X-border rank bX(P ) of X is the minimal integer t such that P ∈ σt(X). Let
τ(X) ⊆ Pn denote the tangent developable of X, i.e. the closure in Pn of all tangent
spaces TQX ⊆ Pn, Q ∈ Xreg. The algebraic set τ(X) is an integral variety,

dim(τ(X)) ≤ min{n, 2 · dim(X)}
and τ(X) ⊆ σ2(X) (it is called the tangent developable of X).
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Notation 1. For any linear subspace V ⊆ Pn let `V : Pn \ V → Pn−k−1, k :=
dim(V ), denote the linear projection from V . If V is a single point, O, we often
write `O instead of `{O}.

Notation 2. Let Z(X,P ) (resp. S(X,P )) denote the set of all zero-dimensional
schemes Z ⊂ X (resp. finite sets S ⊂ X) such that deg(Z) = zX(P ) (resp.
](S) = rX(P )) and P ∈ 〈Z〉 (resp. P ∈ 〈S〉).

As in [11], Lemma 2.1.5, and [8], Proposition 11, we use the following important
invariant β(X) of the embedded variety X ⊂ Pn.

Notation 3. Let X ⊂ Pn be an integral and non-degenerate variety. Let β(X)
denote the maximal integer t such that any zero-dimensional scheme Z ⊂ X with
deg(Z) ≤ t is linearly independent, i.e. dim(〈Z〉) = deg(Z)− 1.

Remark 1. Let X ⊂ Pn be an integral and non-degenerate subvariety. Fix P ∈
Pn. If bX(P ) ≤ β(X) and X is either a smooth curve or a smooth surface, then
zX(P ) = bX(P ) ([11], Lemma 2.1.5, or [8], Proposition 11).

Take any integral and non-degenerate variety X ⊂ Pn and any finite set S ⊂ X
such that ](S) ≤ β(X). By the definition of β(X) the set S is linearly independent.
It seems better in Notation 3 to prescribe the linearly independence of an arbitrary
zero-dimensional scheme Z ⊂ X with deg(Z) ≤ β(X). Anyway, in many important
cases (e.g. the Veronese varieties) the set-theoretic definition and the scheme-
theoretic one chosen in Notation 3 give the same integer.

Remark 2. Obviously β(X) ≤ n+ 1 and equality holds if X is a rational normal
curve. We claim that equality holds if and only if X is a rational normal curve.
Indeed, if X is a curve with degree d ≥ n + 1, then a general hyperplane section
of X contains d points spanning only a hyperplane. Now assume dim(X) ≥ 2. Let
H ⊂ Pn be a general hyperplane. Since H ∩X is infinite, we may find S ⊂ H ∩X
with ](S) = n+ 1. Since S is linearly dependent, β(X) ≤ n even in this case.

Remark 3. Fix an integral and non-degenerate variety X ⊂ Pn and P ∈ Pn.
Obviously irX(P ) = +∞ if and only if irX(P ) > n. Since the intersection of
n − 1 hyperplanes of Pn contains at least a line, if rX(P ) = irX(P ) = n, then
α(X,P ) = n2. We have rX(P ) = n + 1 if and only if dim(X) = 1 and X is a flat
curve in the sense of [4]. Obviously if rX(P ) = n+ 1, then irX(P ) = +∞. See [4],
Proposition 1 and Example 1, for two classes of flat curves.

Let X ( Pn be an integral and non-degenerate variety and P ∈ Pn. We say
that P is a strange point of X if for a general Q ∈ Xreg the Zariski tangent space
TQX contains P (we allow the case in which X is a cone with vertex containing
P ). The strange set of X is the set of all strange points of X (this set is always
a linear subspace, but usually it is empty). If this set is not empty, then either
char(K) > 0 or X is a cone and the strange set of X is the vertex of X ([7],[22]).
Lines and smooth conics in characteristic two are the only smooth strange curves
([17], Theorem IV.3.9). Now fix P ∈ Pn \X and set fP,X := `P |X. Since P /∈ X,
fP,X is a finite morphism and we have deg(X) = deg(fP,X) · deg(fP,X(X)). The
point P is a strange point of X if and only if fP,X is not separable. We recall
that a non-degenerate curve X ⊂ Pn, n ≥ 3, is said to be very strange if a general
hyperplane section of X is not in linearly general position ([22]). A very strange
curve is strange ([22], Lemma 1.1).
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Proposition 2. Fix an integral and non-degenerate variety X ( Pn. Set m :=
dim(X) and fix P ∈ Pn. If P is not a strange point of X, then irX(P ) ≤ n−m+1.

Proof. We will follow the proof of part (a) of [4], Theorem 1. If P ∈ X, then
irX(P ) = 1. Hence we may assume P /∈ X. First assume m = 1. Let H ⊂ Pn
be a general hyperplane containing P . Since P is not a strange point of X, H is
transversal to X, i.e. H∩Sing(X) = ∅ and ](X∩H) = deg(X). Since X is reduced
and irreducible, we have h1(IX) = 0. From the exact sequence

(1) 0→ IX → IX(1)→ IX∩H,H(1)→ 0

we get that the setH∩X spansH. Since P ∈ H, we get the existence of SH ⊂ X∩H
such that ](SH) ≤ n and P ∈ 〈SH〉. Fix general hyperplanes Hi, i ≤ i ≤ n,
containing P and such that {P} = H1 ∩ · · · ∩Hn. Take SHi

⊂ X ∩Hi as above.
Since {P} = ∩ni=1〈SHi〉, we get irX(P ) ≤ n. Now assume m ≥ 2. We use induction
on m. Take a general hyperplane H ⊂ Pn containing P . Bertini’s theorem gives
that X ∩ H is geometrically integral ([18], part 4) of Th. I.6.3). Fix a general
Q ∈ (X ∩ H)reg. For general H we may take as Q a general point of X. Hence
P /∈ TQX. Hence P /∈ (TQX) ∩H = TQ(X ∩H). Thus P is not a strange point of
X ∩H. By the inductive assumption in H ∼= Pn−1 we get irX∩H(P ) ≤ n−m+ 1.
Since irX(P ) ≤ irX∩H(P ), we are done. �

Proposition 3. Fix an integral and non-degenerate strange curve X ⊂ Pn. Fix
P ∈ Pn \ X and assume that P is the strange point of X. Let s (resp. pe)
denote the separable (resp. inseparable) degree of fP,X . Set d := deg(X) and
c := deg(fP,X(X)). We have d = spec.

(a) If s ≥ 2, then irX(P ) = 2.
(b) If s = 1, c 6= n− 1 and X is not very strange, then irX(P ) ≤ n.
(c) If s = 1 and c = n− 1, then rX(P ) = n+ 1 and irX(P ) = +∞.

Proof. Since P /∈ X, fP,X is a finite morphism. Hence deg(X) = deg(fP,X) ·
deg(fP,X(X)), i.e. d = spec.

First assume s ≥ 2. Fix general P1, P2 ∈ fP,X(X). By assumptions there are

Oij ∈ f−1P,X(Pi), i = 1, 2, j = 1, 2, such that Oi1 6= Oi2. Set Si := {Oi1, Oi2}. Since

P ∈ 〈Si〉, i = 1, 2, and the two lines 〈Si〉 are different, we get irX(P ) = 2.
From now on we assume s = 1 and that X is not very strange. Let u : Y →

X denote the normalization map. Let H be the set of all hyperplanes of Pn−1
transversal to fP,X(X). We have dim(H) = n−1. Since fP,X(X) is non-degenerate,
we have deg(fP,X(X)) ≥ n− 1.

First assume c 6= n − 1. Hence for every H ∈ H we may find a set AH ⊂
H ∩ fP,X(X) such that ](AH) = n and 〈AH〉 = H. Notice that AH is linearly
dependent. Fix SH ⊂ X such that ](SH) = n and fP,X(SH) = AH . If P /∈ 〈SH〉,
then SH is linearly dependent. Since X is not very strange, we have X ∩ 〈S〉 = S
(as sets) for a general set S ⊂ X such that ](S) = n − 1. Hence there is at most
an (n − 2)-dimensional family of linearly dependent subsets of X with cardinality
n. Hence there is a non-empty open subset H′ of H such that P ∈ 〈SH〉 for every
H ∈ H′. Since ∩H∈H′H = ∅, we get {P} = ∩H∈H′〈SH〉. Hence irX(P ) ≤ n.

Now assume c = n− 1. Hence fP,X(X) is a rational normal curve. In particular
fP,X(X) is smooth. Since fP,X ◦u : Y → fP,X(X) is a purely inseparable morphism
between smooth curves, it is injective. Hence fP,X is injective. Since fP,X(X) is a
rational normal curve, for every S ⊂ X with ](S) ≤ n, the set fP,X(S) is a linearly
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independent set with ](S) elements. Hence P /∈ 〈S〉. Hence rX(P ) = n+ 1. Hence
irX(P ) > n, i.e. irX(P ) = +∞. �

All strange curves may be explicitly constructed (see [7] for the case n = 2 and
[3] for the case n > 2).

3. Curves

We use the following obvious observations (true in arbitrary characteristic) and
whose linear algebra proof is left to the reader (parts (a) and (b) of Lemma 1 just say
that two distinct lines have at most one common point and that if P ∈ 〈{P1, P2}〉
and irX(P ) < 4, then there is S ⊂ X with ](S) ≤ 3, P ∈ 〈S〉 and 〈{P1, P2}〉 * 〈S〉).

Lemma 1. Let X ⊂ P3 be an integral and non-degenerate curve. Fix P ∈ P3 \X.
(a) If rX(P ) = irX(P ) = 2, then α(X,P ) = 4.
(b) If rX(P ) = 2 and irX(P ) = 3, then α(X,P ) = 5.
(c) If rX(P ) = irX(P ) = 3, then α(X,P ) = 9.

Remark 4. Now assume that X is a singular curve, but take a zero-dimensional
scheme Z ⊂ Xreg such that k := deg(Z) ≤ β(X)/2. Since Z is curvilinear, it has
finitely many linear subschemes. Since Z is linearly independent, the set Ψ :=
〈Z〉 \Z′(Z 〈Z ′〉) is a non-empty open subset of the (k− 1)-dimensional linear space
〈Z〉. Fix any P ∈ Ψ. Lemma 3 gives zX(P ) = k and that Z is the only degree k
subscheme of X whose linear span contains P . Since Z ⊂ Xreg, Z is smoothable.
Hence [8], Proposition 11, give bX(P ) = k.

Lemma 2. Let X ⊂ Pn be an integral and non-degenerate curve. Fix P ∈ Pn such
that zX(P ) ≤ β(X)/2. Then:

(i) There is a unique zero-dimensional scheme A ⊂ X such that P ∈ 〈A〉 and
deg(A) ≤ zX(P ). We have deg(A) = zX(P ).

(ii) Fix any zero-dimensional scheme W ⊂ X such that deg(W ) ≤ β(X) −
zX(P ) and P ∈ 〈W 〉. Then W ⊇ A. We have irX(P ) ≥ izX(P ) ≥
β(X)− zX(P ) + 1.

(iii) Assume that A is not reduced. Then rX(P ) ≥ β(X) − zX(P ) + 1. If
rX(P ) = β(X) − zX(P ) + 1, then S ∩ A = ∅ for all sets S ⊂ X such that
](S) = rX(P ) and P ∈ 〈S〉.

Proof. Assume the existence of zero-dimensional schemes A,W such that A 6= W ,
P ∈ 〈A〉 ∩ 〈W 〉, P /∈ 〈A′〉 for all A′ ( A and deg(A) + deg(W ) ≤ β(X). Lemma 3
gives the existence of W ′ ( W such that P ∈ 〈W ′〉. If W ′ 6= W , then we continue
taking W ′ instead of W . We get parts (a) and (b).

The first assertion of part (iii) follows from part (ii), while the second one follows
from Lemma 3. �

Proposition 4. Let X ⊂ P3 be a rational normal curve. Then irX(P ) = 3 for all
P ∈ P3 \X.

Proof. Lines and smooth conics in characteristic two are the only smooth strange
curves ([17], Theorem IV.3.9). Fix P ∈ P3 \ X. Since X is not strange, we have
irX(P ) ≤ 3 (Proposition 3) (even in positive characteristic). Since σ2(X) = P3

([1], Remark 1.6), Remark 3 gives zX(P ) = 2. Since β(X) = 4, Lemma 3 gives
irX(P ) ≥ 3. �
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Let X be a smooth elliptic curve defined over K. We recall that the 2-rank
of X is the number, ε, of pairwise non-isomorphic line bundles L on X such that
L⊗2 ∼= OX ([23], Chapter III). If char(K) 6= 2, then ε = 4, while ε ∈ {1, 2} if
char(K) = 2 ([23], Corollary III.6.4).

Theorem 2. Let X ⊂ P3 be a smooth elliptic curve. Fix P ∈ P3 \ X. Let ε be
the 2-rank of the elliptic curve X. There are exactly ε quadric cones Wi, 1 ≤ i ≤ ε
containing X. Call Oi, 1 ≤ i ≤ ε, the vertex of Wi.

(a) The points Oi, 1 ≤ i ≤ ε, are the only points Q ∈ P3 such that Z(X,P )
and S(X,Q) are infinite; we have irX(Oi) = 2 for all i; each point Oi is contained
in TX.

(b) If P ∈ (TX ∪
⋃ε
i=1Wi), but P 6= Oi for any i, then irX(P ) = 3.

(c) If P /∈ (TX ∪
⋃ε
i=1Wi), then irX(P ) = 2.

Proof. Call Ri, 1 ≤ i ≤ ε, the pairwise non-isomorphic line bundles on X such
that R⊗2i

∼= OX . Since deg(X) is even and K is algebraically closed, there is a line
bundle L on X such that L⊗2 ∼= OX(1). Set Li := Ri ⊗ L. It is easy to check
that the line bundles Li, 1 ≤ i ≤ ε, are pairwise non-isomorphic and that, up to
isomorphisms, they are the only line bundles A on X such that A⊗2 ∼= OX(1).

Since X is not strange, Proposition 3 gives irX(P ) ≤ 3. Since P /∈ X, Remark 3
and [1], Remark 1.6, give zX(P ) = 2. Obviously, if ](Z(X,P )) = 1, then irX(P ) >
2. Since `P (X) spans P2, we have deg(`P (X)) ≥ 2. Hence either deg(`P (X)) = 4
and `P |X is birational onto its image or deg(`P |X) = 2.

First assume deg(`P |X) = 2. In this case we get that Z(X,P ) is infinite. Since
`P (X) ∼= P1, the morphism `P |X is not purely inseparable. Hence a general fiber
of it is formed by two distinct points of X spanning a line through P . Hence
irX(P ) = 3. We get OX(1) ∼= `P (O`P (X)(1)). Since O`P (X)(1) ∼= R⊗2 with R a
degree 1 line bundle on `P (X), `∗P (R) is one of the line bundle Li, 1 ≤ i ≤ ε. Since
X 6= P1, `P |X has at least one ramification point. Hence Oi ∈ TX for all i. The
construction may be inverted in the following sense. Fix one of the line bundles
Li, 1 ≤ i ≤ ε. Since X is an elliptic curve, we have h0(X,Li) = 2 and the linear
map j : S2(H0(X,Li))→ H0(X,OX(1)) is injective with as image a hyperplane of
the 4-dimensional linear space H0(X,OX(1)), i.e. (by the linear normality of X)

a point, Õi of P3 = P(H0(X,OX(1))∨). The definition of j gives that `Õi
|X has

degree 2.
Now assume deg(`P (X)) = 4. The genus formula for plane curves gives that

`P (X) has 1 or 2 singular points and that if it has two singular points, then they
are either ordinary nodes or ordinary cusps. If `P (X) has either a unique singular
point or at least one cusp, then irX(P ) > 2 and hence irX(P ) = 3. In particular
this is the case if P ∈ TX. Hence if P ∈ TX and P 6= Oi, then irX(P ) = 3. Now
assume P /∈ TX. In this case irX(P ) = 2 if and only if `P (X) has two singular
points. If the plane curve `P (X) has a unique singular point, then it is an ordinary
tacnode. Let T ⊂ P3 be a line secant to X, but not tangent to X. Since X is the
complete intersection of two quadric surfaces, there is a unique quadric surface, W ,
containing X ∪ {P}. Call T a line in W containing P . X ∪ T is contained in a
unique quadric surface, W . If W is singular, i.e. if W = Wi for some i, then there
is a unique line through P and secant to X. If W is smooth, i.e. if P /∈Wi for any
i, then there are two such lines, both of them containing two distinct points of X,
because we assumed P /∈ TX. Hence irX(P ) = 2 in this case. �
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Theorem 3. Let X ⊂ P3 be an integral and non-degenerate curve. Assume that
X is not strange and that X has only planar singularities. There is a non-empty
open subset Ω of P3 \X such that irX(P ) = 2 for all P ∈ Ω if and only if X is not
a rational normal curve..

Proof. Set d := deg(X) and q := pa(X). Since Proposition 4 gives that “ only if ”
part, it is sufficient to prove the “ if ” part. Assume d ≥ 4. It is easy to check the
existence of a non-empty open subset W of P3 \X such that `P |X is birational onto
its image for all P ∈ W . By assumption for each O ∈ Sing(X) the Zariski tangent
plane TOX of X at O is a plane. Since Sing(X) is finite, we get finitely many planes
TOX, O ∈ Sing(X), and we call W ′ the intersection of W with the complement of
the union of these planes. Let G be the intersection of W ′ with the complement of
the tangent developable τ(X) of X. For each P ∈ G the morphism `P |X is unram-
ified and birational onto its image. Hence the singularities of the degree d plane
curve `P (X) comes only from the non-injectivity of `P |X and the singularities of
X. To prove Theorem 3 it is sufficient to prove that the set of all P ∈ G such
that `P |X has at least two fibers with cardinality ≥ 2 contains a non-empty open
subset. For any O ∈ Sing(X) let CO(X) the cone with vertex O and the plane curve

`O(X \ {O}) as its base. Set G′ := G\G∩(∪O∈Sing(X)CO(X)). The set G′ is a non-
empty open subset of G and for every P ∈ G′ no point of X \ Sing(X) is mapped
onto a point of `P (Sing(X)). Hence for each P ∈ G′ the plane curve `P (X) has
](Sing(X)) singular points isomorphic to the corresponding singular points of X,
plus some other singular points and the integer pa(`P (X))−q = (d−1)(d−2)/2−q
is the sum of the contributions of the other singular points. Since X is not strange,
it is not very strange, i.e. a general secant line of X contains only two points of X
([22], Lemma 1.1). This is equivalent to the existence of a non-empty open subset
G′′ of G′ such that for all P ∈ G′′ each singular point of `P (X) \ `P (Sing(X)) has
only two branches.

Claim: There is a non-empty open subset G1 of G′′ such that for every P ∈ G1,
`P (X) \ `P (Sing(X)) has only ordinary double points as singularities.

Proof of the Claim: Fix P ∈ G′′. Fix O ∈ `P (X) \ `P (Sing(X)). By the
definition of G′′ there are exactly two points Q1, Q2 ∈ X such that `P (Q1) =
`P (Q2) = O, X is smooth at Q1 and Q2, and `P |X is unramified at each Qi. Hence
`P (X) \ `P (Sing(X)) has only ordinary double points as singularities if and only if
`P (TQ1

X) 6= `P (TQ2
X), i.e. if and only if the planes 〈{P} ∪ TQi

X〉, i = 1, 2, are
distinct. This is certainly true if TQ1

X ∩ TQ2
X = ∅. Let V denote the set of all

(Q1, Q2) ∈ (X \ Sing(X))× (X \ Sing(X)) such that Q1 6= Q2. Let U be the set of
all (Q1, Q2) ∈ V such that TQ1X ∩ TQ2X 6= ∅. Since X is not strange, U is a union
of finitely many subvarieties of dimension ≤ 1; it is here that we use the full force
of our assumption “ X not strange ”, not only the far weaker condition “ X not
very strange ”. Let ∆ be the closure in P3 of the union of the lines 〈{Q1, Q2}〉 with
(Q1, Q2) ∈ U . We have dim(∆) ≤ 2. Set G1 := G′′ ∩ (P3 \∆). By construction this
set G1 satisfies the Claim.

Now we prove that we may take Ω := G1. Fix P ∈ G1 and call x the number of
the singular points of `P (X) \ `P (Sing(X)). By the claim it is sufficient to prove
the inequality x ≥ 2. Since `P (X) is a plane curve of degree d, it has arithmetic
genus (d − 1)(d − 2)/2. Since each point of `P (X) \ `P (Sing(X)) is an ordinary
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node, `P |X is unramified at each point of Sing(X) and `−1P (`P (X) \ `P (Sing(X))),
we have x = pa(`P (X)) − pa(X) = (d − 1)(d − 2)/2 − q. Hence it is sufficient to
prove that q ≤ (d − 1)(d − 2)/2 − 2. This is true by the assumption d ≥ 4 and
Castelnuovo’s inequality for the arithmetic genus of space curves (use [22], Lemma
1.1, that X is not strange and that the upper bound needs only that a general plane
section of X is in linearly general position). �

Proof of Proposition 1: Let ∆ denote the set of all linearly independent
subsets of X with cardinality k+1. Since σk+1(X) = P2k and dim(σk(X)) = 2k−1
([1], Remark 1.6), we have rX(P ) = k+ 1. A dimensional count gives that S(X,P )
has a one-dimensional irreducible component, Γ. Fix A,B ∈ Γ. It is sufficient to
prove that {P} = 〈A〉 ∩ 〈B〉. Since any two k-dimensional linear subspaces meet,
the set A may be seen as a general element of ∆ and, after fixing A, P may be seen
as a general element of 〈A〉. Hence it is sufficient to prove that 〈A〉∩ 〈B〉 is a single
point for a general (A,B) ∈ ∆ ×∆, i.e. to check that A ∪ B spans P2k. For fixed
A, we have 〈A ∪B〉 = P2k for a general B ⊂ X, because X spans P2k. �

Proof of Theorem 1: Since σk+1(X) = P2k+1 and P is general, we have
rX(P ) ≤ k + 1 ([1], Remark 1.6). Since dim(σk(X)) = 2k − 1 ([1], Remark 1.6)
and P is general, we have rX(P ) ≥ k + 1. Hence rX(P ) = k + 1. X is not
a rational normal curve if and only if there are S1, S2 ⊂ X such that S1 6= S2,
](S1) = ](S2) = k + 1 and P ∈ 〈S1〉 ∩ 〈S2〉 ([13], Theorem 3.1). Let Ω be the set
of all Q ∈ P2k+1 \ σk(X) such that there are only finitely many sets S ⊂ X with
](S) = k + 1 and Q ∈ 〈S〉. Ω is a non-empty open subset of P2k+1. Since P is
general, we may assume P ∈ Ω.

(i) In this step we assume that X is not a rational normal curve. Let Γ denote
the set of all finite sets S ⊂ X such that ](S) = k+1 and dim(〈S〉) = k. We proved
the existence of Si ∈ Γ, i = 1, 2, such that P ∈ 〈S1〉 ∩ 〈S2〉. To prove part (a) it is
sufficient to prove that {P} = 〈S1〉 ∩ 〈S2〉 for a general P . Assume that this is not
true, i.e. assume that 〈S1〉 ∩ 〈S2〉 is a linear space of dimension ρ > 0. Notice that
S(X,P ) = {S ∈ Γ : P ∈ 〈S〉}. Set Γ(S1) := {S ∈ Γ : S∩S1 = ∅, 〈S〉∩〈S1〉∩Ω 6= ∅}.
Since dim〈S1〉 = k and P ∈ Ω∩〈S1〉, then Γ(S1) 6= ∅ and Γ(S1) has pure dimension
k. Since P is general in P2k+1, we may assume that S1 is general in Γ and that S2

is general in one of the irreducible components of Γ(S1). We get that for a general
P ′ ∈ Ω ∩ 〈S1〉 there is a ρ-dimensional family of sets S with P ′ ∈ 〈S〉, absurd.

(ii) In this step we assume that X is a rational normal curve. We know that
rX(P ) = k+1. We proved that irX(P ) ≥ k+2 and hence that α(X,P ) ≥ 2k+3. For
a sufficiently general P ∈ P2k+1 we call SP the only subset ofX with cardinality k+1
and whose linear span contains P . Since β(X) = 2k+ 2 and P /∈ σk(X), Remark 3
gives zX(P ) = k+1 and that SP is the only degree k+1 zero-dimensional subscheme
of X whose linear span contains P . Hence izX(P ) ≥ k + 2 and γ(X,P ) ≥ 2k + 3.

Fix a general Q ∈ X and let φ : X → P2k denote the morphism induced from
`Q|(X \ {Q}). The morphism φ is an embedding of X ∼= P1 as a rational normal
curve of P2k. Fix a general P ′ ∈ P2k. Proposition 1 gives the existence of A1, A2 ⊂
φ(X) such that ](A1) = ](A2) = k + 1 and 〈A1〉 ∩ 〈A2〉 = {P ′}. For a fixed point
φ(Q), but for general P ′ we may also assume φ(Q) /∈ (A1 ∪ A2). Hence there is
a unique set Bi ⊂ X \ {Q} such that φ(Bi) = Ai. Set Ei := {Q} ∪ Bi. Fix
P ′′ ∈ P2k+1 such that `Q(P ′′) = P ′. For fixed Q, but general P ′ we may consider
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P ′′ as a general point of P2k+1. We have 〈{Q,P ′′}〉 = 〈E1〉 ∩ 〈E2〉. Varying Q in X
we get irX(P ) ≤ k+2 and hence irX(P ) = k+2. Let Θ be the set of all finite subsets
A ⊂ X such that ](A) = k+2 and P ∈ 〈A〉. Assume for the moment the existence of
A ∈ Θ such that A∩SP = ∅, i.e. such that ](A∪SP ) = 2k+3. Since β(X) = 2k+2
and ](A ∪ SP ) = 2k + 3, we get 〈SP ∪ A〉 = P2k+1, i.e. dim(〈A〉 ∩ 〈SP 〉) = 0
(Grassmann’s formula). Since P ∈ 〈A〉 ∩ 〈SP 〉, we get {P} = 〈A〉 ∩ 〈SP 〉, i.e.
α(X,P ) ≤ 2k + 3. Hence α(X,P ) = γ(X,P ) = 2k + 3. Now assume A ∩ SP 6= ∅
for all A ∈ Θ. Since P is general and σk+2(X) = P2k+1, Terracini’s lemma (or a
dimensional count) gives dim(Θ) = 2. For any Q ∈ SP set ΘQ := {A ∈ Θ : Q ∈ A}.
The proof of the inequality irX(P ) ≤ 2k + 3 also shows dim(ΘQ) = 1. Since SP is
finite, we get dim(Θ) = 1, a contradiction. �

4. Veronese varieties

For all integers m ≥ 1 and d ≥ 1 let νd : Pm → Pn, n :=
(
m+d
m

)
− 1 denote the

order d embedding of Pm induced by the vector space of all degree d homogeneous
polynomials in d+ 1 variables. Set Xm,d := νd(Pm).

We often use the following elementary lemma ([5], Lemma 1).

Lemma 3. Fix any P ∈ Pn and two zero-dimensional subschemes A, B of Pn such
that A 6= B, P ∈ 〈A〉, P ∈ 〈B〉, P /∈ 〈A′〉 for any A′ ( A and P /∈ 〈B′〉 for any
B′ ( B. Then h1(Pn, IA∪B(1)) > 0.

We first need the case m = 1 of Theorem 4, i.e. we need to study the case in
which X is a rational normal curve (Propositions 5,6 and 7).

Proposition 5. Let X ⊂ Pd, d ≥ 3, be a rational normal curve. Fix a set A ⊂ X
with ](A) = 2 and any P ∈ 〈A〉 \ A. Then rX(P ) = zX(P ) = 2, irX(P ) =
izX(P ) = d and α(X,P ) = γ(X,P ) = d+ 2. Moreover, there is a set B ⊂ X such
that ](B) = d and {P} = 〈A〉 ∩ 〈B〉.

Proof. Since β(X) = d + 1 ≥ 3, we have A = 〈A〉 ∩ X. Hence P /∈ X. Hence
irX(P ) = 2 = izX(P ). Fix a zero-dimensional scheme W ⊂ X such that P ∈ 〈W 〉,
P /∈ 〈W ′〉 for any W ′ ( W and W 6= A. Since β(X) = d + 1, Lemma 3 gives
deg(W ) ≥ d. Hence irX(P ) ≥ izX(P ) ≥ d and α(X,P ) ≥ γ(X,P ) ≥ d+ 2. Hence
to conclude the proof it is sufficient to find a set B ⊂ X such that ](B) = d and
{P} = 〈A〉 ∩ 〈B〉. Set Y := `P (X). Since P ∈ 〈A〉 and P /∈ X, the curve Y is
a linearly normal curve with degree d, arithmetic genus 1 and a unique singular
point, which is an ordinary node. Fix a general hyperplane H ⊂ Pd−1 and set
E := Y ∩ X. Since H is general, it does not contain the singular point of Y and
it is transversal to Y . Hence E is a set of d points and there is B ⊂ X such that
](B) = d and `P (B) = E. Since ](B) ≤ β(X), B is linearly independent. Since E
is linearly dependent, we have P ∈ 〈B〉. Since ](A ∪ B) = d + 2 = β(X) + 1, we
have 〈A ∪B〉 = Pd. Hence Grassmann’s formula gives {P} = 〈A〉 ∩ 〈B〉. �

Proposition 6. Let X ⊂ Pd, d ≥ 3, be a rational normal curve. Fix P ∈ τ(X)\X,
i.e. fix P ∈ σ2(X) such that rX(P ) > 2. Then zX(P ) = 2, izX(P ) = d, γ(X,P ) =
d + 2, rX(P ) = d, irX(P ) = d and α(X,P ) = d2. Moreover, there are a zero-
dimensional A ⊂ X and a finite set B ⊂ X such that deg(A) = 2, ](B) = d and
{P} = 〈A〉 ∩ 〈B〉.

Proof. First of all we explain the “ i.e. ” part. Since β(X) ≥ 2, Remark 3 gives
that for each Q ∈ σ2(X) \X there is a degree 2 zero-dimensional scheme AQ ⊂ X
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such that Q ∈ 〈AQ〉. Since β(X) ≥ 4, we also get the uniqueness of AQ. Hence
P ∈ τ(X) ⇔ AP is not reduced ⇔ rX(P ) > 2. Set A := AP . Lemma 3 gives
rX(P ) ≥ d and izX(P ) ≥ d. We repeat the proof of Proposition 5 (now Y is a
degree d linearly normal curve with a cusp). We get the existence of a set B ⊂ X
such that ](B) = d and {P} = 〈A〉 ∩ 〈B〉. Hence izX(P ) = d, γ(X,P ) = d. Since
d ≥ 3, X is not strange. Hence irX(P ) ≤ d (Proposition 3). Since rX(P ) ≥ d, we
get rX(P ) = irX(P ) = d. Since rX(P ) = d, P is contained in no linear space of
dimension ≤ d− 2 spanned by a finite subset of X. Hence α(X,P ) = d2 (Remark
3). �

Proposition 7. Let X ⊂ Pd, d ≥ 5, be a rational normal curve. Fix a set A ⊂ X
such that ](A) = 3 and any P ∈ 〈A〉 such that P /∈ 〈A′〉 for any A′ ( A. Then
rX(P ) = zX(P ) = 3, irX(P ) = izX(P ) = d− 1 and α(X,P ) = γ(X,P ) = d+ 2.

Proof. Since β(X) ≥ 5, Lemma 3 gives zX(P ) = 3, izX(P ) ≥ β(X)+1−](A) = d−1
and hence rX(P ) = 3, irX(P ) ≥ d− 1, α(X,P ) ≥ γ(X,P ) ≥ d+ 2.

Set Y := `P (X). Since β(X) = d+ 1 ≥ 5 and P /∈ 〈A′〉 for any A′ ( A, `P |X is
an embedding. Hence Y is a smooth rational curve of degree d spanning Pd−1. Fix
any E ⊂ X \ A with ](E) = d− 4 and set F := `P (E). Since ](A ∪ E) ≤ β(X), F
is a set of d− 4 points of Y spanning a (d− 5)-dimensional linear subspace disjoint
from the line 〈`P (A)〉.

Claim: For general E we have 〈F 〉 ∩ Y = F (as schemes) and `〈F 〉|(Y \ F )

extends to an embedding φ : Y → P3 with φ(Y ) ⊂ P3 a smooth and rational curve
of degree 4 with φ(`P (A)) the union of 3 distinct and collinear points.

Proof of the Claim: The map φ is induced by the linear projection of X from
the linear subspace 〈{P} ∪ E〉. Since E ∩ A = ∅ and ](E ∪ A) ≤ β(X), we have
〈E〉 ∩ 〈A〉 = ∅. Hence φ(A) is the union of 3 distinct collinear points. For degree
reasons we get 〈F 〉∩Y = F (as schemes), i.e. deg(φ) ·deg(φ(Y )) = deg(Y )−d+4 =
4. Since φ(Y ) spans P3, we get deg(φ) = 1. Since φ(Y ) has a 3-secant line, the
curve Y is not the complete intersection of two quadric surfaces. Hence φ(Y ) is
smooth and rational.

Since h0(P3,OP3(2)) = 10 = h0(P1,OP1(8)) + 1, the Claim implies the existence
of a quadric surface T containing φ(Y ). Since φ(Y ) has genus 6= 1, T is not a cone
([17], V.Ex.2.9). Hence φ(Y ) is a curve of type (1, 3) on the smooth quadric surface
T . The set φ(`P (A)) is contained in a line of type (1, 0). Let G be the intersection
of φ(Y ) with a general line of type (1, 0) of T . Since any two different lines of
T are disjoint, we have φ(A) ∩ G = ∅. Since φ(`P (A)) is reduced, in arbitrary
characteristic we get that G is reduced. Since the set φ(F ) is finite, for a general
line of type (1, 0) on T we have G ∩ φ(F ) = ∅. Hence there is G′ ⊂ Y \ F such
that φ(G′) = G. Let B ⊂ X be the only set such that `P (B) = F ∪ G′. Since
](B) ≤ β(X), we have dim(〈B〉) = d− 2. Since G is linearly dependent, F ∪G′ is
linearly dependent. Hence P ∈ 〈B〉. Since A∩B = ∅ and β(X) = d+1 ≤ ](A∪B),
we have 〈A∪B〉 = Pd. Hence Grassmann’s formula gives that 〈A〉 ∩ 〈B〉 is a single
point. Hence {P} = 〈A〉 ∩ 〈B〉. Hence irX(P ) ≤ d− 1 and α(X,P ) ≤ d+ 2. Since
we proved the opposite inequalities, we are done. �

Theorem 4. Fix integers m ≥ 1 and d ≥ 3. Set n := nm,d :=
(
m+d
m

)
− 1 and

X := Xm,d. Fix P ∈ σ2(Xm,d) \X.
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(a) Assume P /∈ τ(X), i.e. assume rX(P ) = 2. Then irX(P ) = d, zX(P ) = 2,
izX(P ) = d and α(X,P ) = γ(X,P ) = d+ 2

(b) Assume P ∈ τ(X)\X. Then zX(P ) = 2, izX(P ) = irX(P ) = d, γ(X,P ) =
d+ 2. If m = 1, then α(X,P ) = d2. If m ≥ 2, then α(X,P ) = 3d.

Proof. Since d ≥ 3, we have σ2(X) 6= τ(X), σ2(X)\τ(X) = {P ∈ σ2(X) : rX(P ) =
2} and rX(P ) = d for each P ∈ τ(X) \ X ([8], Theorem 32). Since the case
m = 1 is true (Propositions 5 and 6), we assume m ≥ 2. Since β(X) = d+ 1 (e.g.
by [8], Lemma 34), Remark 3 and Lemma 3 imply the existence of a unique zero-
dimensional scheme Z ⊂ X such that deg(Z) = 2 and P ∈ 〈Z〉. We have rX(P ) = 2
if and only if Z is reduced. Let A ⊂ Pm be the degree 2 zero-dimensional scheme
such that νd(A) = Z. Let L ⊂ Pm be the line spanned by A. Set R := νd(L).
Since Z ⊂ R, we have rX(P ) ≤ rR(P ), zX(P ) ≤ zR(P ), irX(P ) ≤ irR(P ),
izX(P ) ≤ izR(P ), α(X,P ) ≤ α(R,P ) = d and γ(X,P ) ≤ γ(R,P ). Proposi-
tions 5 and 6 give irR(P ) = izR(P ) = d and γ(R,P ) = d + 2. Let W ⊂ Pm
be a zero-dimensional scheme such that P ∈ 〈νd(W )〉, P /∈ 〈νd(W ′)〉 for any
W ′ ( W and W 6= A. Since β(X) ≥ d + 1, Lemma 3 gives deg(W ) ≥ d.
Hence izX(P ) ≥ d and γ(X,P ) ≥ d + 2. Hence irX(P ) = izX(P ) = d + 2 and
γ(X,P ) = d + 2. In case (a) we have α(X,P ) = d + 2, because α(R,P ) = d + 2
(Proposition 5). Now assume that Z is not reduced, i.e. assume P ∈ τ(X). Let
C ⊂ Pm be a smooth conic containing A. The curve νd(C) is a degree 2d ra-
tional normal curve in its linear span. Since P ∈ 〈Z〉 ⊂ 〈νd(C)〉, the “ More-
over ” part of Proposition 6 applied to νd(C) gives the existence of a set B ⊂ C
such that ](B) = 2d and 〈Z〉 ∩ 〈νd(B)〉 = {P}. Let M ⊆ Pm be the plane con-
taining C ∪ L. Since the restriction maps H0(Pm,OPm(d)) → H0(M,OM (d)) and
H0(M,OM (d))→ H0(T,OT (d)) are surjective for T = L, T = C, and T = C∪L, we
get dim(〈νd(C ∪L)〉) = 3d−1, dim(〈νd(C)〉) = 2d and dim(〈R〉) = d. Hence Grass-
mann’s formula gives 〈νd(C)〉∩〈R〉 = 〈Z〉. Fix E ⊂ L such that {P} = 〈Z〉∩〈νd(E)〉
(the “ Moreover ” part of Proposition 6). Since νd(E) ⊂ R, P is the only point
in the intersection of 〈νd(B)〉 ⊂ 〈νd(C)〉 and 〈νd(E). Hence α(X,P ) ≤ 3d. Now
assume a := α(X,P ) < 3d and take S = S1 ∪ · · · ∪ Sk ⊂ Pm such that ](S) = a
and {P} = ∩ki=1〈νd(Si)〉. We proved that ](Si) ≥ d for all i. Hence k = 2,
2d ≤ a ≤ 3d− 1 and d ≤ ](Si) ≤ 2d− 1 for all i.

Claim: Take a finite set E ⊂ Pm such that P ∈ 〈νd(E)〉, P /∈ 〈E′〉 for any
E′ ( E, E 6= A, and deg(E) ≤ 2d− 1. Then E ⊂ L.

Proof of the Claim: Since P ∈ 〈Z〉, Lemma 3 and [8], Lemma 34, give the
existence of a line D ⊂ Pm such that deg(D ∩ (E ∪ A)) ≥ d + 2. First we will
check that E ⊂ D and then we will see that D = L. Let H ⊂ Pm be a general
hyperplane containing D. Since E is reduced, A is curvilinear and H is general,
we have H ∩ (A∪E) = D ∩ (A∪E). Let ResH(A∪E) denote the residual scheme
of A ∪ E with respect to H, i.e. the closed subscheme of Pm with IA∪E : IH as
its ideal sheaf. Since deg(ResH(A ∪ E)) = deg(A ∪ E) − deg((A ∪ E) ∩ H)) ≤ d,
we have h1(Pm, IResH(A∪E)(d− 1)) = 0. Since A is connected and not reduced, [6],
Lemma 4, gives A∪E ⊂ H. Since this is true for a general H containing D, we get
E ⊂ D. We also get A ⊂ D and hence D = L.

Apply the Claim first to S1 and then to S2. We get S ⊂ L. Hence α(X,P ) =
α(R,P ) = d2, a contradiction. �
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Remark 5. Fix a linear subspace U ( Pm and take P ∈ 〈νd(U)〉. We have
rXm,d

(P ) = rνd(U)(P ) ([21], Proposition 3.1) and every S ⊂ X evincing rX(P )
is contained in νd(U) ([19], Exercise 3.2.2.2). Part (b) of Theorem 4 shows that
sometimes irX(P ) < irνd(U)(P ).

Theorem 5. Assume m ≥ 2 and d ≥ 5. Fix a finite set A ⊂ Pm such that ](A) = 3.

Set X := Xm,d and n :=
(
m+d
m

)
− 1. Fix P ∈ 〈νd(A)〉 such that P /∈ 〈νd(A′)〉 for

any A′ ( A.
(a) Assume that A is contained in a line. Then rX(P ) = zX(P ) = 3, irX(P ) =

izX(P ) = d− 1 and α(X,P ) = γ(X,P ) = d+ 2.
(b) Assume that A is not contained in a line. Then rX(P ) = zX(P ) = 3 and

α(X,P ) = 2d+ 2.

Proof. Since β(X) ≥ 5, νd(A) is the only subscheme of X with degree ≤ 3 whose
linear span contains P . Hence rX(P ) = zX(P ) = 3. Since β(X) = d+ 2, Lemma 3
also gives irX(P ) ≥ izX(P ) ≥ d− 1 and α(X,P ) ≥ γ(X,P ) ≥ d+ 2.

First assume the existence of a line L ⊂ Pm such that A ⊂ L. Set R := νd(L).
Since P ∈ 〈R〉, Proposition 7 gives irX(P ) ≤ irR(P ) = d− 1, izX(P ) ≤ izR(P ) =
d− 1, α(X,P ) ≤ α(R,P ) = d + 2 and γ(X,P ) ≤ γ(R,P ) = d + 2, concluding the
proof of part (a).

Now assume that A is not contained in a line. Write A = {O1, O2, O3}. Fix
i ∈ {1, 2, 3} and set {j, h} := {1, 2, 3} \ {i}. Set Li := 〈{Oj , Oh}〉 ⊂ Pm. Since P ∈
〈νd(A)〉 and P /∈ 〈νd(A′)〉 for any A′ ( A, the set 〈{P, νd(Oi)}〉∩〈{νd(Oh), νd(Oj)}〉
is a single point, Pi. Notice that Pi ∈ 〈νd(Li)〉 and that rνd(Li)(Pi) = 2. The
“ Moreover ” part of Proposition 5 gives the existence of a set Ei ⊂ Li such that
](Si) = d and {Pi} = 〈{νd(Oh), νd(Oj)}〉∩〈νd(Ei)〉. Hence 〈νd(A)〉∩〈νd({Oi}∪Ei)〉
is the line 〈{νd(Oi), Pi}〉. Taking the intersection of two of these lines we get
irX(P ) ≤ d + 1 and α(X,P ) ≤ 2d + 2. Since rX(P ) = d + 1 (proof of this case
in [8], Theorem 37), we get irX(P ) = d + 1. Lemma 3 also gives izX(P ) ≥ d + 1
and that for each subscheme W ⊂ Pm with deg(W ) ≤ d + 1 and P ∈ 〈W 〉 we
have W ⊇ A. Hence izX(P ) = d + 1. Assume a := α(X,P ) ≤ 2d + 1 and
take S = S1 ∪ · · · ∪ Sk with {P} = ∩ki=1〈νd(Si)〉 and ](S1) + · · · + ](Sk) = a.
Since a ≤ 2d+ 1 and each subscheme W ⊂ Pm with deg(W ) ≤ d+ 1 and P ∈ 〈W 〉
contains A, we get k = 2 and that one of the sets Si is just A. Since P ∈ 〈S1〉∩〈S2〉,
P /∈ 〈U〉 for any U ( Si, i = 1, 2, and ](S1 ∪ S2) ≤ 2d+ 1, there is a line D ⊂ Pm
such that ](D ∩ (S1 ∪ S2)) ≥ d + 2 and S1 \ S1 ∩ D = S2 \ S2 ∩ D ([6], Lemma
4). Since S1 ∩ S2 = ∅, we get S1 ∪ S2 ⊂ D. Since A is not contained in a line and
A = Si for some i, we get a contradiction. �
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