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Abstract. Dimensions of spaces of multivariate splines remain unknown in

general. A computational method to obtain explicit formulas for the dimension
of spline spaces on simplicial partitions is described. The method is based

on Hilbert series and Hilbert polynomials. It is applied to conjecture the

dimension formulas for splines on the Alfeld split of a simplex and on several
other partitions.

1. Introduction

Let ∆n denote a simplicial partition of a polyhedral domain Ω ⊆ Rn, so that
if any two simplices in ∆n intersect, then their intersection is a facet of ∆n. The
space of Cr splines of degree ≤ d in n variables on ∆n is

Srd(∆n) :=
{
s ∈ Cr(Ω) : s|T ∈ Pd,n for each simplex T ∈ ∆n

}
,

where Pd,n is the space of polynomials of degree ≤ d in n variables.
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We are interested in the dimension of the space Srd(∆n). For fixed d and r,
determining a closed formula for arbitrary partitions is still a major open problem,
even in the bivariate case, see [9]. In this case, it is known [9, p. 240] that if ∆2 is
a shellable (regular with no holes) triangulation, then

(1) dimSrd(∆2) ≥
(
d+ 2

2

)
+EI

(
d+ 1− r

2

)
−VI

[(
d+ 2

2

)
−
(
r + 2

2

)]
+
∑
v∈VI

σv,

where EI is the number of interior edges, VI is the number of interior vertices, VI
is the set of interior vertices of ∆2, and

σv :=

d−r∑
j=1

max{r + j + 1− jmv, 0},

where mv = number of different edge slopes meeting at v.
The right-hand side of (1) is the correct expression for the dimension if d ≥ 3r+1,

see [9, p.247 and p.273]. Not much is known for d ≤ 3r, and it is somewhat stag-
gering that the dimensions of S1

3 (∆2) and of S1
2 (∆2) remain uncertain in general.

Let us point out that the right-hand side of inequality (1) can be rewritten as a
linear combination of binomial coefficients – a form that is favored in this paper:

dimSrd(∆2) ≥
(
d+ 2

2

)
+ (EI − 3VI)

(
d+ 1− r

2

)
+ VI

(
d+ 1− µ

2

)
+ VI

(
d+ 1− ν

2

)
+
(

3VI −
∑
v∈VI

mv

)(µ+ 1− r
2

)
,

where

µ := r +
⌊r + 1

2

⌋
, ν := r +

⌈r + 1

2

⌉
.

In the case of a cell C2 – a triangulation with one interior vertex v – it is known
that the lower bound is the correct dimension, namely

dimSrd(C2) =

(
d+ 2

2

)
+ (EI − 3)

(
d+ 1− r

2

)
+

(
d+ 1− µ

2

)
+

(
d+ 1− ν

2

)
+ (3−m)

(
µ+ 1− r

2

)
,

where m ≤ EI is the number of different slopes of the EI interior edges meeting at v.
In fact, the formula for the cell is the basis of the argument used to derive (1). This
example demonstrates that the dimension depends not only on the combinatorics
of ∆n – number of vertices, edges, and other faces – but also on its exact geometry.
The point of view adopted in this paper consists in fixing the partition and looking
for dimension formulas valid for all d, r, and possibly n. The main experimental
result, namely Conjecture 1, concerns the spline spaces on the Alfeld split of a single
simplex. This split is a generalization of the Clough–Tocher split of a triangle to
higher spacial dimensions. The Clough–Tocher split of a triangle has one interior
vertex, three interior edges, and three subtriangles. The split of a tetrahedron with
one interior vertex, four interior edges, six interior faces, and four subtetrahedra
was introduced in [2]. We shall refer to the split of a simplex in Rn with

(
n+1
k

)
interior k-dimensional faces, 0 ≤ k ≤ n, as the Alfeld split An. The following is our
conjecture on the dimension.
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Conjecture 1. The dimension of the space Srd(An) of splines of degree ≤ d in n
variables over the Alfeld split An of a simplex is given by

dimSr
d(An) =

(
d+ n

n

)
+


n

(
d+ n− r+1

2
(n+ 1)

n

)
, if r is odd,(

d+ n− 1− r
2
(n+ 1)

n

)
+ · · ·+

(
d− r

2
(n+ 1)

n

)
, if r is even.

This formula was obtained using the computational method that we introduce in
Section 2. In Section 3, we describe the steps leading to Conjecture 1, and report
without details other formulas obtained via this method for several tetrahedral
partitions. In Section 4, we discuss the potential of the method.

2. The computational method

In this section, we show how to derive an explicit formula for the dimension of
Srd(∆n), in the form of a linear combination of binomial coefficients, using computed
values of this dimension for a finite number of parameters r and d. We first show
why the sequence {dimSrd(∆n)}d≥0 depends only on a finite number of its values.

Let us for now fix the number n of variables, the simplicial partition ∆n, and the
smoothness parameter r. It is well-known that the dimension of Srd(∆n) agrees with
a polynomial of degree n in variable d when d is sufficiently large. This polynomial
is called the Hilbert polynomial, and it is denoted by H := H∆n,r throughout this
paper.

We denote by d? := d?∆n,r
the smallest integer such that

dimSrd(∆n) = H(d) for all d ≥ d?.

The sequence {dimSrd(∆n)}d≥0 is determined by its first d? +n+ 1 values. Indeed,
the terms

{dimSrd(∆n), d? ≤ d ≤ d? + n}
define {dimSrd(∆n)}d≥d? by interpolation of the Hilbert polynomial, while the val-
ues

{dimSrd(∆n), 0 ≤ d ≤ d? − 1}
complete the first d? terms of the sequence. The estimation of d? remains a key
question. Our method incorporates the widely accepted assumption that

(2) d?∆n,r≤r2
n + 1.

This is suggested by the technique of partitioning the minimal determining set
into non-overlapping subsets associated with each face, see [4]. Moreover, for the
subspace of Srd(∆n) imposing additional (or super) smoothness r2n−j−1 across ev-
ery j-dimensional face of ∆n, it was shown in [5] that the dimension is indeed a
polynomial in d for d ≥ r2n + 1. The bound (2) is likely to be an overestimation,
though. The examples of Section 3 and the improved bound d?∆2,r

≤ 3r+2 obtained

in [8] for shellable triangulations supports this belief. Reducing the bound would
reduce the number of dimension values to be computed. Since splines with degrees
not exceeding smoothness are simply polynomials, we have

dimSrd(∆n) =

(
d+ n

n

)
for d ≤ r.
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Thus, assuming (2), only the r(2n− 1) +n+ 1 values {dimSrd(∆n), r+ 1 ≤ d ≤
r2n + n+ 1} are left to be computed. An additional saving can be made by using
the values for smaller degrees, since we have[

dimSrd(∆n) = dimPd,n =
(d + n

n

)]
=⇒

[
dimSrk(∆n) = dimPk,n =

(k + n

n

)
for k ≤ d

]
.

Assuming that computing dimSrd(∆n) is possible for any d ≥ 0, the above de-
scribed method gives us access to the whole sequence {dimSrd(∆n)}d≥0. To obtain
an explicit formula, we rely on the concept of Hilbert series, i.e., the generating
function of the sequence {dimSrd(∆n)}d≥0. According to [6, Theorem 2.8], it sat-
isfies

(3)
∑
d≥0

dimSrd(∆n) zd =
P (z)

(1− z)n+1
,

for some polynomial P := P∆n,r with integer coefficients. Denoting these coeffi-
cients by ak = ak,∆n,r, and denoting the degree of P by k? = k?∆n,r

, that is,

P (z) =

k?∑
k=0

akz
k, ak? 6= 0,

two further particulars are established in [6, Theorem 4.5]:

(4) P (1) =

k?∑
k=0

ak = N, P ′(1) =

k?∑
k=0

kak = (r + 1)F int,

where N and F int represent the number of simplices and interior facets of ∆n,
respectively. In the particular case when ∆n is a single simplex, the space Srd(∆n)
is just the space Pd,n of polynomials of degree d in n variables. Then it can be seen
that P = 1 from the identity

(5)
∑
d≥0

(
d+ n

n

)
zd =

1

(1− z)n+1
.

This identity is clear for n = 0 and is inductively obtained by successive differen-
tiations with respect to z for n ≥ 1. While the derivation of the polynomial P from
the dimensions dimSrd(∆n) is straightforward, identity (5) conversely provides an
explicit formula for the dimensions dimSrd(∆n) in terms of the coefficients of P .
Indeed, the formula

(6) dimSrd(∆n) =

k?∑
k=0

ak

(
d+ n− k

n

)
was isolated in [6] and it also follows from

∑
d≥0

dimSrd(∆n) zd =

k?∑
k=0

ak
zk

(1− z)n+1
=

k?∑
k=0

∑
d≥0

ak

(d + n

n

)
zd+k =

∑
d≥0

k?∑
k=0

ak

(d + n− k

n

)
zd

by identifying the coefficients in front of each zd.
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Taking into account that

(d + n− k

n

)
=



(d− k + n)(d− k + n− 1) · · · (d− k + 1)

n!
, if d ≥ k,

0 =
(d− k + n)(d− k + n− 1) · · · (d− k + 1)

n!
, if k − n ≤ d ≤ k − 1,

0 if d ≤ k − n− 1,

we observe that, for d ≥ k? − n, the dimension of Srd(∆n) agrees with the Hilbert
polynomial

H(d) :=

k?∑
k=0

ak
(d− k + n)(d− k + n− 1) · · · (d− k + 1)

n!
.

Moreover, for d = k? − n− 1, we have

H(k?−n− 1)−dimSrk?−n−1(∆n) = ak?

(
(−1)(−2) · · · (−n)

n!
− 0

)
= (−1)nak? 6= 0.

The definition of d? therefore yields d? = k? − n, and consequently, we see that

k? = d? + n.

This was intuitively anticipated because the determination of the sequence

{dimSrd(∆n)}d≥0

requires d? + n + 1 pieces of information while the equivalent determination of
the polynomial P requires the k? + 1 pieces of information corresponding to its
coefficients.

Now we describe a practical way to determine these coefficients from the com-

puted values {dimSrd(∆n)}d
?+n

d=0 . It is simply based on the observation that

ak =
1

k!

dkP (z)

dzk
|z=0 =

1

k!

dk

dzk

(
(1− z)n+1

∑
d≥0

dimSrd(∆n) zd
)
|z=0

=
1

k!

k∑
`=0

(
k

`

)
dk−`

dzk−`

(
(1− z)n+1

)
|z=0

d`

dz`

(∑
d≥0

dimSrd(∆n) zd
)
|z=0

=
1

k!

k∑
`=0

(
k

`

)
(−1)k−`

(n+ 1)!

(n+ 1− k + `)!
`! dimSr` (∆n)

=

k∑
`=0

(−1)k−`
(
n+ 1

k − `

)
dimSr` (∆n).(7)

In particular, the value dimSr0 (∆n) = 1 yields a0 = 1, then the value of dimSr1 (∆n)
yields a1, the values of dimSr1 (∆n) and of dimSr2 (∆n) yield a2 and so on. This
shows that the computation of the coefficients ak can be performed sequentially,
along with the computation of the dimensions dimSrk(∆n). As long as dimSrk(∆n)

equals
(
k+n
n

)
, identity (5) ensures that the coefficients ak agree with the coefficients

of the constant polynomial P = 1:

a0 = 1, a1 = 0, a2 = 0, · · · , ad?
= 0,
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where d? denotes the largest integer such that dimSrd?
(∆n) =

(
d?+n

n

)
. As a matter

of fact, applying (7) to a partition consisting of a single simplex, we obtain

0 =

k∑
`=0

(−1)k−`
(
n+ 1

k − `

)(
`+ n

n

)
, k ≥ 1.

We may therefore also express the coefficient ak as

(8) ak =

k∑
`=0

(−1)k−`
(
n+ 1

k − `

)
δr` (∆n), k ≥ 1,

where δr` (∆n) is the codimension of the polynomial space P`,n in the spline space
Sr` (∆n), i.e.,

δr` (∆n) := dimSr` (∆n)−
(
`+ n

n

)
,

which is less costly to compute than the dimension of Sr` (∆n). We finally note that
at most min{n+ 2, k− d?} nonzero terms enter the sum in (8), since the summand
is nonzero only when ` ≥ k − n− 1 and ` ≥ d? + 1.

The computational method described above exploits the specific form of the
Hilbert series. As a conclusion to this section, we make the side observation that
(3) can be derived by simple means. It suffices to set ud = dimSrd(∆n) in the
following lemma.

Lemma 1. Let {ud}d≥0 be a sequence for which there is a polynomial Q of degree
m such that ud = Q(d) whenever d ≥ d̄ for some d̄. Then there exists a polynomial
R such that ∑

d≥0

ud z
d =

R(z)

(1− z)m+1
.

Proof. We write the polynomial Q as Q(d) =:

m∑
k=0

qk

(
d+ k

k

)
. Then, for the gener-

ating function of the sequence {ud}d≥0, we have∑
d≥0

ud z
d =

∑
d≥0

Q(d) zd +
∑
d≥0

(ud −Q(d)) zd

=

m∑
k=0

qk
∑
d≥0

(
d+ k

k

)
zd +

d̄∑
d=0

(ud −Q(d)) zd

=

m∑
k=0

qk
1

(1− z)k+1
+

d̄∑
d=0

(ud −Q(d)) zd.

The latter indeed takes the form R(z)

(1−z)n+1 for some polynomial R.

�

The previous lemma also enables to reprove (4). Indeed, we notice that the lower
and upper bounds derived in [3] yield

dimSrd(∆n) = N

(
d+ n

n

)
− (r + 1)F int

(
d+ n− 1

n− 1

)
+O(dn−2).
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Therefore, for d large enough, the quantity

(9) ud := dimSrd(∆n)−N
(
d+ n

n

)
+ (r + 1)F int

(
d+ n− 1

n− 1

)
reduces to a polynomial of degree ≤ n − 2. The claim implies that, for some
polynomial R,

P∆n,r(z)

(1− z)n+1
− N

(1− z)n+1
+

(r + 1)F int

(1− z)n
=
∑
d≥0

ud z
d =

R(z)

(1− z)n−1
.

Rearranging the latter, we obtain

P∆n,r(z) = N − (r + 1)(1− z)F int + (1− z)2R(z),

which in turn shows that P∆n,r(1) = N and P ′∆n,r
(1) = (r + 1)F int.

3. Application of the method to specific partitions

In this section, we demonstrate the usefulness of our computational method on
several specific partitions. We recall that our method relies on the computation of
dimSrd(∆n) for fixed d, r, and ∆n. This step was performed using the interactive
applet [1] for n = 3, and other codes in Java and Fortran for n > 3, all written by
Peter Alfeld.

3.1. Alfeld split of a simplex. We recall that the split of a simplex An in Rn

with
(
n+1
k

)
interior k-dimensional faces, 0 ≤ k ≤ n, is the Alfeld split of An. For

n = 2, Theorem 9.3 in [9] yields

dimSr
d(A2) =

(
d+ 2

2

)
+

(
d+ 1− µ

2

)
+

(
d+ 1− ν

2

)
, µ := r+

⌊r + 1

2

⌋
, ν := r+

⌈r + 1

2

⌉
.

For n = 3 and r = 0, 1, 2, 3, we were able to compute enough values of the

dimensions to derive the sequence a(r) := (a
(r)
0 , a

(r)
1 , a

(r)
2 , . . .) of coefficients of the

polynomial PA3,r with certainty. We obtained

a(0) = (1, 1, 1, 1, 0, . . .)

a(1) = (1, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, . . .)

a(2) = (1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, . . .)

a(3) = (1, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, . . .).

For r ≥ 4, the dimensions we could compute yielded the start of the sequence a(r)

with certainty, but we cannot be totally sure that all nonzero coefficients have been
found. We obtained
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a(4) = (1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, . . .)

a(5) = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, . . .)

a(6) = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, . . .)

a(7) = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, . . .)

a(8) = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, . . .).

Inspection of the sequences a(1), . . ., a(8) strongly suggests the pattern of nonzero
coefficients

a
(r)
1+2r = a

(r)
2+2r = a

(r)
3+2r = 1 for r even, a

(r)
2+2r = 3 for r odd.

For n = 4, 5, 6, we were also able to compute some values of the dimensions for the
space of Cr-splines of degree ≤ d over the Alfeld split An. These investigations lead
us to the following conjecture:

(10)

dimSr
d(An)=

(
d+ n

n

)
+


n

(
d+ n− r+1

2
(n+ 1)

n

)
, if r is odd,

(
d+ n− 1− r

2
(n+ 1)

n

)
+ · · ·+

(
d− r

2
(n+ 1)

n

)
, if r is even.

Let us note that for even values of r the formula can be expressed differently
since

n∑
j=1

(
d+ n− r

2 (n+ 1)− j
n

)
=

(
d+ n− r

2 (n+ 1)

n+ 1

)
−
(
d− r

2 (n+ 1)

n+ 1

)
.

The result can be equivalently formulated via the polynomial PAn,r of (3) as

PAn,r(z)=


1 + n z

r+1
2 (n+1), r odd,

1 +
n∑

j=1

z
r
2 (n+1)+j , r even.

We report below further conjectures produced from our method. Descriptions
and illustrations of the corresponding tetrahedral partitions are available in Alfeld’s
applet menu, see [1].

3.2. Type-I split of a cube (BI). This partition of a cube consists of six tetra-
hedra, all sharing one main diagonal of the cube. This diagonal is the only interior
edge of the partition. There are no interior split points. Type-I split has 6 interior
triangular faces, and 18 boundary edges comprised of 12 edges of the cube and six
diagonals of its faces. Based on computations for r ≤ 8, we conjecture that

dimSrd(BI)=
(d + 3

3

)
+ 3
(d + 3− (r + 1)

3

)
+


2
(d + 3− 3r+3

2

3

)
, r odd,

(d + 3− 3r+2
2

3

)
+
(d + 3− 3r+4

2

3

)
, r even.
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3.3. Worsey–Farin split of a tetrahedron (WF ). This partition is a refinement
of the Alfeld split A3 of a tetrahedron obtained by applying the Clough–Tocher split
A2 to each face of the tetrahedron. The Worsey–Farin split consists of 12 subtetra-
hedra meeting at one interior point. This partition has 18 interior triangular faces
and 8 interior edges. Based on computations for r ≤ 8, we conjecture that

dimSrd(WF )=

(
d+ 3

3

)
+


8

(
d+ 3− 3r+3

2

2

)

4

(
d+ 3− 3r+2

2

3

)
+ 4

(
d+ 3− 3r+4

2

3

)

+


3

(
d+ 3− (2r + 2)

3

)
, r odd,

(
d+ 3− (2r + 1)

3

)
+

(
d+ 3− (2r + 2)

3

)
+

(
d+ 3− (2r + 3)

3

)
, r even.

Generic octahedron (OCT ). This partition of an octahedron consists of eight
tetrahedra meeting at one interior split point. This split point cannot be collinear
with any two vertices of the octahedron. There are 12 interior triangular faces and
6 interior edges in this partition. Based on computations for r ≤ 8, we conjecture
that

dimSrd(OCT )=
(d + 3

3

)

+


(r + 1)

(d + 3− (2r + 1)

3

)
+ 7
(d + 3− (2r + 2)

3

)
− (r + 1)

(d + 3− (2r + 3)

3

)
, r = 2 mod 3,

(r + 3)
(d + 3− (2r + 1)

3

)
+ 3
(d + 3− (2r + 2)

3

)
− (r − 1)

(d + 3− (2r + 3)

3

)
, otherwise.

Generic 8-cell (C8). The easiest way to visualize this partition is to start with a
refinement of the Alfeld split A3 of a tetrahedron obtained by applying the Clough–
Tocher split A2 to two faces of the tetrahedron. Let us denote the new split points on
the face u and v. This partition consists of 8 subtetrahedra meeting at one interior
point. Note that the vertices u and v can be moved to the exterior of the original
tetrahedron without changing the topology of the partition. This process results
in a partition that has the same number of interior and boundary faces, edges,
and vertices as the octahedral partition described above. However, connectivities
of the faces are different. For example, each interior edge of the octahedral split
is shared by exactly four tetrahedra. In the 8-cell, two interior edges are shared
by five tetrahedra, another two are shared by four tetrahedra, and the remaining
two edges are shared by three tetrahedra. Based on computations for r ≤ 8, we
conjecture that, for r ≥ 2,
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dimSrd(C8)=
(d + 3

3

)

+


2r
(d + 3− (2r + 1)

3

)
− (2r − 9)

(d + 3− (2r + 2)

3

)
− 2
(d + 3− (2r + 3)

3

)
, r odd,

(2r + 1)
(d + 3− (2r + 1)

3

)
− (2r − 7)

(d + 3− (2r + 2)

3

)
−
(d + 3− (2r + 3)

3

)
, r even.

We note that the cases r = 0 and r = 1 do not follow the general pattern.

4. Discussion

4.1. Towards theoretical improvements. The main shortcomings of our method
are its high complexity and limited reliability.

Complexity. At present, we need to compute an exponential in n number of values
of spline dimensions. As n increases, the cost of computing each dimension goes
up. This quickly becomes prohibitive. One way to resolve this issue is to lower the
bound on d?. Ideally, it would be a drop from r2n + 1 down to a quantity that is
linear in n. Such estimate on the lower bound on d? is supported by several obser-
vations. If n = 2, for shellable triangulations, we have d? ≤ 3r + 2. When n = 3,
reasonably low values of d? can be inferred for the examples of Section 3. We also
observed linear behavior in n of d? for the Alfled splits. One can also envision that
further theoretical information will help to reduce the number of computations. For
instance, if a specific partition is known to yield nonnegative coefficients ak, then

we can stop computing dimSrd(∆n) as soon as the conditions
∑d

k=0 ak = Fn and∑d
k=0 kak = (r + 1)F int

n−1 are satisfied.

Reliability. Even if all necessary values of dimSrd(∆n) are available for a fixed r,
the formula we deduce is only valid for this fixed r. At present, the formula we
infer for all values of r relies on a plausible guess. Some theoretical information on
the type of dependence of dimSrd(∆n) on r would be decisive in this respect. The
results of Section 3 suggest dependence on the parity of r, sometimes dependence
on divisibility of r by 3, and occasionally the predicted dependence is not valid for
smaller values of r.

4.2. Towards computational improvements. To compute the dimension of
Srd(∆n), Alfeld’s codes translate the set of smoothness conditions into a linear
system for the Bernstein–Bézier coefficients, then the matrix of the system is re-
duced by Gaussian elimination, and its rank is determined. It may be possible
to find faster alternatives. The discussion in [7] hints at a practical method using
Gröbner bases. Additionally, when computing dimSrd(∆n), it should be possi-
ble to use the knowledge of the dimensions of the spaces with lower degree and
smoothness, since the values {dimSrd(∆n), 0 ≤ d ≤ d? + n} are determined se-
quentially. Finally, to deduce the coefficients ak, it may be sensible to compute
only the quantities δrd(∆n) appearing in (8), or some suitable linear combinations
of {dimSrd(∆n), 0 ≤ d ≤ d? + n}. This latter approach could take advantage of
the fact that the sequence {ak} appears to have only few nonzero terms.
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4.3. An optimistic final perspective. Should the theoretical and computational
improvements materialize, a stand-alone program for the explicit determination of
the dimensions ought to be implemented. With modern (or future) computational
power, the dimension formulas could be obtained for a wide variety of partitions. It
is not unrealistic that some expressions for the coefficients ak could then be inferred
in terms of the smoothness r, the combinatorial parameters, and other topological
parameters — especially in the generic case where the geometry does not play a
role.
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[7] L. J. Billera and L. L. Rose, Gröbner basis methods for multivariate splines, in: Mathematical

methods in computer aided geometric design, T. Lyche and L. L. Schumaker (eds.), 1989,
93–104.

[8] D. Hong, Spaces of bivariate spline functions over triangulation, Approx. Theory Appl. 7

(1991), 56–75.
[9] M.-J. Lai and L. L. Schumaker, Spline functions on triangulations, Cambridge University

Press, Cambridge, 2007.

c©2013 Albanian J. Math. 35

http://www.math.utah.edu/~pa/3DMDS/
http://x.kerkoje.com/index.php/ajm/index

	1. Introduction
	2. The computational method
	3. Application of the method to specific partitions
	3.1. Alfeld split of a simplex.
	3.2. Type-I split of a cube (BI).
	3.3. Worsey–Farin split of a tetrahedron (WF).

	4. Discussion
	4.1. Towards theoretical improvements.
	4.2. Towards computational improvements.
	4.3. An optimistic final perspective.

	References

