
ALBANIAN JOURNAL OF
MATHEMATICS
Volume 7, Number 2, Pages 77–92
ISSN: 1930-1235; (2013)

LINEAR BLOCK AND ARRAY CODES CORRECTING

REPEATED CT BURST ERRORS
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Abstract. Burst errors are very common in practice. There have been many

designs in order to correct or at least detect such errors. Recently, a new kind of
burst error which is termed as repeated burst error has been introduced in order

to detect or correct errors that occurs in very busy communication channels.

In this paper, we extend the definition of repeated burst errors for block and
array codes endowed with a homogeneous metric. We also obtain some upper

bounds on the number of parity check digits for these codes correcting all
repeated burst errors.

1. Introduction

The early studies in coding theory based on the detection and correction of er-
rors have been introduced for detection and correction of random errors [7]. In the
applications of codes to various communication channels, errors do not occur in in-
dependently but are in clustered, that is, the error patterns are mostly in the form
of bursts. This led to the study of burst error correcting codes, depicted by Fire [6]
and Reiger [8]. Because of the nature of applications to communication channels,
several definitions regarding the concept of burst error have been introduced by
many researchers. Chien and Tang [3] introduced the concept of Chien and Tang
(shortly CT) burst errors for block codes. These burst errors have found applica-
tions in error analysis experiment on telephone lines [1]. Later, Jain [10] extended
the notion of CT burst errors for array codes by endowing a non-Hamming metric
[9]. In order to solve the same problem in [10] with a novel approach Siap [11]
introduced a CT burst error weight enumerator. The result obtained over finite
fields in [10] was extended to array codes over finite rings [12].
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During the process of transmission over very noisy communication channels,
errors repeat themselves. Dass [4] et al. introduced another type of error pattern
called 2−repeated burst error for block codes and obtained an upper bound on the
number of parity check digits for codes correcting such errors. It is pointed out
that 2−repeated burst error correcting linear block codes provide a good source for
detecting and correcting these burst errors in very busy communication channels.
In these type of channels, burst errors may repeat more frequently. Therefore, it
is useful to consider more than 2−repeated burst errors. Dass & Verma [5] termed
such a burst error as m−repeated burst error for block codes. In this paper, firstly,
we obtain some bounds on the parameters of linear block codes correcting all CT
burst errors and all m−repeated burst errors with respect to homogeneous metric,
respectively. Moreover, the study of these burst errors in terms of homogeneous
weight is given. Later, we derive some bounds on the parameters of array codes with
respect to this metric by using the definition of the extended CT burst error given
in [10] for array coding systems. Furthermore, we combine these two interesting
topics: CT burst error and repeated burst error for array codes and we introduce
the concept of 2−repeated CT burst error for array codes. Finally, we obtain an
upper bound on the parameters of linear array codes correcting all 2−repeated CT
burst errors in terms of homogeneous weight.

The organization of this paper is as follows: In Section 2, we develop some
basic terminology and cover some preliminary definitions. In Section 3, we study
on m−repeated CT burst errors and CT burst errors with homogeneous weight
constraint in linear block codes. In Sections 4 and 5, some new bounds on the
parameters of array linear codes correcting all CT burst errors and all 2−repeated
CT burst errors with respect to homogeneous metric are given, respectively.

2. Definitions and notations

Let Zql be the ring of integer modulo ql, where q is a prime. Let Zn
ql be the

space of all n−tuples with entries from a ring Zql . Then Zn
ql is a module over Zql .

C is said to be an (n,M)−linear block code if and only if C is a submodule of
Zn
ql of size M. If C is a k−free (with a basis of k elements) submodule with length

n, then C is called an [n, k]−linear block code. A linear array code C is a linear
Zql−submodulo of the space Matm×s

(
Zql
)
, the space of all m × s matrices with

entries from a ring Zql .
The homogeneous weight whom on Zql is defined as

(1) whom(x) =


0 if x = 0
ql−1 if x ∈ (ql−1) \ {0}
(q − 1)ql−2 otherwise

where (ql−1) denotes the ideal of Zql generated by ql−1.
For u = (u1, u2, ..., un) ∈ Zn

ql , we have

(2) whom (u) =

n∑
i=1

whom (ui).

For any u, v ∈ Zn
ql , the homogeneous distance dhom is given by

(3) dhom (u, v) = whom (u− v) .
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Note that there are q − 1 elements of weight ql−1 and ql − q elements of weight
(q − 1)ql−2 in Zql .

There exist various types of burst errors in order to construct error detect-
ing/correcting codes in literature. We first give the following definition of CT
burst error.

Definition 2.1. [3] A CT burst error of length b is a vector whose nonzero com-
ponents are confined to some b consecutive components, with the first component
being nonzero.

A 2−repeated burst error of length b is defined as follows:

Definition 2.2. A 2−repeated burst error of length b is a vector of length n whose
only nonzero components are confined to two distinct sets of b consecutive compo-
nents, the first and the last component of each set being nonzero [4].

Dass & Verma [5] extended the above definition into the definition of m−repeated
CT burst error as follows:

Definition 2.3. An m−repeated CT burst error of length b is a vector of length
n whose only non-zero components are confined to m distinct sets of b consecutive
components, the first component of each set being non-zero.

3. Linear block codes with repeated CT burst errors

In this section, we consider the definitions of CT burst errors given in Definition
2.1 and m−repeated CT burst errors given in Definition 2.3 for linear block codes
with respect to homogeneous metric, respectively. We determine the number of
these burst errors of a given weight whom and also derive some bounds on the
parameters of linear block codes correcting all these burst errors.

We first introduce the following lemma which will be used in the proof of Theorem
3.2.

Lemma 3.1. The number of all CT burst errors of length b in Zn
ql is given by

(4) Bb
n

(
Zql
)

= (n− b + 1)
(
ql − 1

) (
ql
)b−1

.

Proof. Choosing b consecutive positions among n positions can be done in n− b+1
ways. Then, by Definition 2.1, the first component of these b components can be
any ql− 1 nonzero elements of the ring Zql and the other b− 1 elements can be any

ql elements of the ring Zql . �

We present some properties for an [n, k]−linear code over Zql that is going to
appear in the statement of Theorem 3.2.

Theorem 3.1. [2] A nonzero [n, k]−linear code C over Zql has a generator matrix
which after a suitable permutation of the coordinates can be written in the form

(5) G =


I A0,1 A0,2 A0,3 ... A0,l−1 A0,l

0 qI qA1,2 qA1,3 ... qA1,l−1 qA1,l

0 0 q2I q2A2,3 ... q2A2,l−1 q2A2,l

. . . . ... . .
0 0 0 0 ... ql−1I ql−1Al−1,l

 .

c©2012Albanian J. Math. 79

http://www.aulonapress.com


Temiz, Şiap

Here the columns are grouped into blocks of sizes k0, k1, ..., kl−1, kl, and ki are non-
negative integers adding to n. This means that C consists of all codewords

[v0 v1 v2 ... vl−1]G,

where each vi is a vector of length ki with components from Zql−i , so that C contains

qk codewords, Ai,j (0 ≤ i < j ≤ l) are matrices over Zql−i and

k =

l−1∑
i=0

(l − i) ki.

We say that C has type

1k0qk1
(
q2
)k2

...
(
ql−1

)kl−1
.

The following theorem gives a bound in order to correct of all CT burst errors
in linear codes with respect to homogeneous metric.

Theorem 3.2. An [n, k]−linear code C over Zql that corrects all CT burst errors
of length b must satisfy the bound

(6) qln−k ≥ 1 + Bb
n

(
Zql
)
,

where Bb
n

(
Zql
)

is the number of all CT burst errors of length b in Zn
ql .

Proof. The proof is based on the fact that the number of available cosets must be
greater than or equal to the number of correctable CT burst errors having the vector
of all zeros. By Lemma 3.1, the number of correctable CT burst errors having the
vector of all zeros is

1 + Bb
n

(
Zql
)
.

By Theorem 3.1, an [n, k]−linear code C over Zql has qk codewords. So the number

of available cosets is qln−k. �

We now derive a bound for the correction of all CT burst errors of length b or
less with respect to homogeneous metric.

Theorem 3.3. An [n, k]−linear code C over Zql that corrects all CT burst errors
of length b or less must satisfy the bound

(7) qln−k ≥ 1 +

b∑
a=1

Ba
n

(
Zql
)
,

Ba
n

(
Zql
)

is the number of all CT burst errors of length a in Zn
ql .

Proof. Using Theorem 3.2, its proof is straightforward. �

In Theorem 3.4, we obtain a bound on the number of parity check digits for a
linear code over Zql correcting all CT burst errors of length b or less having homo-
geneous weight whom or less. For this purpose, we first prove the following lemma
that counts the number of all CT burst errors of length b having homogeneous
weight whom.
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Lemma 3.2. The number of all CT burst errors of length b having homogeneous
weight whom in Zn

ql is given by

Bb
n

(
Zql , whom

)
= (n− b + 1)

[∑
u,v

(
b− 1

u

)(
b− 1− u

v

)
(q − 1)

u+1
(ql − q)

v

+
∑
u′,v′

(
b− 1

u′

)(
b− 1− u′

v′

)
(q − 1)

u′
(ql − q)

v′+1
]
,

(8)

where u, v and u′, v′ are nonnegative integers such that

u + v ≤ b− 1,

u′ + v′ ≤ b− 1,

whom − ql−1 = u(ql−1) + v(q − 1)(ql−2),

whom − (q − 1)(ql−2) = u′(ql−1) + v′(q − 1)(ql−2).

Note that∑
u,v

(
b− 1

u

)(
b− 1− u

v

)
(q − 1)

u+1
(ql − q)

v
= 0 if A,∑

u′,v′

(
b− 1

u′

)(
b− 1− u′

v′

)
(q − 1)

u′
(ql − q)

v′+1
= 0 if B,

where

A := whom 6= (u + 1) (ql−1) + v(q − 1)(ql−2)

B := whom 6= (u′) (ql−1) + (v′ + 1) (q − 1)(ql−2).

Proof. Consider a CT burst error of length b having homogeneous weight whom.
Since the first component of the b consecutive positions in which nonzero compo-
nents are clustered, it must be nonzero and since there exist two different nonzero
homogeneous weights in Zql , we can investigate our proof in two cases:

Case 1: If the first nonzero component is of weight ql−1 then there can be u
components of weight ql−1 in rest of b components and there can be v components
of weight (q − 1)(ql−2) in rest of b − u components such that u + v ≤ b − 1 and
whom = (u + 1)(ql−1) + v(q − 1)(ql−2). For every values of u and v satisfying
inequality and equality at the same time, we have some CT burst errors of length
b having homogeneous weight whom in Zn

ql . For convenient values of u and v we

can choose u positions among b − 1 positions and then we can choose v positions
among b− 1− u positions. Afterwards, since there are u+ 1 components of weight
ql−1 including the first component and since there are v components of weight
(q − 1)ql−2, regarding there are q − 1 elements of weight ql−1 and ql − q elements
of (q − 1)ql−2 in Zql , we have

(n− b + 1)

(
b− 1

u

)(
b− 1− u

v

)
(q − 1)u+1(ql − q)v

CT burst errors of length b having homogeneous weight whom.
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Case 2: When the first nonzero component is of weight (q − 1)ql−2 similarly,
for convenient nonzero integers u′ and v′ satisfying u′ + v′ ≤ b − 1 and w =
u(ql−1) + (v + 1)(q − 1)(ql−2), we have

(n− b + 1)

(
b− 1

u′

)(
b− 1− u

v′

)
(q − 1)u(ql − q)(v + 1)

CT burst errors of length b having homogeneous weight whom. �

We give an example in order to illustrate Lemma 3.2.

Example 3.1. Let q = l = 2, b = 3, n = 5 and whom = 4. We first determine
nonnegative integers u, v and u′, v′ satisfying the conditions in Lemma 3.2 in order
to obtain the number of all CT burst errors of length 3 having homogeneous weight
4 in Z5

22 . For this we consider the following conditions for integers u, v and u′, v′:

4 = (u + 1)22−1 + v(2− 1)(22−2),

4 = u′22−1 + (v′ + 1)(2− 1)(22−2),

2 ≥ u + v,

2 ≥ u′ + v′.

(9)

Then, nonnegative integer solutions u, v and u′, v′ satisfying the conditions given
in (9) are as follows, respectively:

u = 0, v = 2 and u = 1, v = 0

and also

u′ = 1, v′ = 1.

Substituting these nonnegative integers into Eq.(8) in Lemma 3.2, we get the
following result:

3

[(
2

0

)(
2

2

)
1122 +

(
2

1

)(
1

0

)
1220 +

(
2

1

)(
1

1

)
1122

]
= 42.

In fact, all CT burst errors of length 3 having homogeneous weight 4 in Z5
4 are

as follows:

11200 01120 00112 13200 01320 00132 12100
01210 00121 12300 01230 00123 31200 03120
00312 33200 03320 00332 32100 03210 00321
32300 03230 00323 22000 02200 00220 20200
02020 00202 21100 02110 00211 21300 02130
00213 23100 02310 00231 23300 02330 00233.

Theorem 3.4. An [n, k]−linear code C over Zql that corrects all CT burst errors
of length b or less and having homogeneous weight whom or less must satisfy the
bound

(10) qln−k ≥ 1 +

b∑
a=1

a(ql−1)∑
j=1

Ba
n

(
Zql , j

)
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where Ba
n

(
Zql , j

)
is the number of all CT burst errors of length a in Zn

ql having

homogeneous weight j.

Proof. The proof is straightforward from Lemma 3.2. �

Now, we can obtain some results on the correction of m−repeated CT burst
errors in linear codes with respect to homogeneous metric.

Lemma 3.3. The number of all m−repeated CT burst errors of length b in Zn
ql is

given by

Bm,b
n

(
Zql
)

=
(n−mb + 1) · · · (n−mb + m)

m!

(
ql − 1

)m(
ql
)mb−m

.

Proof. Clearly, m distinct sets of b consecutive positions can be chosen in

(n−mb + 1) · · · (n−mb + m)

m!
ways among n positions. Later, each vector can be constructed such a way that
the first components of m sets of b consecutive positions in which all the nonzero
components are clustered must be nonzero, and the rest b− 1 components may be
any element of Zql for each m distinct set. Hence the lemma. �

We enumerate all m−repeated CT burst errors with weight constraint in the
following lemma.

Lemma 3.4. The number of all m− repeated CT burst errors of length b having
homogeneous weight whom in Zn

ql is given by

Bm,b
n

(
Zql , whom

)
=

(n−mb + 1) · · · (n−mb + m)

m!
×[ m∑

i=0

∑
ui,vi

(
m

i

)(
mb−m

ui

)(
mb−m− ui

vi

)
(q − 1)

ui+i
(ql − q)

vi+m−i
]
,

where ui and vi are nonnegative integers for each 0 ≤ i ≤ m such that

ui + vi ≤ m(b− 1),

and for each 0 ≤ i ≤ m

whom = (ui + i)(ql−1) + (vi + m− i)(q − 1)(ql−2).

Say

Bm,b
n

(
Zql , whom

)
=

(n−mb + 1) · · · (n−mb + m)

m!
×
[
Vm

b

(
Zql , whom

)]
.

Proof. Considering m distinct sets of b consecutive components, the sketch of the
proof can be investigated in m + 1 cases depending upon weights of the first com-
ponents of each b consecutive positions.

Case 1: Assuming all the first components of each m distinct sets of b consecutive
positions are of weight (q − 1)ql−2 we have(

mb−m

u0

)(
mb−m− u0

v0

)
(q − 1)u0(ql)v0+m

m−repeated CT burst errors of length b for convenient pairwise u0 and v0.
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Case 2: Assuming one of the first components of m distinct sets of b consecutive
positions is of weight ql−1 and all the others are of weight (q − 1)ql−2 we have(

m

1

)(
mb−m

u1

)(
mb−m− u

v1

)
(q − 1)u1+1(ql)v1+m−1

m−repeated CT burst errors of length b for convenient pairwise u1 and v1.
Applying similar arguments, we have(

m

i

)(
mb−m

ui

)(
mb−m− ui

vi

)
(q − 1)ui+i(ql)vi+m−i

m−repeated CT burst errors of length b for convenient ui and vi whenever i (0 ≤
i ≤ m) of the first components of m distinct sets of b consecutive positions is of
weight ql−1 and the rest are of weight (q − 1)ql−2. Hence the result. �

Example 3.2. Take q = l = m = b = 2, w = 3, and n = 5 in Lemma 3.4. Then,
nonnegative integers ui and vi for each 0 ≤ i ≤ m such that

3 = (ui + i)(22−1) + (vi + 2− i)(2− 1)(22−2), and 2(2− 1) ≥ ui + vi

are given by
u0 = 0, v0 = 1 and u1 = v1 = 0

and there is no solution for u2 and v2 and u3 and v3. Therefore, our formula gives
a direct computation

2 · 3
2!

[(
2

0

)(
2

0

)(
2

1

)
1023 +

(
2

1

)(
2

0

)(
2

0

)
1121

]
= 60.

In fact, all 2−repeated CT burst errors of length 2 having homogeneous weight 3 in
Z5
4 are as follows:

01020 10020 10200
02010 20010 20100
03020 30020 30200
02030 30020 30200
01110 11010 11100
03330 33030 33300
01011 10011 10110
03033 30033 30330
01130 11030 11300
03310 33010 33100
01013 10013 10130
03031 30031 30310
01310 13010 13100
03130 31030 31300
01013 10013 10130
03031 30031 30310
03110 31010 31100
01310 13010 13100
03031 30031 30310
01013 10013 10130.

In Theorem 3.5, we obtain a bound for the correction of all m−repeated CT
burst errors of length b or less and having homogeneous weight w or less.
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Theorem 3.5. An [n, k]−linear code C over Zql that corrects all m−repeated CT
burst errors of length b or less and having homogeneous weight whom or less must
satisfy the bound

(11) qln−k ≥ 1 +

b∑
a=1

ma(ql−1)∑
j=m(q−1)ql−2

Bm,a
n

(
Zql , j

)
.

Proof. It follows directly from Lemma 3.4. �

4. Linear array codes with respect to homogeneous weight

In this section, we extend the notion of CT burst errors for linear array codes
with respect to homogeneous metric, originally in given in [10].

Definition 4.1. A CT burst error of order p × r (1 ≤ p ≤ m, 1 ≤ r ≤ s) in
Matm×s(Zql) is an m × s matrix in which all the nonzero entries are confined to
some p× r submatrix which has nonzero first row and first column.

We first enumerate all CT burst errors having homogeneous weight whom for
linear array codes.

Lemma 4.1. The number of all CT burst errors of order p×r having homogeneous
weight whom in Matm×s(Zql) is given by

Bp×r
m×s

(
Zql , w

)
= (m− p + 1)(s− r + 1)

×
[
V1

pr

(
Zql , whom

)
+ (p− 1)(r − 1)

×
[∑

a,b

(
pr − 3

a

)(
pr − 3− a

b

)
(q − 1)a+1(ql − q)b+1

+
∑
c,d

(
pr − 3

c

)(
pr − 3− c

d

)
(q − 1)c+2(ql − q)d

+
∑
e,f

(
pr − 3

e

)(
pr − 3− e

f

)
(q − 1)e(ql − q)f+2

]]
where a, b, c, d, e, f are nonnegative integers satisfying

a + b ≤ pr − 3,

c + d ≤ pr − 3,

e + f ≤ pr − 3,

and

whom = (a + 1)(ql−1) + (b + 1)(q − 1)(ql−2),

whom = (c + 2)(ql−1) + d(q − 1)(ql−2),

whom = c(ql−1) + (d + 2)(q − 1)(ql−2).
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Proof. Take any CT burst error A ∈Matm×s(Zql) of order p×r. Let us denote p×r
nonzero submatrix whose first row and first column being nonzero by B. The row
number of starting positions for B can vary between 1 and m−p+1 and the column
number of starting positions for B can vary between 1 and s − r + 1. Therefore,
choosing the location of B regardless of its entries can be done in (m−p+1)(s−r+1)
ways.

The selection of entries of the submatrix B such that having homogeneous weight
whom can be considered in two cases.

Case 1: If the entry b11 is different from zero, then the first row and the first
column of B will be nonzero automatically. For this case, constructing the subma-
trix B can be achieved in V1

pr ways since the work is the same that constructing a
CT burst error of length pr in one array.

Case 2: If the entry b11 is zero, then we must have at least one nonzero component
in the first row and at least one nonzero component in the first column of B. There
are (p − 1)(r − 1) options for choosing these nonzero components. Since the rest
of pr − 3 entries will be selected depending upon the weights of these two nonzero
components, the constructing of the submatrix B can be considered in three cases
as given in the lemma. Hence, the proof is completed. �

Theorem 4.1. An [n, k]−linear array code C over Zql that corrects all CT burst
errors of order p × r or less and having homogeneous weight whom or less must
satisfy the bound

(12) qlms−k ≥ 1 +

p∑
a=1

r∑
b=1

ab(ql−1)∑
j=(q−1)ql−2

Ba×b
m×s

(
Zql , j

)
.

Proof. It follows directly from Lemma 4.1. �

5. Linear array codes with 2−repeated CT burst errors

In this section, we present a new transmission model for linear array codes cor-
recting all types of burst errors introduced in Definition 5.1. Suppose that a message
is an s−tuple of m−tuples of symbols from Zql . We assume that this message is
sent over m parallel channels. When this coded message is transmitted through
m parallel channels, it may get corrupted and errors may occur. These errors are
not scattered randomly but occur in clusters in the code matrix. In this code ma-
trix, burst errors may repeat usually themselves in the submatrix parts of the code
matrix. These errors appear due to very busy communication channels for array
coding systems. So, we define the notion of 2−repeated CT burst errors for linear
array codes.

Definition 5.1. A 2−repeated CT burst error of order p × r in Matm×s(Zql) is
an m× s matrix in which all the nonzero entries are confined to two distinct p× r
submatrices, with the first row and the first column of each submatrix being nonzero.
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Lemma 5.1. The number of all 2-repeated CT burst errors of order p × r in
Matm×s(Zql) is given by

B2,p×r
m×s

(
Zql
)

=

[
(m− 2p + 1)

(
p

s−2r+1∑
i=1

i

)
+ (m− 2p + 1)

(p− 1)

s−2r+1∑
j=1

j

+

(s− r + 1)2

(
m−2p+1∑

k=1

k

)
+

s−2r+1∑
u=1

u

p∑
v=1

v +

s−2r+1∑
z=1

z

p−1∑
t=0

t

]
×

(ql)2r(p−1)
[(

(ql)r − 1
)
−
(
(ql)r−1 − 1

)
ql(1−p)

]2
and say

B2,p×r
m×s (Zql) = B2,p×r

m×s × (ql)2r(p−1)
[(

(ql)r − 1
)
−
(
(ql)r−1 − 1

)
ql(1−p)

]2
.

Proof. Consider a matrix A of order m × s having distinct submatrices B and C
of order p × r, with the first row and the first column of each submatrices being
nonzero.

For the sake of avoiding complexity, we will take into account the arrangement
of submatrices. For this purpose we will set a submatrix as the first one if the row
number of its starting position is less than the row number of the starting position
of the other one. If starting positions of submatrices are located at the same row
then the left one is set as the first one.

In order to obtain 2-repeated burst errors of order p× r, the starting position of
the first submatrix can be aij where 1 ≤ i ≤ (m−p+1) and 1 ≤ j ≤ (s−r+1). Note
that the column number of starting position of the first submatrix vary between 1
and s− 2r + 1 when its row number is m− p + 1.

For m − p + 1 possible row number of the possible starting positions of the
first submatrix, we will consider m − p + 1 steps to count the number of starting
positions of the second submatrix. We will also consider several cases in these
steps. In this manner, first consider the matrix having two submatrices irrespective
of their entries, in which the starting position of the first submatrix is a11, then the
number of all possible starting positions for the second matrix will be

(s− 2r + 1) · p + (s− r + 1)(m− 2p + 1).

Afterwards consider the matrix including two submatrices, in which the starting
position of the first submatrix is a12, this time the number of all possible starting
positions for the second submatrix will be

(s− 2r) · p + (s− r + 1)(m− 2p + 1).

In this wise, until the starting position of the first submatrix will be a1r, the
number of possible starting positions for the second submatrix will decrease p ac-
cording to the previous case as the column number increase. Because until this case,
the second submatrix C can never appear on the left side of the first submatrix B
entirely and hence the number of possible starting positions will decrease p for p
rows of B.

After this step, the number of possible starting positions for C will decrease
1 according to the previous case each time. Because after this step, the second
submatrix C can appear on the left side of B entirely on condition that the row
number of its starting position is greater than the row number of the starting
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position of B. Here, we can think this number as decreasing p and increasing p− 1
for each case. Hence the number of all possible starting positions for the second
submatrix will be

(s− 3r + 1) · p + 1 · (p− 1) + (s− r + 1)(m− 2p + 1)

whenever the first submatrix starts from a1,r+1, and

1 · p + (s− 3r + 1)(p− 1) + (s− r + 1)(m− 2p + 1)

whenever B starts from a1,s−2r+1

After the case the starting position of the first submatrix is a1,s−2r+2, the number
of the possible starting positions for the second submatrix will not change until the
last case of our first step that the starting position of the first submatrix is located
in the first row of the matrix Am×s i.e. the starting position of B is being a1,s−r+1

Thus, the number of all possible starting positions for the second submatrix will be

(s− 2r + 1)(p− 1) + (s− r + 1)(m− 2p + 1)

in this last case.
Up to now, we have considered all 2-repeated burst errors where the starting

position of the first submatrix varies in the first row of the matrix A.
In the same way, let us consider all 2-repeated burst errors where this time the

starting position of B varies in the second row of the matrix A. In these cases,
clearly, the number of possible starting positions for C will decrease (s − r + 1)
for each time. When B starts from a21, for instance, the number of all possible
starting positions for the second submatrix will be

(s− 2r + 1) · p + (s− r + 1)(m− 2p)

and

(s− 2r + 1)(p− 1) + (s− r + 1)(m− 2p)

when B starts from a2,s−r+1.
As the row number of the starting position of B increases until the row number

(m− 2p + 1) i.e. in each step, the number of possible starting positions for C will
be decrease (s− r+ 1) each time according to the previous row number. Hence the
number of all possible starting positions for C will be

(s− 2r + 1) · p

when B starts from am−2p+2,1 and

(s− 2r + 1)(p− 1)

when B starts from am−2p+2,s−r+1.
After this step, the (s − r + 1) decreasing of the number of possible starting

positions for the second submatrix for each time will be invalid because the second
submatrix will not be able to located under the first submatrix any more.

This combinatoric process proves that the number of all two distinct submatrices
of order p× r in a matrix of order m× s is

88 c©2012Albanian J. Math.

http://www.aulonapress.com


Linear block and array codes correcting repeated CT burst errors

B2,p×r
m×s =

[
(m− 2p + 1)

(
p

s−2r+1∑
i=1

i

)
+ (m− 2p + 1)

(p− 1)

s−2r+1∑
j=1

j

+

(s− r + 1)2

(
m−2p+1∑

k=1

k

)
+

s−2r+1∑
u=1

u

p∑
v=1

v +

s−2r+1∑
z=1

z

p−1∑
t=0

t

]
Now, let us compute the number of ways that elements of submatrices B and C

can be selected. This selection can be done in

(13)
(
(ql)r − 1

)
(ql)r(p−1)

ways if the first row of the submatrix is not entirely zero. However, to consider a
CT burst error, the first column of the submatrix must also be nonzero. In this
manner, we should subtract the number of cases included in the equation (13) which
the first column of the submatrix being zero. This number is given by

(14)
(
(ql)r−1 − 1

)
(ql)(r−1)(p−1).

By subtracting (13) from (14) we obtain

(15) (ql)r(p−1)
[(

(ql)r − 1
)
−
(
(ql)r−1 − 1

)
(ql)1−p

]
and also note that A is a 2-repeated burst error. Hence the lemma. �

Example 5.1. Let us show all 2−repeated CT burst errors of order 2 × 2 in
Mat4×4(Zql) such that all of the entries of the submatrices B and C are 1.


1 1 1 1
1 1 1 1
0 0 0 0
0 0 0 0




1 1 0 0
1 1 1 1
0 0 1 1
0 0 0 0




1 1 0 0
1 1 0 0
1 1 0 0
1 1 0 0




1 1 0 0
1 1 0 0
0 1 1 0
0 1 1 0




1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1




0 1 1 0
0 1 1 0
1 1 0 0
1 1 0 0




0 1 1 0
0 1 1 0
0 1 1 0
0 1 1 0




0 1 1 0
0 1 1 0
0 0 1 1
0 0 1 1




0 0 1 1
1 1 1 1
1 1 0 0
0 0 0 0




0 0 1 1
0 0 1 1
1 1 0 0
1 1 0 0




0 0 1 1
0 0 1 1
0 1 1 0
0 1 1 0




0 0 1 1
0 0 1 1
0 0 1 1
0 0 1 1




0 0 0 0
1 1 1 1
1 1 1 1
0 0 0 0




0 0 0 0
1 1 0 0
1 1 1 1
0 0 1 1




0 0 0 0
0 0 1 1
1 1 1 1
1 1 0 0




0 0 0 0
0 0 0 0
1 1 1 1
1 1 1 1

 .

Note that this number is precisely the same as B2,2×2
4×4 since the selection of entires

was done uniquely.

Theorem 5.1. The number of all 2-repeated CT burst errors of order p× r having
homogeneous weight whom in Matm×s(Zql) is given by
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B2,p×r
m×s

(
Zql , whom

)
= B2,p×r

m×s
(
Zql
)
×
[
V2

pr(Zql , w)+

2(p−1)(r−1)×
∑3

i=0

∑
ui,vi

(
2pr − 3

ui

)(
2pr − 3− ui

vi

)
(q − 1)

ui+i
(ql − q)

vi+3−i
+

(p−1)2(r−1)2×
∑4

j=0

∑
u′j ,v

′
j

(
2pr − 4

u′j

)(
2pr − 4− u′j

v′j

)
(q − 1)

u′j+j
(ql − q)

v′j+4−j
]

,

where ui, vi and u′j , v
′
j are all nonnegative pairwise integers for 0 ≤ i ≤ 3 and

0 ≤ j ≤ 4 satisfying

ui + vi ≤ 2pr − 3

u′j + v′j ≤ 2pr − 4

also for each 0 ≤ i ≤ 3 and 0 ≤ j ≤ 4 satisfying whom = (ui + i)(ql−1) + (vi + 3−
i)(q − 1)(ql−2) and whom = (u′j + j)(ql−1) + (v′j + 4− j)(q − 1)(ql−2).

Proof. Let A be a matrix of order m × s having two distinct submatrices B and
C with first row and first column of each being nonzero. The places of these two
submatrices can be chosen in B2,p×r

m×s ways by the lemma 5.1. After choosing arrays
of submatrices we have three cases with respect to the weights of the starting
positions of B and C.

Case 1: When the starting positions of B and C are both nonzero then we have
V2

pr(Zql , w) CT burst errors.
Case 2: When only one of the starting positions of B or C is zero then we choose

one position from the first row and one position from the first column of submatrix
whose starting position is zero. Afterwards, we use the same technique for counting
burst errors by taking into account the weights of three chosen nonzero positions.

Case 3: When the starting positions of B and C are both zero, then after
choosing one position from the first row and one position from the first column for
each submatrix, again we count the burst errors taking into account the weights of
four chosen nonzero positions. �

Example 5.2. Let us show all possible submatrices B and C each of order 2 × 2
and having homogeneous weight 3 altogether in Matm×s(Z22).(

1 0
1 0

)(
1 0
0 0

) (
1 1
0 0

)(
1 0
0 0

) (
1 0
0 1

)(
1 0
0 0

)
(

1 0
0 0

)(
1 1
0 0

) (
1 0
0 0

)(
1 0
0 1

) (
1 0
0 0

)(
1 0
1 0

)
(

3 0
3 0

)(
3 0
0 0

) (
3 3
0 0

)(
3 0
0 0

) (
3 0
0 3

)(
3 0
0 0

)
(

3 0
0 0

)(
3 3
0 0

) (
3 0
0 0

)(
3 0
0 3

) (
3 0
0 0

)(
3 0
3 0

)
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1 0
1 0

)(
3 0
0 0

) (
1 1
0 0

)(
3 0
0 0

) (
1 0
0 1

)(
3 0
0 0

)
(

1 0
0 0

)(
1 3
0 0

) (
1 0
0 0

)(
1 0
0 3

) (
1 0
0 0

)(
1 0
3 0

)
(

1 0
3 0

)(
3 0
0 0

) (
1 3
0 0

)(
3 0
0 0

) (
1 0
0 3

)(
3 0
0 0

)
(

1 0
0 0

)(
3 3
0 0

) (
1 0
0 0

)(
3 0
0 3

) (
1 0
0 0

)(
3 0
3 0

)
(

1 0
3 0

)(
1 0
0 0

) (
1 3
0 0

)(
1 0
0 0

) (
1 0
0 3

)(
1 0
0 0

)
(

1 0
0 0

)(
3 1
0 0

) (
1 0
0 0

)(
3 0
0 1

) (
1 0
0 0

)(
3 0
1 0

)
(

3 0
1 0

)(
1 0
0 0

) (
3 1
0 0

)(
1 0
0 0

) (
3 0
0 1

)(
1 0
0 0

)
(

3 0
0 0

)(
1 1
0 0

) (
3 0
0 0

)(
1 0
0 1

) (
3 0
0 0

)(
1 0
1 0

)
(

3 0
1 0

)(
3 0
0 0

) (
3 1
0 0

)(
3 0
0 0

) (
3 0
0 1

)(
3 0
0 0

)
(

3 0
0 0

)(
1 3
0 0

) (
3 0
0 0

)(
1 0
0 3

) (
3 0
0 0

)(
1 0
3 0

)
(

3 0
3 0

)(
1 0
0 0

) (
3 3
0 0

)(
1 0
0 0

) (
3 0
0 3

)(
1 0
0 0

)
(

3 0
0 0

)(
3 1
0 0

) (
3 0
0 0

)(
3 0
0 1

) (
3 0
0 0

)(
3 0
1 0

)
(

2 0
0 0

)(
1 0
0 0

) (
2 0
0 0

)(
3 0
0 0

) (
3 0
0 0

)(
2 0
0 0

)
(

1 0
0 0

)(
2 0
1 0

) (
1 0
0 0

)(
0 1
1 0

) (
0 1
1 0

)(
1 0
0 0

)
(

1 0
0 0

)(
0 1
3 0

) (
0 1
3 0

)(
1 0
0 0

) (
1 0
0 0

)(
0 3
1 0

)
(

0 3
1 0

)(
1 0
0 0

) (
1 0
0 0

)(
0 3
3 0

) (
0 3
3 0

)(
1 0
0 0

)
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3 0
0 0

)(
0 1
1 0

) (
0 1
1 0

)(
3 0
0 0

) (
3 0
0 0

)(
0 1
3 0

)
(

0 1
3 0

)(
3 0
0 0

) (
3 0
0 0

)(
0 3
1 0

) (
0 3
1 0

)(
3 0
0 0

)
(

3 0
0 0

)(
0 3
3 0

) (
0 3
3 0

)(
3 0
0 0

)
.

Note that we showed that there are 16 possible places for locating these submatrices
in a 4 × 4 matrix in example 5.1 and hence there are 16 × 68 = 1088 2−repeated
CT burst errors of order 2× 2 in Mat4×4(Z4).

Theorem 5.2. An [n, k]−linear array code over Zql that corrects all 2−repeated
CT burst errors of order p × r having homogeneous weight whom must satisfy the
bound

(16) qlms−k ≥ 1 +

p∑
a=1

r∑
b=1

2ab(ql−1)∑
j=2(q−1)(ql−2)

Bp×r,2
m×s

(
Zql , j

)
.

Proof. It follows directly from Lemma 5.1 and Theorem 5.1. �
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