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ABSTRACT. A numerical method for analyzing and parameterizing quadratic
surface intersection curves (QSIC) is proposed. This method is based on nu-
merical fractional linear transformations, numerical irreducible decomposition
and a numerical version of a classical method for replacing an irreducible QSIC
with a numerically birationally equivalent cubic plane curve. Ultimately each
component of the QSIC is parameterized by a plane curve of the form y = u(z)
or y? = u(x) where u(z) is a numerical polynomial of degree 3 or less.

1. INTRODUCTION

Although possibly the simplest space curves, the study of QSIC has been the
subject of recent research [3, 14, 15]. From the point of view of parameterizing QSIC
L. Dupont, D. Lazard, S. Lazard and S. Petitjean [3] essentially solve the problem.
Although their method requires starting with exact systems, takes 65 pages and
involves looking at many cases the accompanying software [J] is extremely fast
and accurate. The coeflicients, which must be integers, can be quite large so can
adequately approximate most numerical systems.

We describe a numerical based method. Although it will not achieve the black
box and speed of [9] the method is straight forward and can be described using
standard methods of numerical curves with the one step specific to QSIC described
in the few pages of Section 5. Moreover this section simply reformulates a classical
argument into numerics. Although, for ease of replication, examples are given
exactly, the method immediately switches to an equivalent numerical system so
examples could be given numerically. Unlike [8] which uses the projective line as
a parameter space we use simple affine real plane curves of the form y = u(x) or
y? = u(x) for a real numerical polynomial u(z) of degree at most 3.

The tools used consist of (1) fractional linear transformations [1] given by a ma-
trix based presentation, (2) Macaulay and Sylvester matrix based computations for
decomposing numerical curves into irreducible components and finding equations
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for images of curves under polynomial maps, and (3) methods involving numerical

polynomial system solving to find real points on numerical algebraic varieties. For

(3) these method are quite recent and this is the first exposition of these methods.
The method for identifying and parameterizing QSICs has the following steps:

(1) Do a (complex) numerical irreducible decomposition to identify algebraic com-
ponents. If all components are of degree 1 and/or 2 go to Step 5.

(2) Find a random real nonsingular real point, if any, of the QSIC.

(3) Using the original system, find a numerical cubic plane curve birationally equiv-
alent to a union of components of the QSIC (Main Theorem on QSIC) and the
birational transformations.

(4) Separate the cubic into irreducible components, use 1) to check whether all
components of original QSIC with real points are accounted for. Otherwise the
missing line will come from Step 1.

(5) Transform each component via fractional linear transformations to parameter
curves of form y = u(z) or y? = u(x).

(6) Analyze the rational parameterizations on the parameter curves to obtain prac-
tical parameterizations of the QSIC.

Note this last step is not covered in [9]. The only step specific to QSICs is step
3.

In §8 below we give a complete example using this method. The next three
sections deal with general techniques. The phrase algebraic set will refer to the
point set X' in R® of solutions of a system of real polynomials in s-variables. On
the other hand algebraic variety will refer to an ideal Z of R[xzy,..., 2] such that
X =V(@).

2. PRELIMINARIES

In this section we outline the general methods we will use.

2.1. H-bases and Duality Method. For numerical work the equivalalent of a
Grobner Basis is an H-basis [12, 13], also known as a Macaulay basis [11, §4.2].
An H-basis of an affine ring, eg. ring of the form A = Clxy,...,z,]/Z, is a set
{f1,---, fn} CC[x] = C[z1,...,x;s] such that if f € Z then there exist g1,...,9, €
Clx] such that f = g1 f1 + ... gnfn where for each i deg(g;f;) < deg(f). Note that
if B={f1,..., fn} is a homogeneous basis of Z or is a Grobner basis with respect
to a positive degree ordering of Z then B is an H-basis.

A theory of local-global duality is outlined in [(], a more recent summary has
been given in [7]. In particular there are two numerical algorithms that we will use
extensively below

Algorithm 1: Given a basis B, not necessarily H-basis, for ideal Z C Rx]
and points p1,...,pr € V(R[x]/Z) an H-basis is returned for the variety
Y = V(J) which is the union of irreducible components of V(Z) which contain
one or more of the points p1, ..., Pk.
Algorithm 2: Given a real H-basis for the ideal of variety X = V(Z) and
an algebraic map ¢ = {¢1,...,¢s} : R®* — RP, the ¢; € R[z1,...,2,], a real
H-Basis will be returned for the variety V() which is the Zariski closure of
H(X),
It should be noted that these algorithms require the user to supply both a nu-
merical tolerance and appropriate degree to assure an H-basis. If the user has his
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or her own favorite algorithms to do these calculations they may be substituted
provided that they do work for ideals defined by floating point polynomials.

2.2. Fractional Linear Transformations. We will make use of fractional linear

transformations [1], that is transformations of the form
_ a1(x) as(x)
x = (21,...,Ts) — ( 500 o)

where the a; and § are linear functions in s variables, i.e. o; = o121+ -+ sTs+
Qi s41- If Ais the (s +1) x (s + 1) matrix

Qg1 al.s 01,541
Ao
Qs 1 Q1s Qs 541
61 53 s+1
then this is the transformation
T1
(1) x> Al - :(yla-'~aysvys+1)H(yla--wys)/ys-&-l
T
1

In effect we are homogenizing, applying a linear projective transformation and
then specializing again. Note that if we compose the fractional linear transformation
given by A with the one given by B we get the fractional linear transformation given
by BA. In particular if A is invertible then the fractional linear transformation given
by A is birational.

To find the action of the fractional linear transformation associated with ma-
trix A on a curve just follow the instructions in (1), homogenizing, transforming,
dehomogenizing, using Algorithm 2.

3. FINDING REAL POINTS ON CURVES

The main algorithm below starts with finding a random real point on the curve.
The first thing to try is to intersect the curve with random real hyperplane and
check for real solutions. One may repeat several times if a real point has not been
found. However, in general the real locus of an algebraic set can be quite small or
even a finite set so this simple method may not produce a real point.

In the case of a plane f(z,y) = 0 curve a very efficient way to find real points is
to look for real solutions of the system {f, J(f,¢)} where ¢ = ax + by for random
or chosen real numbers a,b not both zero and J(f,¢) is the determinant of the
Jacobian of {f,¢}. This idea was motivated by [1]. The picture in Figure 1 shows
how J(f,¥) grabs the real locus of the curve. The points found include all those
where the tangent line to the curve is parallel to the line £ as well as any singular
points, including any isolated points of the curve. If the curve has an oval, which
here means a non-empty bounded topological component, then at least one real
point will be found. Further, letting / = z or £ = y will find the x,y bounds of the
oval.

In higher dimensions we can try the following based on [3]. Let FF = {f1,..., fs—1}
define a curve in R®. Pick a non-zero linear form k = kjz; + - - - + ksxs randomly
or purposefully. Let J(fi,..., fs, k) be the Jacobian matrix, B a s x s orthogonal
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FIGURE 1. Real plane Curve (peanut), Jacobian Determinant
curve and /¢

matrix, and C' = [1,¢1,...¢cs—1] a 1 X s matrix where the ¢; are new variables. Then
A=C-B-Jisalx s matrix A =[ay,...,as], let G={a1,...,as, f1,.., fs—1}
Then G is a system of 2s—1 equations in the 2s—1 variables x1,...,Zs,¢1,...,Cs_1.

Find the real solutions for this square system G, and discard the last s — 1 coordi-
nates corresponding to the ¢’s. If s is small and the system is exact one could use
Grdbner bases with an elimination order to get an s x s system. The solution points
in R? should be the points where the curve intersects a hyperplane parallel to V (k)
singularly, in particular isolated points should be found. If the curve is an oval any
k should be successful otherwise different k should be tried. Failure of this method
may be caused by incomplete identification of the real solutions of G. Since this
can be a common problem of solvers which find all complex solutions, what makes
this method appealing is that we obtain a square system which is more likely to
properly suggest real solutions than when trying to solve over or under-determined
systems.

Example 1 (Example 4 of §9 below). Consider the QSIC V({f,g}) given by
foatestoay g= s eyto s

This space curve and the birationally equivalent plane curve h of Example 4 both
have isolated real points. To find an isolated zero of h we choose, randomly,

[ =0.8163532x — 0.273704y

and solve the system {J (h,1), h} getting 6 real solutions of which 2 are the multiple
z€ero

(0.103102, —0.0989506)

indicating a singular solution. Further inspection reveals that this is an isolated
zero.
For the space curve V({f,g}) we pick a random real linear form

k = —0.668293x — 0.286001y — 0.2143352
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and form A = C-B-J where B is a random orthogonal matriz and J is the Jacobian
matriz of the system {f,g,k}

A:

—0.658953 —0.557442 —0.505014 2 —2 2z
[1,e,d] | 070223  —0.696511 —0.147464 —6x 2y 2z
—0.269545 —0.451808 0.850421 | |0.816353 —0.273704 0

= [—0.41227 — 0.120382¢ 4 0.694244d + 2.02675x + 5.58353cx + 2.17175dx,
1.45613 — 1.3641c + 0.306327d — 1.11488y — 1.39302cy — 0.903615dy,

—0.20302z + 2.79748cz + 0.364524dz}

Solving the system consisting of the three polynomials above in x,y,z,c,d and
f, 9 by MATHEMATICA and BERTINI 4 real solutions are identified by the two solvers
which give essentially the same results. Two of these zeros essentially agree and
give a multiple solution with (z,y,z) = (0,0,0) indicating a singular point which is,
in fact, isolated. The two other solutions for x,y, z are (£3.4641,6.0000,0), giving
random real points on the 1 dimensional real component of the solution.

Remark 1. We should mention that discussion of this example with Daniel Licht-
blau motivated the material in this section.

4. MAIN REDUCTION

Here we give a constructive proof of a numerical simplification of a classically
known fact: a QSIC is generically birationally equivalent to a degree 3 plane curve
plus, perhaps, a line.

Before stating this formally we define a real affine QSIC to be a QSIC V({f, g})
such that every complex projective component has a real positive dimensional affine
solution set.

Theorem 1. Let C be a real affine QSIC. There is a plane cubic h and rational
maps ® : V(h) = C, ¥ :C — V(h) such that ¥ o ® = idy ). In particular V (h) is
birationally equivalent to a Zariski closed subset of C.

Proof. We prove this by explictly giving ® and ¥. The method used follows the
main case of [5, §8, case (iv)].

So let f,g be quadratic functions in the three variables z,y,z, C = V({f,g}).
Pick a random real solution %, as in §4, of the system {f = 0, g = 0}, such a solution
exists by our assumption. Now homogenize by f, = t2 * f( 7, %, %) and similarly
for gj. Although we are thinking “projective curve” we really will be working in
affine x, vy, z, t space.

Now construct a random orthogonal 4 x 4 matrix A satisfying A% = [0, 0,0, 1]7.
Using Algorithm 2 of §2 get homogeneous equations {f1, g1} for the QSIC which
is the image of C under the linear transformation [z, y, z, |7 +— A[z,y,2,t]T. Since
[0,0,0,1] is a solution of this system the coefficient of 2 is 0 for both f;, g;. Collect

the terms involving ¢ and write

fi =tL+R

(2) g1 = tM + S
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where L, M are linear in x,y, z and R, S are homogeneous quadrics in z,y, z. The
linear polynomials L, M will be independent, and hence both non-zero, with prob-
ability 1; if this does not happen try a different random point and/or orthogonal
matrix. Then h;, = LS — RM is a hogeneneous cubic. Finally h(z,y) = hp(x,y,1)
is the desired plane cubic.

The forward map is

(3) Ve fryE e Alny 2 )0 = [5,9,51] = [7,9]/2
Whereas the backwards map makes use of (2) to recover t satisfying fy, gn from
[x,y, z]:

R(z,y, 117
L(z,y,1)

It is a straightforward check that, given our assumption, these maps do have
the indicated domain and codomain with perhaps the exception of finitely many
points.

To finish the proof we need to calculate ¥ o ®. If we plug the last expression in
the definition of ®, [#,7, Z | /¢, in for the first expression [z,y, z] in the definition of
W then the first term is

4 @ [yl ATy, 1, - = [2,9,%1]" = [2,5,2/1

|

[Z,§,%,t]" = A7 [2,y,1,]

|

o,

Now this gets multiplied by A giving
1

T
=|T, ,17t :I:T7
t[ y, 1,1] ;

by definition of ®. But dropping the last two coordinates and dividing by the third
leaves us with just [z,y].
O
We note that if our hypothesis of real affine QSIC does not hold the result is
still true interpreted correctly in the complex projective situation. Even without
this hypothesis the maps ®, ¥ are still useful, however ® may not be onto.

5. PARAMETERIZING PLANE QUADRATICS AND CUBICS

Since a line is immediately parameterizable, our problem is reduced to finding
parameter patches for a plane cubic. We first check whether the plane cubic given
by h = 0 is reducible. Using Algorithm 2 above with just one point we can check
for proper components and, since plane curves are solutions of single equations,
components are associated with factors of the polynomial h. Any factors can be
divided out making it easier to find any other factors. Thus we could still have to
deal at this level with degree 1, 2 or 3 irreducible curves. Degree 1 is immediate.
We will assume the irreducible curve is still called h.

Suppose h = 0 is the real equation of a plane curve of any degree and p is a real
non-singular point in V(h). We will first use a fractional linear transformation to
move P to [0,1,0] in P? with the infinite line as tangent to the curve at this points.
To this end we homogenize h(x,y) to hp(z,y,2) and p to Py, in the latter case
simply by adding a third coordinate 1. We define the normal vector at py by

o [0 O 0
S0z oy 0z
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It is well known, eg. [10, Chapter 4], that for a projective curve hj at projective
point py then then n - p = 0.

Let ¢ = nxpj, be the cross product and, simply for better numerical stability,
let n, pp, ¢ be normalized as @, Py, and €. Set B to be the 3 x 3 matrix

C
B = |pn

n

Then the fractional linear transformation given by B
(5) 0: (z,y) = Blz,y, " =[2,9,2 " = [2,9]/2

is our desired transformation. One should note that B is an orthogonal matrix.

Now if h is quadratic then by picking p to be any point on V(h) we arrive at
a parabola y = u(x) where u(z) = az? + bz + ¢ is a quadratic in x since we have
the unique infinite point [0,1,0]. In fact this is a real parabola even if h or p are
complex.

If h is an irreducible cubic curve, possibly singular, then we pick p more carefully.
In principle if h is singular we could pick p to be the unique singular point. Now
n = 0 so we cannot use B above but any matrix B with B.p;, = [0, 1,0] would
transform h into the form

azr® +bx +c

y(dr +e)=az? +br+c or y= drte

giving a rational parameterization. In theory this should give satisfactory results
but the hyperelliptic form below will behave much better numerically.

To get hyperelliptic form we take the Hessian curve H of h [10, §4.4] and find
the intersections with h. As recently as 2000 when [15] was written this was com-
putationally difficult, with modern numerical algebraic geometry, and even MATH-
EMATICA’s numerical Grobner basis, this is now routine. If h is irreducible and
non-singular we are guarenteed at least one real point on V(hy) NV (H). If h is
irreducible and singular but generated by the random procedure of Theorem 1 then
it is still quite likely that there be such a non-singular point. This point will have
an inflectional tangent. Using the fractional linear transformation from B above
we move this point to [0,1, 0] with inflectional tangent the line at infinity, call the
resulting homogeneous curve (use Algorithm 4) jj,. In theory the coefficients of y3
and xy? of jj, are easily seen to be 0, it is known [5] that the coefficient of z%y
will also vanish because of the inflectional tangent. In numerical practice these
coefficients will be very tiny so we can discard these terms. Specializing by setting
z = 1 and dividing by the coefficient of y? gives

j = ax® 4+ bx® + cx + dey + ey + y* = y° + (dz + e)y + v(x)

For fixed x setting j = 0 the quadratic equation in y on the right has two solutions
which add to —dx — e. In other words the line y = —(gx + §) lies on the midpoints
of the two solutions of j = 0 for given x, possibly complex. The fractional linear
transformation given by matrix

owvla —
—
=N O
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sends this line to the z-axis giving an equation of the form y? = u(z) for some cubic
polynomial u(x). As in (5) the map from the h to the parameter curve is

©: (x,y) = CBla,y, 1" = [3,9,2]" = [#,9]/%

A few more steps, using classical techniques actualized as fractional linear trans-
formations, will put y? = u(x) in the form y? = x3 + ax + b for suitable real a, b.
But this is not necessary for our next step so we will not go into details here.

6. PARAMETERIZATION AND ANALYSIS OF REAL QSIC

From the previous two sections we can parameterize each irreducible algebraic
component of the QSIC in one of the following ways where u is a polynomial function
of t of specified degree and the result is a rational function R! — R3 where each
coordinate has the same denominator. The maximum degrees of numerator and
denominator are given.

degree u  parameterization max degrees
1 DO~ 1(t,u(t))) degree 3 in ¢
2 DO 1(t,u(t))) degree 6 in ¢

3 ®(O71(t,+/u(t))) degree 3 in t and \/u

For degrees 1 and 2 we need only find the poles, i.e. zeros of the common de-
nominator. The QSIC is of degree 4 so unless a component lies in the infinite plane
of P3 it can interesect this plane in at most 4 points so at most 4 of these poles
will be essential counting possible poles at the ends of the parameter lines. Thus
the real projective line is divided into at most 4 intervals which would give up to 4
affine topological components. As the parameter goes to +o0o and poles, even the
inessential ones, the parameterization may become numerically inaccurate, thus it
may be useful to use different choices and create an additional parameterization or
two that would overlap to cover finite points of the QSIC that could be misssed.

For degree 3 the situation is more complicated as for real QSIC the domain of
the parameterizations is only part of the real line. Further because of the square
root in the denominator it is harder to find the zeros. The first problem is easy
as the domain is {t|u(t) > 0} and it is only necessary to know the zeros of u(t) to
calculate this set. For the second collecting powers of /u(t) one gets

2 3
vo(t) + v1(t) v/ ult) + va(t)Vult) +vs(t)v/ult)

= vo(t) + v (t)u(t) + (v1(t) + vs(t)u(t)) Vu(t)

Setting this last expression equal to 0 gives
vo(t) + va(t)u(t) = — (v1(t) + v3(t)u(t)) Vul(t)

Squaring both sides gives

2 2
(6) (vo(t) +va(t)u(t))” — (vi(t) + vs(t)u(t)) u(t) =0
a single variable polynomial equation which is easily solved numerically. The zeros
of the denominator are contained in the zero set of this equation, and note that this
same zero set will apply to both parameterizations y = /u(t) and y = —+/u(t)

but denominators will have different zeros of (6). Combining this result with the
calculation of the domain allows us to identify the affine topological components.
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One posibility not yet considered is that two algebraic components may intersect.
This will be a singular point of the QSIC Alternatively the image of a singular
point in the QSIC likely appeared as a singular point in V(h). One can identify
the component curves containing this point then use the appropriate © to the
parameter curves. If this singular point did not show up in V'(h) it is because of a
line of the QSIC not in the image of ®, which would show up in Step 1.

7. A FULLY WORKED OUT EXAMPLE

In this section we do a complete example using the method outlined in the
introduction. This is one of the more complicated examples.
Consider the QSIC given by C = V({f, g}) where

(7) f=a?4+22-22—y? g=22%—22y— 22— 312

Step 1: Do numerical irreducible decomposition to identify complex algebraic compo-
nents.
I use BERTINI [2] on the system above which finds two algebraic compo-
nents with non-singular witness points (rounded to 6 significant digits for
display but given by 16 significant digits).

p1 =(—.07985493 + .2594231, —.07985493 + .259423:, 0)
P2 =(—.0978825 + .1613702, —.0164075 + .24388012,.0215337 — .01205341)

BERTINI calculates the degree of the component containing p; to be 1, thus
a line, and the degree of the other component to be 3.

The remaining steps are done with MATHEMATICA with default precison,
generally 17 digits, and linear algebra tolerance 1072,

Step 2: For this unbounded curve we can intersect with a random real plane to
get the random real point p = (1.133057, —0.5986927,0.7268414) again
rounded to 7 significant digits but used with 17 digits in the calculations.

Step 3: We next apply Theorem 1 to the system (7) to obtain the plane cubic

h = —0.277749 + 0.471423z + 0.090558622 — 0.005828572° + 0.129608y
— 004072062y + 0.0475988z%y + 0.362871y> — 0.0760948zy> + 0.0966969y>

Here

0.655457 0.407462 0.160413 —0.61532
0.0261099 —0.845622 —0.00374475 —0.53313
0.405925 —0.0764678  —0.898681  0.147482
0.636333 —0.33623 0.408199 0.561607

L = —0.511267x + 0.252642y + 0.229098~
R = —0.1652822 — 0.174562y + 0.29100y> + 0.50610zz + 0.40022yz — 0.25201 2>

A:

Thus from (3) the map ¥ : C — V(h) is given by

U(z,y, 2) = (al(ﬂcay,z) ag(m,y,z)>

Y(z,y,2) " y(2,y,2)
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where
a1(z,y,z) = — 0.61532 + 0.655457z + 0.407462y + 0.160413%
as(z,y,2z) = — 0.53313 + 0.0261099z — 0.845622y — 0.00374475%
v(z,y, z) =0.147482 4 0.4059252 — 0.0764678y — 0.898681%
And from (4) the map ® : V(h) — C is given by

Bz, y) = <561($,y)7 51(%9)’ 51(9673/))
(@,y) " 6z, y) " (z,y)
where
B1(z,y) =0.25336 — 0.37942z — 0. 2299422 — 0. 14614y + 0.26333xy — 0. 17858y
Bo(z,y) = — 0.10225 + 0.302612 — 0.2639022 — 0.078482y + 0.47659zy — 0.11580y>
Bs(z,y) = — 0.10301 + 0.28963z — 0.0145462% — 0.39127y + 0.11370zy — 0.11973y>
§(z,y) =0.17532 — 0.50051z + 0.407422% — 0.30965y + 0.2152zy — 0.20812

Step 4: We pick random linear form k& = 0.647639x + 0.134229y then the Jacobian
Determinant is the ellipse

J = —0.0206603+0.05068342 —0.033173922 —0.475485y +0.1113422y —0.198088y>

which intersects h in a singular point (—4.17438, —3.61523) and points
@1 = (0.537437, —0.00725000), go = (—6.75208, —2.73808). Applying Algo-
rithm 1 to ¢; decomposes h = hyho into the two curves

hy =0.407209 — 0.670328x — 0.1670572% — 0.326707y + 0.267999zy — 0.422342y>
hoa = —0.682079 + 0.0348897x — 0.228954y

Applying ¥ to the two points p1,pe we find that p; maps to a point on
V(h2) while ps maps to a point on h;. Thus ¥ respects the decomposi-
tions of C and V(h) so we can conclude that ¥ is a numerical birational
equivalence of curves C, V(h) with inverse ®.
Step 5: Using the method of §6 we get a fractional linear transformation © with
matrix
0.545499  0.668587  0.505394
B = | —0.832815 0.364724  0.416408
—0.0940751 0.64805 —0.755766

which takes V' (h1) to the parabola
y = 0.145433 — 0.2094932 — 0.32236322 = u(x)

Then our parameterization of the second component of C is

. el e &0
2O ((Fult)) = (p<t> 0 o )

Where
€1(t) = — 0.00123344 + 0.116394¢ + 0.0455282¢% — 0.0600163¢> — 0.0114211¢*
&(t) = — 0.106938 + 0.0555114¢ + 0.165079t* — 0.0241627¢> — 0.0496511¢*
&3(t) = 0.107571 — 0.116773t — 0.0431373¢* + 0.0859286¢> — 0.0247614¢*
p(t) = 0.000638119 — 0.06223t + 0.165178% + 0.227341t> 4 0.0347652t*
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The first component of C is easily seen to be the line y = x,2z = 0. The
two components meet at the origin of R? which is ® of the singular point
of V(h) where the two components of V' (h) meet tangentially.

Step 6: Solving p(t) = 0 we get {—5.64066, —1.17225,0.010554, 0.26302}, the root
t = —1.17225 is not an essential pole but the others are. To graph the
second component we need only plot the line and ®©~1(¢,u(t)) on the real
intervals [—100, —5.67],[—5.6,.01],[.011, .26],[.27,5]. There is a tiny gap
near the singular point (0,0,0) but it is not very noticible on the graph

(Figure 2).
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FIGURE 2. V/(h) (left) and the QSIC inside —40 < z,y, z < 40.

One further comment about this example is required. The algebraic component
which is not a line is of degree 3 but not planar. Thus it cannot be a complete
intersection curve in C3. In fact the curve given by

v = 0.407567 — 0.64988122 — 0.40756y — 0.391031zy — 0.181769y>
—0.143229z — 0.07709542> + 0.1817692>

is linearly independent of f,g but also contains this degree 3 component. Thus
the decomposition of Step 1 is not helpful in finding a parameterization for this
component. The decompositions of Step 1 and Step 4 serve different purposes, that
of Step 1 identifies components to see if W is onto while Step 4 decomposes the
curve into useful complete intersection components. In this example both of these
are necessary.

In [14] the classification of QSIC gives 23 of the 35 total types which are reducible
with only planar components. In these 23 cases one could go directly from Step
1 to Step 5. In some of the other cases the QSIC is irreducible in which case the
information from Step 1 allows us to skip Step 4. But for a complete description of
all QSIC we need this 6 step method.

8. MORE EXAMPLES

Examples have been calculated with a default of approximately 17 digits in
MATHEMATICA 8 with a numerical linear algebra tolerance of 1072, Generally the
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calculations are accurate to about 11 digits but for display only about 6 digits are
shown here. It should be noted that because a number of random choices are made
in this approach that the details of these examples can not be replicated without
knowing the choices. But the point set and properties of the QSIC obtained will
be the same with different random choices.

Example 2. Generically a QSIC will be a genus 1 space curve. A typical example
is V((f,9))

(8) f=a?+y*+2°>-16, ¢=>57—12z+ 42 +y? — 642+ 162
An application of Theorem 4 gives
h = 0.0442427 4 0.140313z + 0.11661522 4 0.02940542°
—0.217169y — 0.402909zy — 0.172791xy + 0.344722y>
+0.3306952y% — 0.208248y

Checking h there are no singularities and three real inflectional tangents two of
which, pictured below in the top lefthand plot in Figure 1, then give, using the
method of §6, the two curves

y? = 38.6067 + 16.0287x + 6.07442x2 + 0.7167942>
y? = —2.33478 + 1.87741x — 0.3751852% + 0.02454232°

both of which look like the upper right picture of Figure 3 but with very different
scales. Note these curves are both birationally equivalent to the QSIC (8) and so
are birationally equivalent to each other. FEach of these curves gives two patches
(positive and negative y) the the four patches cover QSIC (8)

-2 -15 ~10 =5 o 1 o 1 2 3

FI1GURE 3. Example 2, bottom curve is QSIC

Example 3. A more complicated version of the above is the curve V({f,g))
(9) f=a?—y?+22 -1 g=2a-2"—4
The plane cubic obtained is
h = —0.0947177 — 0.263213x + 0.267739z% — 0.0855912z°
— 0.308632y + 0.0559627zy — 0.1942582%y
—0.122697y? + 0.387761xy* — 0.0316547y°
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which is transformed into
y? = —0.0029057 — 0.494465z + 0.25284622 + 0.452182° = u(z)
The parameter domain is then
{-1.359 < ¢t < 0.00586} U {0.8065 < ¢}
and the possible zeros from (6) of the parameter functions y = i\/@ are
t = —1.2287,—.05820,0.8936, 1.347,20.925.

The values t = —1.2287,.8936 are poles of y = PO~L(t, \/u(t)) whilet = —.05197,20.925
are poles of y = ®O~L(t, —+/u(t)) but t = 1.3465 turns out not to be an essential
pole of either. Thus our parameter curve breaks into 4 intervals as shown, dots are
poles, on the left in Figure 3 below. The images under y = ®O71(t, £/u(t))of the
intervals are the 4 affine topological components of the QSIC as shown on the right

of Figure 4 after projection by (x,y,z) — (x+.5z,y). Note we used Algorithm 4 to
find the equation of the projection and plotted with a contour plot.
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FIGURE 4. top parameter curve, bottom projection of QSIC in Example 3

Example 4. Consider curve number 6 in [14, Table 1] V/((f, g)) where
(10) f=—2?—22+2, g=-322+y*-2?

This curve has a bounded dimension 1 real component and an isolated real point.
Theorem 4 gives the plane cubic

h = 0.00491366 — 0.0192757z + 0.30437922 + 0.135712>
+0.0803394y -+ 0.449203zy + 0.1198822y
+0.661842y2 — 0.09410652y2 + 0.0385216y°

This h also has an isolated real point which is a singular point. Letting hy be the
homgenation of h MATHEMATICA’S NSolve, in a rare miss, does not see the common
zero x = [0.103102, —0.0989506, 1] of{aaimh, 86%, hp} and also fails to identify X as a
multiple real zero of the intersection of hy, and its Hessian, seeing instead two close
complex zeros. Thus it is not unexpected that one may mistake h for a non-singular
cubic. Since there are real inflectional points the method of §4 gives a birational
equualence of h with y*> = 0.498 + 2.55083x + 2.54258x2 — 1.947382% which is a

singular curve with isolated real singular point at (—0.356012,0). This curve maps
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birationally onto the QSIC (10) including the isolated point and we get, a good
parameter patch.

With the method of §4 the isolated point of both the original QSIC and h are
easily found, see the example in §4.

So h must be a singular curve but from the equation alone it is difficult in some
cases to identify whether a numerical curve is singular. Thus this suggested method
which does not treat singular and non-singular curves diffently is preferable to a
method which treats them as separate cases. The singular isolated point is more
readily identified in the final y* = u(x) form.

The reader should notice the difference here between working numerically and
exactly. In an exact calculation h could be a curve of the form y — v(x) in which
case it would make no sense transforming it to the cusp y?> — u(x) to get a param-
eterization. In our numerical case the chance of h being of the form y — v(x) is
virtually nil so it is not worth even considering that possibility.

Example 5. The easiest example of a QSIC, the intersection of two spheres, is
one not covered by Theorem 4 as stated, since it is not an affine QSIC. for instance

(11) f=a?+y*+22 -4, g=—2—2x+2%+y*+2?
Note f — g = 2x — 2 so the affine solution is {x = 1,y* + 2> = 3}. However
applying the technique of Theorem 4 gave the cubic
h = 0.15022 4 0.10600z 4 0.07246822% — 0.00712392x3
+0.44953y + 0.31137zy + 0.15698622y
+ 0.403442y> 4 0.165618zy> + 0.206231y°
The curve V(h) is reducible with components V (hy),V (hs)
hy = 0.448791 — 0.038654x + 0.8928y
ho = 0.334722 4 0.265018z + 0.1843z% + 0.335768y
+0.1955052y + 0.230994y>

where ® applied to the line hy = 0 parameterizes the real affine solution circle
but the quadratic he has no real solutions. However ® does not take V(hg) to
V{{f,g})- Instead if we work projectively then the projective closure of V(hs) goes
to the complex ideal curve in P* given by {t = 0,2 + y3 + 2% = 0} which is in the
projective closure of (11).

The system {22 —y?, 22 — 1} [14, curve 28] consists of 4 real affine lines and does
satisfy the hypotheses of Theorem 4 but it is impossible for ® to be a birational
equivalence because a cubic cannot have 4 components.

9. CONCLUSION

We have shown that working numerically instead of exactly greatly simplifies the
problem and yet we are still able, in our experiments, to distinguish the different
types of QSIC, even when there are singular points involved. It is possible, of
course, that very sensitive examples may be found where our method may need
higher precision or arithmetic or may fail.

Using the entire algorithm, especially Step 5, we can specialize Theorem 1 as
follows:
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Theorem 2. Suppose X is an irreducibe real affine QSIC, possibly singular. Then

X is numerically birationally equivalent to a plane cubic Y in hyperelliptic form

y? = 3 + ax + b for real numbers a,b.

Since Theorem 1 is the only place we have specifically addressed QSIC it is
possible that this method can be extended to other space curves. It is not clear
what parameterizable curves should be used as cononical models for plane curves
of degree greater than 3. Fractional linear transformations may not be general
enough in higher degrees. Nor is it clear how to generalize Theorem 1. These are
all questions for further research.

REFERENCES

[1] S.S. Abhyankar, Algebraic Geometry for Scientists and Engineers, Math. Surveys and Mono-
graphs Vol. 35, AMS, 1990.
[2] D.J. Bates, J.D. Hauenstein, A.J. Sommese, C. W. Wampler II, Bertini: Soft-
ware for Numerical Algebraic Geometry, version 1.3.1 (32 bit Linux) January 2012,
www.nd.edu/ sommese/bertini.
[3] D.J. Bates, J.D. Hauenstein, C. Peterson and A.J. Sommese, Numerical Decomposition of
the Rank-Deficiency Set of a Matriz of Multvariate Polynomials, L. Robbiano and J.Abbott
(eds.) Approxzimate Commutative Algebra, Vol 14 Texts and Manuscripts in Symbolic Com-
putation, Springer-Verlag, 2009, pp. 55-77. (Or see this author’s review in Math. Sci. Net,
MR2641156).
[4] D.J. Bates and F. Sottile, Khovanskii-Rolle Continuation for Real Solutions, Found. Comput.
Math (2011) pp. 11:563-587.
[5] J.W.S. Cassels, Lectures on Elliptic Curves, London Math. Soc. Student Texts 24, Cambridge
University Press, 1991.
B.H. Dayton, Numerical Calculation of H-bases for Positive Dimensional Varieties, in Pro-
ceedings of the 2011 International Workshop on Symbolic-Numeric Computation, ACM, 2012.
[7] B.H. Dayton, Numerical Algebraic Geometry via Macaulay’s Perspective, talk at STAM AN12
special section, June 2012, at www.neiu.edu/~bhdayton/siamAN12.pdf
[8] L. Dupont, D. Lazard, S. Lazard and S. Petitjean, Near-optimal parameterization of the in-
tersection of quadrics, Parts LILIII, J. Symbolic Comput. 3(43), 2008, pp. 168-232.
[9] L. Dupont, D. Lazard, S. Lazard, S. Petitjean and G. Hanrot, Quadric Intersection Online
Calculation Server, http://vegas.loria.fr/qi/server.
[10] G. Fischer, Plane Algebraic Curves, Student Math. Lib. 15, (English translation), AMS, 2001.
[11] M. Kreuzer and L. Robbiano, Computational Commutative Algebra 2, Springer, 2005.
[12] F.S. Macaulay The Algebraic Theory of Modular Systems, Cambridge University Press, 1916.
[13] H.M. Moller and T. Sauer, H-bases for polynomial interpolation and system solving, Adv. in
Comp. Math. 12 (2000) pp. 335-362.

[14] C. Tu, W. Wang, B. Mourrain, J. Wang, Using signature sequences to classify intersection
curves of two quadrics, Computer Aided Geometric Design 26 (2009), pp. 317-335.

[15] W. Wang, B. Joe, R. Goldman, Computing quadric surface intersections based on an analysis
of plane cubic curves, Graph. Models 64 (2003) 335-367.

6

(©2012Albanian J. Math. (6]


http://www.aulonapress.com

	1. Introduction
	2. Preliminaries
	2.1. H-bases and Duality Method
	2.2. Fractional Linear Transformations

	3. Finding Real Points on Curves
	4. Main Reduction
	5. Parameterizing plane quadratics and cubics
	6. Parameterization and analysis of real QSIC
	7. A fully worked out Example
	8. More Examples
	9. Conclusion
	References

