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ABSTRACT. We give an explicit dependence of quasiconformal constant on its boundary
function, provided that the mapping is quasiconformal harmonic and maps the unit disk
onto a strictly convex domain. This result refines some earlier results obtain by the first
author and Pavlović ([11, 27]).

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

1.0.1. Harmonic mappings. The function

P (r, t) =
1− r2

2π(1− 2r cos t+ r2)
, 0 ≤ r < 1, t ∈ [0, 2π]

is called the Poisson kernel. Let U = {z : |z| < 1} be the unit disk and T = ∂U is the
unit circle. The Poisson integral of a complex function F ∈ L1(T) is a complex harmonic
mapping given by

(1.1) w(z) = u(z) + iv(z) = P [F ](z) =

∫ 2π

0

P (r, t− τ)F (eit)dt,

where z = reiτ ∈ U. If w is a bounded harmonic mapping, then there exists a function
F ∈ L∞(T), such that w(z) = P [F ](z) (see e.g. [4, Theorem 3.13 b), p = ∞]). From
now on we will identify F (t) with F (eit) and F ′(t) with dF (eit)

dt .
We refer to Axler, Bourdon and Ramey [4] for good setting of harmonic mappings.
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1.0.2. Quasiconformal mappings. A sense-preserving injective harmonic mapping w =
u+ iv is called K-quasiconformal (K-q.c), K ≥ 1, if

(1.2) |wz̄| ≤ k|wz|

on U where k = (K − 1)/(K + 1). Notice that, since

|∇w(z)| := max{|∇w(z)h| : |h| = 1} = |wz(z)|+ |wz̄(z)|,

and
l(∇w(z)) := min{|∇w(z)h| : |h| = 1} = ‖wz(z)| − |wz̄(z)‖.

The condition (1.2) is equivalent with

(1.3) |∇w(z)| ≤ Kl(∇w(z)).

For a general definition of quasiregular mappings and quasiconformal mappings we refer
to the book of Ahlfors [1].

For a background on the topic of quasiconformal harmonic mappings we refer [5], [8]-
[22], [23], [26], [27]. In this paper we obtain some new results concerning a characteri-
zation of this class. We will restrict ourselves to the class of q.c. harmonic mappings w
between the unit disk U and a convex Jordan domain D. The unit disk is taken because of
simplicity. Namely, if w : Ω → D is q.c. harmonic, and a : U → Ω is conformal, then
w ◦ a, is also q.c. harmonic. However the image domain D cannot be replaced by the unit
disk.

To state the main result of the paper, we make use of Hilbert transforms formalism. It
provides a necessary and a sufficient condition for the harmonic extension of a homeomor-
phism from the unit circle to a smooth convex Jordan curve γ to be a q.c mapping. It is an
extension of the corresponding result [11, Theorem 3.1] related to convex Jordan domains.
The Hilbert transformation of a function χ ∈ L1(T) is defined by the formula

(1.4) χ̃(τ) = H[χ](τ) = − 1

π

∫ π

0+

χ(τ + t)− χ(τ − t)
2 tan(t/2)

dt.

Here
∫ π

0+ Φ(t)dt := limε→0+

∫ π
ε

Φ(t)dt. This integral is improper and converges for a.e.
τ ∈ [0, 2π]; this and other facts concerning the operator H used in this paper can be found
in the book of Zygmund [31, Chapter VII]. If f = u + iv is a harmonic function defined
in the unit disk then a harmonic function f̃ = ũ+ iṽ is called the harmonic conjugate of f
if u+ iũ and v + iṽ are analytic functions and ũ(0) = ṽ(0) = 0. Let χ, χ̃ ∈ L1(T). Then

(1.5) P [χ̃] = P̃ [χ],

where k̃(z) is the harmonic conjugate of k(z) (see e.g. [28, Theorem 6.1.3]).
Let D be a strictly convex domain with C2 Jordan boundary γ. By κz we denote the

curvature of γ at z ∈ γ. We now state a theorem that concerns with quasiconformal
harmonic mappings between the unit disk and strictly convex domains.

Theorem 1.1. (I) Let γ be aC1,α convex Jordan curve and let F be an arbitrary absolutely
continuous parametrization.

Then w = P [F ] is a quasiconformal mapping if and only if

(1.6) 0 < m = ess inf
τ
|F ′(τ)|,

(1.7) M = ‖F ′‖∞ := ess sup
τ
|F ′(τ)| <∞
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and

(1.8) H = ‖H(F ′)‖∞ := ess sup
τ
|H(F ′)(τ)| <∞.

(II) Let γ be a C2 convex Jordan curve and κz be the curvature of γ at z ∈ γ. Further
let κ0 = minz∈γ κz and κ1 = maxz∈γ κz . If F satisfies the conditions (1.6), (1.7) and
(1.8), and γ is strictly convex, then w = P [F ] is K quasiconformal, where

(1.9) K ≤ κ1(M2 +H2) +
√

(κ1(M2 +H2))2 − (2κ2
0m

3)2

2κ2
0m

3
.

The constant K is the best possible in the following sense, if w is the identity or it is a
mapping close to the identity, then K = 1 or K close to 1 (respectively).

2. PRELIMINARIES

Suppose γ is a rectifiable, directed, differentiable curve given by its arc-length parametriza-
tion g(s), 0 ≤ s ≤ l, where l = |γ| is the length of γ. Then |g′(s)| = 1 and s =∫ s

0
|g′(t)|dt, for all s ∈ [0, l]. We say that γ ∈ C1,α if g ∈ C1,α.
If γ is a twice-differentiable curve, then the curvature of γ at a point p = g(s) is given

by κγ(p) = |g′′(s)|. Let

(2.1) K(s, t) = Re [(g(t)− g(s)) · ig′(s)]

be a function defined on [0, l]× [0, l]. By K(s± l, t± l) = K(s, t) we extend it on R×R.
Note that ig′(s) is the unit normal vector of γ at g(s) and therefore, if γ is convex then

(2.2) K(s, t) ≥ 0 for every s and t.

Suppose now that F : R 7→ γ is an arbitrary 2π periodic Lipschitz function such that
F |[0,2π) : [0, 2π) 7→ γ is an orientation preserving bijective function.

Then there exists an increasing continuous function f : [0, 2π] 7→ [0, l] such that

(2.3) F (τ) = g(f(τ)).

In the remainder of this paper we will identify [0, 2π) with the unit circle S1, and F (s)
with F (eis). In view of the previous convention we have

F ′(τ) = g′(f(τ)) · f ′(τ),

and therefore
|F ′(τ)| = |g′(f(τ))| · |f ′(τ)| = f ′(τ).

Along with the function K we will also consider the function KF defined by

KF (t, τ) = Re [(F (t)− F (τ)) · iF ′(τ)].

It is easy to see that

(2.4) KF (t, τ) = f ′(τ)K(f(t), f(τ)).

Lemma 2.1. [12] If w = P [F ] is a harmonic mapping, such that F is a Lipschitz homeo-
morphism from the unit circle onto a Jordan curve of the class C1,α (0 < α < 1), then for
almost every τ ∈ [0, 2π] there exists

Jw(eiτ ) := lim
r→1−

Jw(reiτ )

and there hold the formula
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Jw(eiτ ) = f ′(τ)

∫ 2π

0

Re [(g(f(t))− g(f(τ))) · ig′(f(τ))]

2 sin2 t−τ
2

dt.(2.5)

Lemma 2.2. If ϕ : R → R is a (`,L) bi-Lipschitz mapping, such that ϕ(x + a) =
ϕ(x) + b for some a and b and every x, then there exists a sequence of (`,L) bi-Lipschitz
diffeomorphisms (respectively a sequence of diffeomorphisms) ϕn : R → R such that ϕn
converges uniformly to ϕ, and ϕn(x+ a) = ϕn(x) + b.

Proof. We introduce appropriate mollifiers: Fix a smooth function ρ : R→ [0, 1] which is
compactly supported in the interval (−1, 1) and satisfies

∫
R ρ = 1. For ε = 1/n consider

the mollifier

(2.6) ρε(t) :=
1

ε
ρ

(
t

ε

)
.

It is compactly supported in the interval (−ε, ε) and satisfies
∫
R ρε = 1. Define

ϕε(x) = ϕ ∗ ρε =

∫
R

ϕ(y)
1

ε
ρ(
x− y
ε

)dy =

∫
R

ϕ(x− εz)ρ(z)dz,

then

ϕ′ε(x) =

∫
R

ϕ′(x− εz)ρ(z)dz.

It follows that

`

∫
R

ρ(z)dz = ` ≤ |ϕ′ε(x)| ≤ L
∫
R

ρ(z)dz = L.

The fact that ϕε(x) converges uniformly to ϕ follows by Arzela-Ascoli theorem.
�

Lemma 2.3. For every bi-Lipschitz mapping φ : [0, π]→ [0, π], φ′(0) = φ′(π) we have

ess inf(φ′(x))2 ≤ sin2 φ(x)

sin2 x
≤ ess sup(φ′(x))2.

Proof. Assume first that, φ is a diffeomorphism such that φ′(0) = φ′(π). Let

h(x) =
sinφ(x)

sinx
.

Then h is differentiable in [0, π]. The stationary points of h satisfy the equation

φ′
cosφ(x)

sinx
− cosx

sinx
h = 0.

Therefore
h2(x) = (φ′(x))2 cos2 φ(x) + sin2 φ(x).

Since

φ(2π)− φ(0) =

∫ 2π

0

φ′(x)dx,

we have that min
x

(φ′(x)) ≤ 1 ≤ max
x

(φ′(x)). It follows that

min
x

(φ′(x))2 ≤ h2(x) ≤ max
x

(φ′(x))2.

The general case follows from Lemma 2.2. �
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3. THE PROOF OF THEOREM 1.1

We begin by the following lemma

Lemma 3.1. Let γ be aC2 strictly convex Jordan curve and letF be an arbitrary parametriza-
tion. Let m = min

τ∈[0,2π]
|F ′(τ)| and M = max

τ∈[0,2π]
|F ′(τ)|. Then we have the following

double inequalities:

(3.1)
κ2

0

κ1
≤ K(t, τ)

2 sin2 τ−t
2

≤ κ2
1

κ0
,

and

(3.2)
κ2

0

κ1
m3 ≤ KF (t, τ)

2 sin2 τ−t
2

≤ κ2
1

κ0
M3,

where K and KF are defined in (2.1) and (2.4). If γ is in addition a symmetric Jordan
curve then we have the better estimates

(3.3) κ0 ≤
K(t, τ)

2 sin2 τ−t
2

≤ κ1,

and

(3.4) κ0m
3 ≤ KF (t, τ)

2 sin2 τ−t
2

≤ κ1M
3.

Proof. Let g̃ be a arch length parametrization function of the curve γ̃ = 1
|γ|γ, where |γ| is

the length of γ. Let κ̃0 = min
z∈γ̃

κ̃z and κ̃1 = max
z∈γ̃

κ̃z , where κ̃z is the curvature of γ̃ at z. It

is clear that

(3.5) |γ|κ|γ|z = κ̃z.

Let

G(σ, ς) :=
〈g̃(σ)− g̃(ς), ig̃′(ς)〉

2 sin2 σ−ς
2

.

Since g̃′(ς) is a unit vector and γ is a C2 strictly convex curve, there exists a diffeomor-
phism β : R→ R, β(0) = 0, β(2π + σ) = 2π + β(σ) such that

(3.6) g̃′(σ) = eiβ(σ).

Therefore

(3.7) G(σ, ς) =

∫ σ
ς

sin(β(τ)− β(ς))dτ

2 sin2 σ−ς
2

.

On the other hand from
g̃′′(τ) = iβ′(τ)eiβ(τ)

it follows that

(3.8) κg̃(τ) = β′(τ).

According to (3.6), we obtain first that

(3.9)
∫ 2π

0

eiβ(σ)dσ = g̃(0)− g̃(2π) = 0.
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Thus

(3.10)
∫ 2π

0

sin(β(σ))dσ =

∫ 2π

0

cos(β(σ))dσ = 0.

Therefore ∫ σ

ς

sin(β(τ)− β(ς))dτ =

∫
[0,2π]\[ς,σ]

sin(β(ς)− β(τ))dτ.

As β is a diffeomorphism it follows that at least one of the following relations hold

(3.11) sin(β(τ)− β(ς)) ≥ 0 for τ ∈ [ς, σ]

or

(3.12) sin(β(ς)− β(τ)) ≥ 0 for τ ∈ [0, 2π] \ [ς, σ].

Introducing the change a = β(τ) we obtain in the case (3.11) that∫ σ

ς

sin(β(τ)− β(ς))dτ =

∫ β(σ)

β(ς)

sin(a− β(ς))
da

β′(τ)

≥ (≤)
1

maxτ (minτ )β′(τ)

∫ β(σ)

β(ς)

sin(a− β(ς))da

=
2

maxτ (minτ )β′(τ)
sin2(

β(σ)− β(ς)

2
).

(3.13)

Therefore

(3.14)
1

maxτ β′(τ)

sin2(β(σ)−β(ς)
2 )

sin2 σ−ς
2

≤ G(σ, ς) ≤ 1

minτ β′(τ)

sin2(β(σ)−β(ς)
2 )

sin2 σ−ς
2

.

The case (3.12) can be consider similarly. In this case we apply the fact that β(2π + σ) =
2π + β(σ) and in the same way obtain (3.14).

By taking u = σ−ς
2 and φ(u) = β(2u+ς)−β(ς)

2 , and using Lemma 2.3 we obtain that

(3.15)
(minτ β

′(τ))2

maxτ β′(τ)
≤ G(σ, ς) ≤ (maxτ β

′(τ))2

minτ β′(τ)
.

From (3.15) we obtain

(3.16)
κ̃2

0

κ̃1
≤ G(σ, ς) ≤ κ̃2

1

κ̃0
.

On the other hand there exists a diffeomorphism σ : [0, 2π]→ [0, 2π] such that

F (τ) = |γ|g̃(σ(τ)).

Thus

(3.17) F ′(τ) = |γ|σ′(τ)g′(σ(τ))

and

(3.18) |F ′(τ)| = |γ|σ′(τ).
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Thus

KF (t, τ) =
〈
F (t)− F (τ), iF ′(τ)

〉
= |γ|2σ′(τ)

〈
g̃(σ(τ))− g̃(σ(t)), ig̃′(σ(τ))

〉
= |γ|2σ′(τ)G(σ(t), σ(τ)) · 2 sin2 σ(τ)− σ(t)

2
.

(3.19)

By applying again Lemma 2.3 we obtain

(3.20) min
t

(σ′(t))2 ≤
2 sin2 σ(τ)−σ(t)

2

2 sin2 τ−t
2

≤ max
t

(σ′(t))2.

Combining (3.16), (3.19) and (3.20) we obtain

(3.21) min
t

(σ′(t))2 |γ|2σ′(t)κ̃2
0

κ̃1
≤ KF (t, τ)

2 sin2 τ−t
2

≤ max
t

(σ′(t))2 |γ|2σ′(t)κ̃2
1

κ̃0
.

Combining (3.21), (3.5) and (3.18) we obtain

κ2
0m

3

κ1
≤ KF (t, τ)

2 sin2 τ−t
2

≤ κ2
1M

3

κ0
.

This yields (3.2). In particular, if F = g, where g is natural parametrization of γ we obtain
(3.1). In order to prove the statement for symmetric domain, we differentiate (3.7). Then
we have

(3.22) Gσ(σ, ς) =
sin(β(σ)− β(ς))

2 sin2 σ−ς
2

−
∫ σ
ς

sin(β(τ)− β(ς))dτ

2 sin2 σ−ς
2

· cot
σ − ς

2
.

So Gσ(σ̃, ς̃) = 0 if and only if

G(σ̃, ς̃) =
sin(β(σ̃)− β(ς̃))

sin(σ̃ − ς̃)
.

Define the function

H(σ, ς) =
sin(β(σ)− β(ς))

sin(σ − ς)
, 0 < |σ − ς| 6= π.

Then it can be extended in [0, 2π]×[0, 2π] because of symmetry of γ. Namely if σ−ς = π,
we have β(σ) − β(ς) = π. Thus by L’Hopital’s rule we have H(σ, σ + π) = β′(σ) =
H(σ, σ). By putting x = σ − ς ∈ [0, π] and φ(x) = β(x + ς) − β(ς) and applying
Lemma (2.3), instead of (3.16) we obtain

(3.23) κ̃0 ≤ H(σ, ς) ≤ κ̃1,

and consequently

(3.24) κ̃0 ≤ G(σ, ς) ≤ κ̃1.

By repeating the previous proof we obtain (3.3) and (3.4). �

From Lemma 3.1 it follows at once the following theorem.

Theorem 3.2. If w = P [F ] is a harmonic diffeomorphism of the unit disk onto a (symmet-
ric) convex Jordan domain D = intγ ∈ C2, such that F is (m,M) bi-Lipschitz, then

(3.25)
(
κ0m

3 ≤ Jw(eiτ ) ≤ κ1M
3
)
,
κ2

0m
3

κ1
≤ Jw(eiτ ) ≤ κ2

1M
3

κ0
.
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Proof. From (2.5) we obtain

(3.26) Jw(eiτ ) =

∫ 2π

0

KF (t, τ)

2 sin2 τ−t
2

dt

2π
.

From (3.2) and (3.4) we obtain (3.25). �

Proof of Theorem 1.1. The part (I) of this theorem coincides with [11, Theorem 3.1]. Prove
the part (II). We have to prove that under the conditions (1.6), (1.7) and (1.8) w isK− qua-
siconformal, where K is given by (1.9). This means that, according to (1.3), we need to
prove that the function

(3.27) K(z) =
|wz|+ |wz̄|
|wz| − |wz̄|

=
1 + |µ|
1− |µ|

is bounded by K.
It follows from (1.1) that wϕ is equals to the Poisson-Stieltjes integral of F ′:

wϕ(reiτ ) =
1

2π

∫ 2π

0

P (r, τ − t)dF (t).

Hence, by Fatou’s theorem, the radial limits ofFτ exist almost everywhere and lim
r→1−

Fτ (reiτ ) =

F ′0(τ) a.e., where F0 is the absolutely continuous part of F .
As rwr is harmonic conjugate of wτ , it turns out that if F is absolutely continuous, then

lim
r→1−

Fr(re
iτ ) = H(F ′)(τ) (a.e.),

and
lim
r→1−

Fϕ(reiτ ) = F ′(τ).

As

|wz|2 + |wz̄|2 =
1

2

(
|wr|2 +

|wϕ|2

r2

)
it follows that

(3.28) lim
r→1−

(
|wz|2 + |wz̄|2

)
≤ 1

2
(‖F ′‖2∞ + ‖H(F ′)‖2∞).

On the other hand, by (3.25)

(3.29) lim
r→1−

(
|wz|2 − |wz̄|2

)
≥ κ2

0m
3

κ1
.

From (3.28) and (3.29) we obtain

(3.30) lim
r→1−

|wz|2 + |wz̄|2

|wz|2 − |wz̄|2
≤ C :=

κ1(‖F ′‖2∞ + ‖H(F ′)‖2∞)

2κ2
0m

3
,

i.e.

(3.31) lim
r→1−

|wz̄|
|wz|

≤
√
C − 1

C + 1
.

By Lewy’ theorem, |wz̄|
|wz| is a subharmonic function bounded by 1. From (3.31) it follows

that
|wz̄|
|wz|

≤
√
C − 1

C + 1
.
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Further

K =

√
C + 1 +

√
C − 1√

C + 1−
√
C − 1

= C +
√
C2 − 1

=
κ1(‖F ′‖2∞ + ‖H(F ′)‖2∞) +

√
(κ1(‖F ′‖2∞ + ‖H(F ′)‖2∞))2 − (2κ2

0m
3)2

2κ2
0m

3
.

The last quantity is equal to 1 for F being identity because all the constants appearing at
the quantity are 1 in this special case. Moreover, if F is close to identity in C2 norm, then
the quantity is close to 1. �

Remark 3.3. For symmetric domains, in view of Theorem 3.2, instead of (1.9) we can
obtain the following estimate

K ≤
‖F ′‖2∞ + ‖H(F ′)‖2∞ +

√
(‖F ′‖2∞ + ‖H(F ′)‖2∞)2 − (2κ0m3)2

2κ0m3
.

Example 3.4. If F is the arc-parametrization of a C2 convex Jordan curve γ, then m =
‖F ′‖∞ = 1. We assume w.l.g. that the length of γ is 2π. Furthermore since F ′(s) =
eiβ(s), by applying Lemma 2.3 again we obtain

|H[F ′](τ)| =
∣∣∣∣− 1

π

∫ π

0+

F ′(τ + t)− F ′(τ − t)
2 tan(t/2)

dt

∣∣∣∣
≤ 1

π

∫ π

0+

|eiβ(τ+t) − eiβ(τ−t)|
2 tan(t/2)

dt

=
1

π

∫ π

0+

2
∣∣∣sin(β(τ+t)−β(τ−t)

2 )
∣∣∣

2 tan(t/2)
dt

≤ sup |F ′′(s)| 1
π

∫ π

0

sin t

tan(t/2)
dt = κ1.

So

K ≤ κ1(1 + κ2
1) +

√
(κ1(1 + κ2

1))2 − 4κ4
0

2κ2
0

and for symmetric domains

K ≤ 1 + κ2
1 +

√
(1 + κ2

1)2 − 4κ2
0

2κ0
.

If γ is the unit circle, then κ0 = 1 = κ1. Both estimates are asymptotically sharp; if the
curve γ approaches in C2 topology to the unit circle centered at origin, then the quasicon-
formal constant tends to 1.

In particular if γ is the ellipse γ = {(x, y) : x2/a2 +y2/b2 = 1}, a ≤ b, |γ| = 2π, then
κ0 = 1/b and κ1 = 1/a.
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[22] V. Manojlović: Bi-lipshicity of quasiconformal harmonic mappings in the plane, Filomat 23:1 (2009), 85–

89.
[23] O. Martio: On harmonic quasiconformal mappings, Ann. Acad. Sci. Fenn., Ser. A I 425 (1968), 3-10.
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