QUASICONFORMAL HARMONIC MAPPINGS ONTO A CONVEX DOMAIN REVISITED

David Kalaj
Faculty of Natural Sciences and Mathematics,
University of Montenegro,
Cetinjski put b.b. 81000
Podgorica, Montenegro
E-mail: davidk@t-com.me
Ken-IChi SaKan
Osaka City University,
Graduate School of Science,
Department of Mathematics Sugimoto,
Sumiyoshi-ku, Osaka, 558, Japan
E-mail: ksakan@sci.osaka-cu.ac.jp

Abstract. We give an explicit dependence of quasiconformal constant on its boundary function, provided that the mapping is quasiconformal harmonic and maps the unit disk onto a strictly convex domain. This result refines some earlier results obtain by the first author and Pavlović ([11, 27]).

1. Introduction and statement of the main results

1.0.1. Harmonic mappings. The function

$$
P(r, t)=\frac{1-r^{2}}{2 \pi\left(1-2 r \cos t+r^{2}\right)}, \quad 0 \leq r<1, \quad t \in[0,2 \pi]
$$

is called the Poisson kernel. Let $\mathbf{U}=\{z:|z|<1\}$ be the unit disk and $\mathbf{T}=\partial \mathbf{U}$ is the unit circle. The Poisson integral of a complex function $F \in L^{1}(\mathbf{T})$ is a complex harmonic mapping given by

$$
\begin{equation*}
w(z)=u(z)+i v(z)=P[F](z)=\int_{0}^{2 \pi} P(r, t-\tau) F\left(e^{i t}\right) d t, \tag{1.1}
\end{equation*}
$$

where $z=r e^{i \tau} \in \mathbf{U}$. If w is a bounded harmonic mapping, then there exists a function $F \in L^{\infty}(\mathbf{T})$, such that $w(z)=P[F](z)$ (see e.g. [4, Theorem 3.13 b), $\left.p=\infty\right]$). From now on we will identify $F(t)$ with $F\left(e^{i t}\right)$ and $F^{\prime}(t)$ with $\frac{d F\left(e^{i t}\right)}{d t}$.

We refer to Axler, Bourdon and Ramey [4] for good setting of harmonic mappings.

2000 Mathematics Subject Classification. Primary 58E20.
Key words and phrases. Harmonic mappings, Harmonic quasiconformal mappings, Strictly convex domains, curvature.

Kalaj, Sakan
1.0.2. Quasiconformal mappings. A sense-preserving injective harmonic mapping $w=$ $u+i v$ is called K-quasiconformal (K-q.c), $K \geq 1$, if

$$
\begin{equation*}
\left|w_{\bar{z}}\right| \leq k\left|w_{z}\right| \tag{1.2}
\end{equation*}
$$

on \mathbf{U} where $k=(K-1) /(K+1)$. Notice that, since

$$
|\nabla w(z)|:=\max \{|\nabla w(z) h|:|h|=1\}=\left|w_{z}(z)\right|+\left|w_{\bar{z}}(z)\right|,
$$

and

$$
l(\nabla w(z)):=\min \{|\nabla w(z) h|:|h|=1\}=\left\|w_{z}(z)|-| w_{\bar{z}}(z)\right\| .
$$

The condition (1.2) is equivalent with

$$
\begin{equation*}
|\nabla w(z)| \leq K l(\nabla w(z)) \tag{1.3}
\end{equation*}
$$

For a general definition of quasiregular mappings and quasiconformal mappings we refer to the book of Ahlfors [1].

For a background on the topic of quasiconformal harmonic mappings we refer [5], [8][22], [23], [26], [27]. In this paper we obtain some new results concerning a characterization of this class. We will restrict ourselves to the class of q.c. harmonic mappings w between the unit disk \mathbf{U} and a convex Jordan domain D. The unit disk is taken because of simplicity. Namely, if $w: \Omega \rightarrow D$ is q.c. harmonic, and $a: \mathbf{U} \rightarrow \Omega$ is conformal, then $w \circ a$, is also q.c. harmonic. However the image domain D cannot be replaced by the unit disk.

To state the main result of the paper, we make use of Hilbert transforms formalism. It provides a necessary and a sufficient condition for the harmonic extension of a homeomorphism from the unit circle to a smooth convex Jordan curve γ to be a q.c mapping. It is an extension of the corresponding result [11, Theorem 3.1] related to convex Jordan domains. The Hilbert transformation of a function $\chi \in \mathrm{L}^{1}(\mathbf{T})$ is defined by the formula

$$
\begin{equation*}
\tilde{\chi}(\tau)=H[\chi](\tau)=-\frac{1}{\pi} \int_{0^{+}}^{\pi} \frac{\chi(\tau+t)-\chi(\tau-t)}{2 \tan (t / 2)} \mathrm{d} t \tag{1.4}
\end{equation*}
$$

Here $\int_{0^{+}}^{\pi} \Phi(t) d t:=\lim _{\epsilon \rightarrow 0^{+}} \int_{\epsilon}^{\pi} \Phi(t) d t$. This integral is improper and converges for a.e. $\tau \in[0,2 \pi]$; this and other facts concerning the operator H used in this paper can be found in the book of Zygmund [31, Chapter VII]. If $f=u+i v$ is a harmonic function defined in the unit disk then a harmonic function $\tilde{f}=\tilde{u}+i \tilde{v}$ is called the harmonic conjugate of f if $u+i \tilde{u}$ and $v+i \tilde{v}$ are analytic functions and $\tilde{u}(0)=\tilde{v}(0)=0$. Let $\chi, \tilde{\chi} \in L^{1}(\mathbf{T})$. Then

$$
\begin{equation*}
P[\tilde{\chi}]=\widetilde{P[\chi]}, \tag{1.5}
\end{equation*}
$$

where $\tilde{k}(z)$ is the harmonic conjugate of $k(z)$ (see e.g. [28, Theorem 6.1.3]).
Let D be a strictly convex domain with C^{2} Jordan boundary γ. By κ_{z} we denote the curvature of γ at $z \in \gamma$. We now state a theorem that concerns with quasiconformal harmonic mappings between the unit disk and strictly convex domains.

Theorem 1.1. (I) Let γ be a $C^{1, \alpha}$ convex Jordan curve and let F be an arbitrary absolutely continuous parametrization.

Then $w=P[F]$ is a quasiconformal mapping if and only if

$$
\begin{gather*}
0<m=\operatorname{ess} \inf _{\tau}\left|F^{\prime}(\tau)\right| \tag{1.6}\\
M=\left\|F^{\prime}\right\|_{\infty}:=\operatorname{ess} \sup _{\tau}\left|F^{\prime}(\tau)\right|<\infty \tag{1.7}
\end{gather*}
$$

Quasiconformal harmonic mappings onto a convex domain revisited
and

$$
\begin{equation*}
H=\left\|H\left(F^{\prime}\right)\right\|_{\infty}:=\operatorname{ess} \sup _{\tau}\left|H\left(F^{\prime}\right)(\tau)\right|<\infty \tag{1.8}
\end{equation*}
$$

(II) Let γ be a C^{2} convex Jordan curve and κ_{z} be the curvature of γ at $z \in \gamma$. Further let $\kappa_{0}=\min _{z \in \gamma} \kappa_{z}$ and $\kappa_{1}=\max _{z \in \gamma} \kappa_{z}$. If F satisfies the conditions (1.6), (1.7) and (1.8), and γ is strictly convex, then $w=P[F]$ is K quasiconformal, where

$$
\begin{equation*}
K \leq \frac{\kappa_{1}\left(M^{2}+H^{2}\right)+\sqrt{\left(\kappa_{1}\left(M^{2}+H^{2}\right)\right)^{2}-\left(2 \kappa_{0}^{2} m^{3}\right)^{2}}}{2 \kappa_{0}^{2} m^{3}} \tag{1.9}
\end{equation*}
$$

The constant K is the best possible in the following sense, if w is the identity or it is a mapping close to the identity, then $K=1$ or K close to 1 (respectively).

2. Preliminaries

Suppose γ is a rectifiable, directed, differentiable curve given by its arc-length parametrization $g(s), 0 \leq s \leq l$, where $l=|\gamma|$ is the length of γ. Then $\left|g^{\prime}(s)\right|=1$ and $s=$ $\int_{0}^{s}\left|g^{\prime}(t)\right| d t$, for all $s \in[0, l]$. We say that $\gamma \in C^{1, \alpha}$ if $g \in C^{1, \alpha}$.

If γ is a twice-differentiable curve, then the curvature of γ at a point $p=g(s)$ is given by $\kappa_{\gamma}(p)=\left|g^{\prime \prime}(s)\right|$. Let

$$
\begin{equation*}
K(s, t)=\operatorname{Re}\left[\overline{(g(t)-g(s))} \cdot i g^{\prime}(s)\right] \tag{2.1}
\end{equation*}
$$

be a function defined on $[0, l] \times[0, l]$. By $K(s \pm l, t \pm l)=K(s, t)$ we extend it on $\mathbb{R} \times \mathbb{R}$. Note that $i g^{\prime}(s)$ is the unit normal vector of γ at $g(s)$ and therefore, if γ is convex then

$$
\begin{equation*}
K(s, t) \geq 0 \text { for every } s \text { and } t \tag{2.2}
\end{equation*}
$$

Suppose now that $F: \mathbb{R} \mapsto \gamma$ is an arbitrary 2π periodic Lipschitz function such that $\left.F\right|_{[0,2 \pi)}:[0,2 \pi) \mapsto \gamma$ is an orientation preserving bijective function.

Then there exists an increasing continuous function $f:[0,2 \pi] \mapsto[0, l]$ such that

$$
\begin{equation*}
F(\tau)=g(f(\tau)) \tag{2.3}
\end{equation*}
$$

In the remainder of this paper we will identify $[0,2 \pi)$ with the unit circle S^{1}, and $F(s)$ with $F\left(e^{i s}\right)$. In view of the previous convention we have

$$
F^{\prime}(\tau)=g^{\prime}(f(\tau)) \cdot f^{\prime}(\tau)
$$

and therefore

$$
\left|F^{\prime}(\tau)\right|=\left|g^{\prime}(f(\tau))\right| \cdot\left|f^{\prime}(\tau)\right|=f^{\prime}(\tau)
$$

Along with the function K we will also consider the function K_{F} defined by

$$
K_{F}(t, \tau)=\operatorname{Re}\left[\overline{(F(t)-F(\tau))} \cdot i F^{\prime}(\tau)\right]
$$

It is easy to see that

$$
\begin{equation*}
K_{F}(t, \tau)=f^{\prime}(\tau) K(f(t), f(\tau)) \tag{2.4}
\end{equation*}
$$

Lemma 2.1. [12] If $w=P[F]$ is a harmonic mapping, such that F is a Lipschitz homeomorphism from the unit circle onto a Jordan curve of the class $C^{1, \alpha}(0<\alpha<1)$, then for almost every $\tau \in[0,2 \pi]$ there exists

$$
J_{w}\left(e^{i \tau}\right):=\lim _{r \rightarrow 1^{-}} J_{w}\left(r e^{i \tau}\right)
$$

and there hold the formula

Kalaj, Sakan

$$
\begin{equation*}
J_{w}\left(e^{i \tau}\right)=f^{\prime}(\tau) \int_{0}^{2 \pi} \frac{\operatorname{Re}\left[\overline{(g(f(t))-g(f(\tau)))} \cdot i g^{\prime}(f(\tau))\right]}{2 \sin ^{2} \frac{t-\tau}{2}} d t \tag{2.5}
\end{equation*}
$$

Lemma 2.2. If $\varphi: \mathbf{R} \rightarrow \mathbf{R}$ is a (ℓ, \mathcal{L}) bi-Lipschitz mapping, such that $\varphi(x+a)=$ $\varphi(x)+b$ for some a and b and every x, then there exists a sequence of (ℓ, \mathcal{L}) bi-Lipschitz diffeomorphisms (respectively a sequence of diffeomorphisms) $\varphi_{n}: \mathbf{R} \rightarrow \mathbf{R}$ such that φ_{n} converges uniformly to φ, and $\varphi_{n}(x+a)=\varphi_{n}(x)+b$.

Proof. We introduce appropriate mollifiers: Fix a smooth function $\rho: \mathbb{R} \rightarrow[0,1]$ which is compactly supported in the interval $(-1,1)$ and satisfies $\int_{\mathbb{R}} \rho=1$. For $\varepsilon=1 / n$ consider the mollifier

$$
\begin{equation*}
\rho_{\varepsilon}(t):=\frac{1}{\varepsilon} \rho\left(\frac{t}{\varepsilon}\right) . \tag{2.6}
\end{equation*}
$$

It is compactly supported in the interval $(-\varepsilon, \varepsilon)$ and satisfies $\int_{\mathbb{R}} \rho_{\varepsilon}=1$. Define

$$
\varphi_{\varepsilon}(x)=\varphi * \rho_{\varepsilon}=\int_{\mathbf{R}} \varphi(y) \frac{1}{\varepsilon} \rho\left(\frac{x-y}{\varepsilon}\right) d y=\int_{\mathbf{R}} \varphi(x-\varepsilon z) \rho(z) d z
$$

then

$$
\varphi_{\varepsilon}^{\prime}(x)=\int_{\mathbf{R}} \varphi^{\prime}(x-\varepsilon z) \rho(z) d z
$$

It follows that

$$
\ell \int_{\mathbf{R}} \rho(z) d z=\ell \leq\left|\varphi_{\varepsilon}^{\prime}(x)\right| \leq \mathcal{L} \int_{\mathbf{R}} \rho(z) d z=\mathcal{L}
$$

The fact that $\varphi_{\varepsilon}(x)$ converges uniformly to φ follows by Arzela-Ascoli theorem.

Lemma 2.3. For every bi-Lipschitz mapping $\phi:[0, \pi] \rightarrow[0, \pi], \phi^{\prime}(0)=\phi^{\prime}(\pi)$ we have

$$
\operatorname{ess} \inf \left(\phi^{\prime}(x)\right)^{2} \leq \frac{\sin ^{2} \phi(x)}{\sin ^{2} x} \leq \operatorname{ess} \sup \left(\phi^{\prime}(x)\right)^{2}
$$

Proof. Assume first that, ϕ is a diffeomorphism such that $\phi^{\prime}(0)=\phi^{\prime}(\pi)$. Let

$$
h(x)=\frac{\sin \phi(x)}{\sin x}
$$

Then h is differentiable in $[0, \pi]$. The stationary points of h satisfy the equation

$$
\phi^{\prime} \frac{\cos \phi(x)}{\sin x}-\frac{\cos x}{\sin x} h=0
$$

Therefore

$$
h^{2}(x)=\left(\phi^{\prime}(x)\right)^{2} \cos ^{2} \phi(x)+\sin ^{2} \phi(x) .
$$

Since

$$
\phi(2 \pi)-\phi(0)=\int_{0}^{2 \pi} \phi^{\prime}(x) d x
$$

we have that $\min _{x}\left(\phi^{\prime}(x)\right) \leq 1 \leq \max _{x}\left(\phi^{\prime}(x)\right)$. It follows that

$$
\min _{x}\left(\phi^{\prime}(x)\right)^{2} \leq h^{2}(x) \leq \max _{x}\left(\phi^{\prime}(x)\right)^{2}
$$

The general case follows from Lemma 2.2.

Quasiconformal harmonic mappings onto a convex domain revisited

3. The proof of Theorem 1.1

We begin by the following lemma
Lemma 3.1. Let γ be a C^{2} strictly convex Jordan curve and let F be an arbitrary parametrization. Let $m=\min _{\tau \in[0,2 \pi]}\left|F^{\prime}(\tau)\right|$ and $M=\max _{\tau \in[0,2 \pi]}\left|F^{\prime}(\tau)\right|$. Then we have the following double inequalities:

$$
\begin{equation*}
\frac{\kappa_{0}^{2}}{\kappa_{1}} \leq \frac{K(t, \tau)}{2 \sin ^{2} \frac{\tau-t}{2}} \leq \frac{\kappa_{1}^{2}}{\kappa_{0}} \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\kappa_{0}^{2}}{\kappa_{1}} m^{3} \leq \frac{K_{F}(t, \tau)}{2 \sin ^{2} \frac{\tau-t}{2}} \leq \frac{\kappa_{1}^{2}}{\kappa_{0}} M^{3} \tag{3.2}
\end{equation*}
$$

where K and K_{F} are defined in (2.1) and (2.4). If γ is in addition a symmetric Jordan curve then we have the better estimates

$$
\begin{equation*}
\kappa_{0} \leq \frac{K(t, \tau)}{2 \sin ^{2} \frac{\tau-t}{2}} \leq \kappa_{1} \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\kappa_{0} m^{3} \leq \frac{K_{F}(t, \tau)}{2 \sin ^{2} \frac{\tau-t}{2}} \leq \kappa_{1} M^{3} \tag{3.4}
\end{equation*}
$$

Proof. Let \tilde{g} be a arch length parametrization function of the curve $\tilde{\gamma}=\frac{1}{|\gamma|} \gamma$, where $|\gamma|$ is the length of γ. Let $\tilde{\kappa}_{0}=\min _{z \in \tilde{\gamma}} \tilde{\kappa}_{z}$ and $\tilde{\kappa}_{1}=\max _{z \in \tilde{\gamma}} \tilde{\kappa}_{z}$, where $\tilde{\kappa}_{z}$ is the curvature of $\tilde{\gamma}$ at z. It is clear that

$$
\begin{equation*}
|\gamma| \kappa_{|\gamma| z}=\tilde{\kappa}_{z} \tag{3.5}
\end{equation*}
$$

Let

$$
G(\sigma, \varsigma):=\frac{\left\langle\tilde{g}(\sigma)-\tilde{g}(\varsigma), i \tilde{g}^{\prime}(\varsigma)\right\rangle}{2 \sin ^{2} \frac{\sigma-\varsigma}{2}}
$$

Since $\tilde{g}^{\prime}(\varsigma)$ is a unit vector and γ is a C^{2} strictly convex curve, there exists a diffeomor$\operatorname{phism} \beta: \mathbb{R} \rightarrow \mathbb{R}, \beta(0)=0, \beta(2 \pi+\sigma)=2 \pi+\beta(\sigma)$ such that

$$
\begin{equation*}
\tilde{g}^{\prime}(\sigma)=e^{i \beta(\sigma)} \tag{3.6}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
G(\sigma, \varsigma)=\frac{\int_{\varsigma}^{\sigma} \sin (\beta(\tau)-\beta(\varsigma)) d \tau}{2 \sin ^{2} \frac{\sigma-\varsigma}{2}} \tag{3.7}
\end{equation*}
$$

On the other hand from

$$
\tilde{g}^{\prime \prime}(\tau)=i \beta^{\prime}(\tau) e^{i \beta(\tau)}
$$

it follows that

$$
\begin{equation*}
\kappa_{\tilde{g}(\tau)}=\beta^{\prime}(\tau) \tag{3.8}
\end{equation*}
$$

According to (3.6), we obtain first that

$$
\begin{equation*}
\int_{0}^{2 \pi} e^{i \beta(\sigma)} d \sigma=\tilde{g}(0)-\tilde{g}(2 \pi)=0 \tag{3.9}
\end{equation*}
$$

Kalaj, Sakan

Thus

$$
\begin{equation*}
\int_{0}^{2 \pi} \sin (\beta(\sigma)) d \sigma=\int_{0}^{2 \pi} \cos (\beta(\sigma)) d \sigma=0 \tag{3.10}
\end{equation*}
$$

Therefore

$$
\int_{\varsigma}^{\sigma} \sin (\beta(\tau)-\beta(\varsigma)) d \tau=\int_{[0,2 \pi] \backslash[\varsigma, \sigma]} \sin (\beta(\varsigma)-\beta(\tau)) d \tau
$$

As β is a diffeomorphism it follows that at least one of the following relations hold

$$
\begin{equation*}
\sin (\beta(\tau)-\beta(\varsigma)) \geq 0 \text { for } \tau \in[\varsigma, \sigma] \tag{3.11}
\end{equation*}
$$

or

$$
\begin{equation*}
\sin (\beta(\varsigma)-\beta(\tau)) \geq 0 \text { for } \tau \in[0,2 \pi] \backslash[\varsigma, \sigma] \tag{3.12}
\end{equation*}
$$

Introducing the change $a=\beta(\tau)$ we obtain in the case (3.11) that

$$
\begin{align*}
\int_{\varsigma}^{\sigma} \sin (\beta(\tau)-\beta(\varsigma)) d \tau & =\int_{\beta(\varsigma)}^{\beta(\sigma)} \sin (a-\beta(\varsigma)) \frac{d a}{\beta^{\prime}(\tau)} \\
& \geq(\leq) \frac{1}{\max _{\tau}\left(\min _{\tau}\right) \beta^{\prime}(\tau)} \int_{\beta(\varsigma)}^{\beta(\sigma)} \sin (a-\beta(\varsigma)) d a \tag{3.13}\\
& =\frac{2}{\max _{\tau}\left(\min _{\tau}\right) \beta^{\prime}(\tau)} \sin ^{2}\left(\frac{\beta(\sigma)-\beta(\varsigma)}{2}\right)
\end{align*}
$$

Therefore

$$
\begin{equation*}
\frac{1}{\max _{\tau} \beta^{\prime}(\tau)} \frac{\sin ^{2}\left(\frac{\beta(\sigma)-\beta(\varsigma)}{2}\right)}{\sin ^{2} \frac{\sigma-\varsigma}{2}} \leq G(\sigma, \varsigma) \leq \frac{1}{\min _{\tau} \beta^{\prime}(\tau)} \frac{\sin ^{2}\left(\frac{\beta(\sigma)-\beta(\varsigma)}{2}\right)}{\sin ^{2} \frac{\sigma-\varsigma}{2}} \tag{3.14}
\end{equation*}
$$

The case (3.12) can be consider similarly. In this case we apply the fact that $\beta(2 \pi+\sigma)=$ $2 \pi+\beta(\sigma)$ and in the same way obtain (3.14).

By taking $u=\frac{\sigma-\varsigma}{2}$ and $\phi(u)=\frac{\beta(2 u+\varsigma)-\beta(\varsigma)}{2}$, and using Lemma 2.3 we obtain that

$$
\begin{equation*}
\frac{\left(\min _{\tau} \beta^{\prime}(\tau)\right)^{2}}{\max _{\tau} \beta^{\prime}(\tau)} \leq G(\sigma, \varsigma) \leq \frac{\left(\max _{\tau} \beta^{\prime}(\tau)\right)^{2}}{\min _{\tau} \beta^{\prime}(\tau)} \tag{3.15}
\end{equation*}
$$

From (3.15) we obtain

$$
\begin{equation*}
\frac{\tilde{\kappa}_{0}^{2}}{\tilde{\kappa}_{1}} \leq G(\sigma, \varsigma) \leq \frac{\tilde{\kappa}_{1}^{2}}{\tilde{\kappa}_{0}} \tag{3.16}
\end{equation*}
$$

On the other hand there exists a diffeomorphism $\sigma:[0,2 \pi] \rightarrow[0,2 \pi]$ such that

$$
F(\tau)=|\gamma| \tilde{g}(\sigma(\tau))
$$

Thus

$$
\begin{equation*}
F^{\prime}(\tau)=|\gamma| \sigma^{\prime}(\tau) g^{\prime}(\sigma(\tau)) \tag{3.17}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|F^{\prime}(\tau)\right|=|\gamma| \sigma^{\prime}(\tau) \tag{3.18}
\end{equation*}
$$

Quasiconformal harmonic mappings onto a convex domain revisited

Thus

$$
\begin{align*}
K_{F}(t, \tau) & =\left\langle\overline{F(t)-F(\tau)}, i F^{\prime}(\tau)\right\rangle \\
& =|\gamma|^{2} \sigma^{\prime}(\tau)\left\langle\overline{\tilde{g}(\sigma(\tau))-\tilde{g}(\sigma(t))}, i \tilde{g}^{\prime}(\sigma(\tau))\right\rangle \tag{3.19}\\
& =|\gamma|^{2} \sigma^{\prime}(\tau) G(\sigma(t), \sigma(\tau)) \cdot 2 \sin ^{2} \frac{\sigma(\tau)-\sigma(t)}{2}
\end{align*}
$$

By applying again Lemma 2.3 we obtain

$$
\begin{equation*}
\min _{t}\left(\sigma^{\prime}(t)\right)^{2} \leq \frac{2 \sin ^{2} \frac{\sigma(\tau)-\sigma(t)}{2}}{2 \sin ^{2} \frac{\tau-t}{2}} \leq \max _{t}\left(\sigma^{\prime}(t)\right)^{2} \tag{3.20}
\end{equation*}
$$

Combining (3.16), (3.19) and (3.20) we obtain

$$
\begin{equation*}
\min _{t}\left(\sigma^{\prime}(t)\right)^{2} \frac{|\gamma|^{2} \sigma^{\prime}(t) \tilde{\kappa}_{0}^{2}}{\tilde{\kappa}_{1}} \leq \frac{K_{F}(t, \tau)}{2 \sin ^{2} \frac{\tau-t}{2}} \leq \max _{t}\left(\sigma^{\prime}(t)\right)^{2} \frac{|\gamma|^{2} \sigma^{\prime}(t) \tilde{\kappa}_{1}^{2}}{\tilde{\kappa}_{0}} \tag{3.21}
\end{equation*}
$$

Combining (3.21), (3.5) and (3.18) we obtain

$$
\frac{\kappa_{0}^{2} m^{3}}{\kappa_{1}} \leq \frac{K_{F}(t, \tau)}{2 \sin ^{2} \frac{\tau-t}{2}} \leq \frac{\kappa_{1}^{2} M^{3}}{\kappa_{0}}
$$

This yields (3.2). In particular, if $F=g$, where g is natural parametrization of γ we obtain (3.1). In order to prove the statement for symmetric domain, we differentiate (3.7). Then we have

$$
\begin{equation*}
G_{\sigma}(\sigma, \varsigma)=\frac{\sin (\beta(\sigma)-\beta(\varsigma))}{2 \sin ^{2} \frac{\sigma-\varsigma}{2}}-\frac{\int_{\varsigma}^{\sigma} \sin (\beta(\tau)-\beta(\varsigma)) d \tau}{2 \sin ^{2} \frac{\sigma-\varsigma}{2}} \cdot \cot \frac{\sigma-\varsigma}{2} \tag{3.22}
\end{equation*}
$$

So $G_{\sigma}(\tilde{\sigma}, \tilde{\varsigma})=0$ if and only if

$$
G(\tilde{\sigma}, \tilde{\varsigma})=\frac{\sin (\beta(\tilde{\sigma})-\beta(\tilde{\varsigma}))}{\sin (\tilde{\sigma}-\tilde{\varsigma})}
$$

Define the function

$$
H(\sigma, \varsigma)=\frac{\sin (\beta(\sigma)-\beta(\varsigma))}{\sin (\sigma-\varsigma)}, 0<|\sigma-\varsigma| \neq \pi
$$

Then it can be extended in $[0,2 \pi] \times[0,2 \pi]$ because of symmetry of γ. Namely if $\sigma-\varsigma=\pi$, we have $\beta(\sigma)-\beta(\varsigma)=\pi$. Thus by L'Hopital's rule we have $H(\sigma, \sigma+\pi)=\beta^{\prime}(\sigma)=$ $H(\sigma, \sigma)$. By putting $x=\sigma-\varsigma \in[0, \pi]$ and $\phi(x)=\beta(x+\varsigma)-\beta(\varsigma)$ and applying Lemma (2.3), instead of (3.16) we obtain

$$
\begin{equation*}
\tilde{\kappa}_{0} \leq H(\sigma, \varsigma) \leq \tilde{\kappa}_{1}, \tag{3.23}
\end{equation*}
$$

and consequently

$$
\begin{equation*}
\tilde{\kappa}_{0} \leq G(\sigma, \varsigma) \leq \tilde{\kappa}_{1} \tag{3.24}
\end{equation*}
$$

By repeating the previous proof we obtain (3.3) and (3.4).
From Lemma 3.1 it follows at once the following theorem.
Theorem 3.2. If $w=P[F]$ is a harmonic diffeomorphism of the unit disk onto a (symmetric) convex Jordan domain $D=\operatorname{int} \gamma \in C^{2}$, such that F is (m, M) bi-Lipschitz, then

$$
\begin{equation*}
\left(\kappa_{0} m^{3} \leq J_{w}\left(e^{i \tau}\right) \leq \kappa_{1} M^{3}\right), \frac{\kappa_{0}^{2} m^{3}}{\kappa_{1}} \leq J_{w}\left(e^{i \tau}\right) \leq \frac{\kappa_{1}^{2} M^{3}}{\kappa_{0}} \tag{3.25}
\end{equation*}
$$

Kalaj, Sakan

Proof. From (2.5) we obtain

$$
\begin{equation*}
J_{w}\left(e^{i \tau}\right)=\int_{0}^{2 \pi} \frac{K_{F}(t, \tau)}{2 \sin ^{2} \frac{\tau-t}{2}} \frac{d t}{2 \pi} \tag{3.26}
\end{equation*}
$$

From (3.2) and (3.4) we obtain (3.25).
Proof of Theorem 1.1. The part (I) of this theorem coincides with [11, Theorem 3.1]. Prove the part (II). We have to prove that under the conditions (1.6), (1.7) and (1.8) w is K - quasiconformal, where K is given by (1.9). This means that, according to (1.3), we need to prove that the function

$$
\begin{equation*}
K(z)=\frac{\left|w_{z}\right|+\left|w_{\bar{z}}\right|}{\left|w_{z}\right|-\left|w_{\bar{z}}\right|}=\frac{1+|\mu|}{1-|\mu|} \tag{3.27}
\end{equation*}
$$

is bounded by K.
It follows from (1.1) that w_{φ} is equals to the Poisson-Stieltjes integral of F^{\prime} :

$$
w_{\varphi}\left(r e^{i \tau}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} P(r, \tau-t) d F(t)
$$

Hence, by Fatou's theorem, the radial limits of F_{τ} exist almost everywhere and $\lim _{r \rightarrow 1-} F_{\tau}\left(r e^{i \tau}\right)=$ $F_{0}^{\prime}(\tau)$ a.e., where F_{0} is the absolutely continuous part of F.

As $r w_{r}$ is harmonic conjugate of w_{τ}, it turns out that if F is absolutely continuous, then

$$
\lim _{r \rightarrow 1-} F_{r}\left(r e^{i \tau}\right)=H\left(F^{\prime}\right)(\tau)(\text { a.e. })
$$

and

$$
\lim _{r \rightarrow 1-} F_{\varphi}\left(r e^{i \tau}\right)=F^{\prime}(\tau)
$$

As

$$
\left|w_{z}\right|^{2}+\left|w_{\bar{z}}\right|^{2}=\frac{1}{2}\left(\left|w_{r}\right|^{2}+\frac{\left|w_{\varphi}\right|^{2}}{r^{2}}\right)
$$

it follows that

$$
\begin{equation*}
\lim _{r \rightarrow 1^{-}}\left(\left|w_{z}\right|^{2}+\left|w_{\bar{z}}\right|^{2}\right) \leq \frac{1}{2}\left(\left\|F^{\prime}\right\|_{\infty}^{2}+\left\|H\left(F^{\prime}\right)\right\|_{\infty}^{2}\right) \tag{3.28}
\end{equation*}
$$

On the other hand, by (3.25)

$$
\begin{equation*}
\lim _{r \rightarrow 1^{-}}\left(\left|w_{z}\right|^{2}-\left|w_{\bar{z}}\right|^{2}\right) \geq \frac{\kappa_{0}^{2} m^{3}}{\kappa_{1}} \tag{3.29}
\end{equation*}
$$

From (3.28) and (3.29) we obtain

$$
\begin{equation*}
\lim _{r \rightarrow 1-} \frac{\left|w_{z}\right|^{2}+\left|w_{\bar{z}}\right|^{2}}{\left|w_{z}\right|^{2}-\left|w_{\bar{z}}\right|^{2}} \leq C:=\frac{\kappa_{1}\left(\left\|F^{\prime}\right\|_{\infty}^{2}+\left\|H\left(F^{\prime}\right)\right\|_{\infty}^{2}\right)}{2 \kappa_{0}^{2} m^{3}} \tag{3.30}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
\lim _{r \rightarrow 1-} \frac{\left|w_{\bar{z}}\right|}{\left|w_{z}\right|} \leq \sqrt{\frac{C-1}{C+1}} \tag{3.31}
\end{equation*}
$$

By Lewy' theorem, $\frac{\left|w_{z}\right|}{\left|w_{z}\right|}$ is a subharmonic function bounded by 1. From (3.31) it follows that

$$
\frac{\left|w_{\bar{z}}\right|}{\left|w_{z}\right|} \leq \sqrt{\frac{C-1}{C+1}} .
$$

Quasiconformal harmonic mappings onto a convex domain revisited

Further

$$
\begin{aligned}
K & =\frac{\sqrt{C+1}+\sqrt{C-1}}{\sqrt{C+1}-\sqrt{C-1}}=C+\sqrt{C^{2}-1} \\
& =\frac{\kappa_{1}\left(\left\|F^{\prime}\right\|_{\infty}^{2}+\left\|H\left(F^{\prime}\right)\right\|_{\infty}^{2}\right)+\sqrt{\left(\kappa_{1}\left(\left\|F^{\prime}\right\|_{\infty}^{2}+\left\|H\left(F^{\prime}\right)\right\|_{\infty}^{2}\right)\right)^{2}-\left(2 \kappa_{0}^{2} m^{3}\right)^{2}}}{2 \kappa_{0}^{2} m^{3}}
\end{aligned}
$$

The last quantity is equal to 1 for F being identity because all the constants appearing at the quantity are 1 in this special case. Moreover, if F is close to identity in C^{2} norm, then the quantity is close to 1 .

Remark 3.3. For symmetric domains, in view of Theorem 3.2, instead of (1.9) we can obtain the following estimate

$$
K \leq \frac{\left\|F^{\prime}\right\|_{\infty}^{2}+\left\|H\left(F^{\prime}\right)\right\|_{\infty}^{2}+\sqrt{\left(\left\|F^{\prime}\right\|_{\infty}^{2}+\left\|H\left(F^{\prime}\right)\right\|_{\infty}^{2}\right)^{2}-\left(2 \kappa_{0} m^{3}\right)^{2}}}{2 \kappa_{0} m^{3}}
$$

Example 3.4. If F is the arc-parametrization of a C^{2} convex Jordan curve γ, then $m=$ $\left\|F^{\prime}\right\|_{\infty}=1$. We assume w.l.g. that the length of γ is 2π. Furthermore since $F^{\prime}(s)=$ $e^{i \beta(s)}$, by applying Lemma 2.3 again we obtain

$$
\begin{aligned}
\left|H\left[F^{\prime}\right](\tau)\right| & =\left|-\frac{1}{\pi} \int_{0^{+}}^{\pi} \frac{F^{\prime}(\tau+t)-F^{\prime}(\tau-t)}{2 \tan (t / 2)} \mathrm{d} t\right| \\
& \leq \frac{1}{\pi} \int_{0^{+}}^{\pi} \frac{\left|e^{i \beta(\tau+t)}-e^{i \beta(\tau-t)}\right|}{2 \tan (t / 2)} \mathrm{d} t \\
& =\frac{1}{\pi} \int_{0^{+}}^{\pi} \frac{2\left|\sin \left(\frac{\beta(\tau+t)-\beta(\tau-t)}{2}\right)\right|}{2 \tan (t / 2)} \mathrm{d} t \\
& \leq \sup \left|F^{\prime \prime}(s)\right| \frac{1}{\pi} \int_{0}^{\pi} \frac{\sin t}{\tan (t / 2)} d t=\kappa_{1}
\end{aligned}
$$

So

$$
K \leq \frac{\kappa_{1}\left(1+\kappa_{1}^{2}\right)+\sqrt{\left(\kappa_{1}\left(1+\kappa_{1}^{2}\right)\right)^{2}-4 \kappa_{0}^{4}}}{2 \kappa_{0}^{2}}
$$

and for symmetric domains

$$
K \leq \frac{1+\kappa_{1}^{2}+\sqrt{\left(1+\kappa_{1}^{2}\right)^{2}-4 \kappa_{0}^{2}}}{2 \kappa_{0}}
$$

If γ is the unit circle, then $\kappa_{0}=1=\kappa_{1}$. Both estimates are asymptotically sharp; if the curve γ approaches in C^{2} topology to the unit circle centered at origin, then the quasiconformal constant tends to 1 .

In particular if γ is the ellipse $\gamma=\left\{(x, y): x^{2} / a^{2}+y^{2} / b^{2}=1\right\}, a \leq b,|\gamma|=2 \pi$, then $\kappa_{0}=1 / b$ and $\kappa_{1}=1 / a$.

REFERENCES

[1] L. Ahlfors: Lectures on Quasiconformal mappings, Van Nostrand Mathematical Studies, D. Van Nostrand 1966.
[2] G. Alessandrini, V. Nesi: Invertible harmonic mappings, beyond Kneser. Ann. Scuola Norm. Sup. Pisa, Cl. Sci. (5) VIII (2009), 451-468.
[3] G. Alessandrini, V. Nesi: Univalent σ-harmonic mappings. (English summary) Arch. Ration. Mech. Anal. 158 (2001), no. 2, 155-171.
[4] Sheldon Axler, Paul Bourdon, Wade Ramey, Harmonic function theory, Springer Verlag New York 1992.

Kalaj, Sakan

[5] W. Hengartner and G. Schober: Harmonic mappings with given dilatation. J. London Math. Soc. (2) 33 (1986), no. 3, 473-483.
[6] J. Garnett: Bounded analytic functions. Pure and Applied Mathematics, 96. Academic Press, Inc., New YorkLondon, 1981. xvi+467 pp.
[7] J. Jost: Univalency of harmonic mappings between surfaces. J. Reine Angew. Math. 324 (1981), 141-153.
[8] D. Kalaj, M. Pavlovic: On quasiconformal self-mappings of the unit disk satisfying the Poisson equation, Trans. Amer. Math. Soc. 363 (2011) 4043-4061.
[9] D. Kalaj, M. Pavlovic: Boundary correspondence under harmonic quasiconformal homeomorfisms of a halfplane. Ann. Acad. Sci. Fenn., Math. 30:1 (2005), 159-165.
[10] D. Kalaj, M. Mateljević: Inner estimate and quasiconformal harmonic maps between smooth domains. Journal d'Analise Math. 100 (2006), 117-132.
[11] D. Kalaj: Quasiconformal harmonic mapping between Jordan domains Math. Z. 260:2 (2008), 237-252.
[12] ___ : Invertible harmonic mappings beyond the Kneser theorem and quasiconformal harmonic mappings. Stud. Math. 207, 117-136 (2011).
[13] __ : Harmonic quasiconformal mappings and Lipschitz spaces. Ann. Acad. Sci. Fenn., Math. 34:2 (2009), 475-485.
\qquad : On quasiregular mappings between smooth Jordan domains, Journal of Mathematical Analysis and Applications, 362:1 (2010), 58-63.
[15] : Quasiconformal harmonic functions between convex domains, Publ. Inst. Math., Nouv. Ser. 76(90), 3-20 (2004).
[16] _ Harmonic mappings and distance function, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 10, No. 3, 669-681 (2011).
[17] M. Kneževic, M. Mateljević: On the quasi-isometries of harmonic quasiconformal mappings. Journal of Mathematical Analysis and Applications, 334: 1 (2007), 404-413.
[18] H. Kneser: Lösung der Aufgabe 41, Jahresber. Deutsch. Math.-Verein. 35 (1926) 123-124.
[19] O. Kellogg: Harmonic functions and Green's integral. Trans. Amer. Math. Soc. 13 (1912), 109-132.
[20] H. Lewy: On the non-vanishing of the Jacobian in certain in one-to-one mappings. Bull. Amer. Math. Soc. 42 (1936), 689-692.
[21] F. D. Lesley; S. E. Warschawski: Boundary behavior of the Riemann mapping function of asymptotically conformal curves. Math. Z. 179 (1982), 299-323.
[22] V. Manojlović: Bi-lipshicity of quasiconformal harmonic mappings in the plane, Filomat 23:1 (2009), 8589.
[23] O. Martio: On harmonic quasiconformal mappings, Ann. Acad. Sci. Fenn., Ser. A I 425 (1968), 3-10.
[24] M. Mateljević and M. Vuorinen: On harmonic quasiconformal quasi-isometries. Journal of Inequalities and Applications,Volume 2010, Article ID 178732, 19 pages doi:10.1155/2010/1787;
[25] C. Pommerenke: Univalent functions. Vanderhoeck \& Riprecht, 1975.
[26] D. Partyka and K. Sakan: On bi-Lipschitz type inequalities for quasiconformal harmonic mappings. Ann. Acad. Sci. Fenn. Math. Vol 32 (2007), 579-594.
[27] M. Pavlović: Boundary correspondence under harmonic quasiconformal homeomorfisms of the unit disc. Ann. Acad. Sci. Fenn., Vol 27 (2002) 365-372.
[28] M. Pavlović: Introduction to function spaces on the disk. 20. Matematički Institut SANU, Belgrade, 2004. vi+184 pp.
[29] S. E. Warschawski: On Differentiability at the Boundary in Conformal Mapping. Proceedings of the American Mathematical Society, 12:4 (1961), 614-620.
[30] A. Weil: L’ Intégration dans les groupes topologiques et ses applications, Actualités Sci et. Ind. 869, 1145, Hermann et Cie, 1941 and 1951.
[31] A. Zygmund: Trigonometric Series I. Cambrige University Press, 1958.
[32] Peter L. Duren. Theorey of H^{p} Spaces. Academic Press New York 1970.

