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ABSTRACT. We study the distribution of the values of certain additive func-
tions restricted to those integers with a fixed number of prime divisors.

1. INTRODUCTION

We study the distribution of the values of certain additive functions restricted
to those integers with a fixed number of prime divisors.

Given an additive function f for which there exists a real number C' > 0 such
that |f(p®)| < C for all prime powers p%, we let
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and we let f* be the additive function (which depends on z) defined on prime
powers by f*(p®) = f(p®) — iAw, where x5 = loglogx. Let
i)

and assume that B, — oo. For each integer k > 1, let

k

Epp 1= 2 pr :={n eN:w(n) =k}, me(x) =F#{n <z :n € pi}.

Finally, let § < % be a fixed positive number. Then, we prove that

1 *(n
lim max - max ——#n<z:n€ @, fi()
TT  clsa—a) YR () Ban/Ek

=0,

< y} - ®(y)

where

(1.1) D(y) == \/ﬂ/ e /2 dy

We also establish a result concerning the distribution of w(y,(n)) where w(m)
stands for the number of distinct prime factors of m > 2 (with w(1) = 0) and ¢
stands for the ¢-th iterate of the Euler ¢-function.

2. NOTATIONS

For each integer n > 2, Q(n) stand for the number of prime divisors of n counting
their multiplicity, setting (1) = 0. Let also p(n) and P(n) stand for the smallest
and largest prime factors of n > 2, with p(1) = P(1) = 1.

We shall use the notations z; = logz, o = loglog z, and so on.

For every positive integers k and D, let us further set

pr = {neN:wn)==k}
me(z) = #{n<z:né€pg},
R e,

E
i

#{n <x:ne N},

7rk($|D) = #{n<z:(n,D)=1, n€ g},
Ni(z|D) = #{n<z:(n,D)=1, ne N},
k
Sk,f = ;2

Let ® be the standard Gaussian law defined above in (1.1). We also write 9 (t) for
the characteristic function of the Gaussian law, that is,

b(t):=e 2 (teR).

We shall also be using the two sequences of integers

1 1 1
(21) Ay = W and b[ = \/Tﬁ . E (g = 1,27 .. )

Throughout this paper, the letters c and C' always denote positive constants, but
not necessarily the same at each occurrence.
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3. MAIN RESULTS

Theorem 1. Let f be an additive function for which there exists a real number

C > 0 such that |f(p*)] < C for all prime powers p*. Let A, = Z @ Let
p<z
f* = fr be the additive function defined on prime powers by

k(o a\ __ f(pa) - %AI ifpa S z,
") = { 0 otherwise .

Further set

and assume that B, — oo as x — oo. Then, given an arbitrary positive real number

6<%,
#{ngx:nEQk, Bzftyg%<y}—<l>(y)

Let us add that in 2008, Katai and Subbarao [3] proved the following result.

lim max max
T—00 k yER
Ek,x €[6,2-3]

(@)

Theorem A. With the notations of Theorem 1, we have

f*(n)

L ~0.
Bw gk,w

lim max max
T—00 &y »€[6,2—6] yER

1#{n§x:n€]\fk,

N+ (@) <y} - ®(y)

Theorem 2. Let ap and by be the two sequences defined in (2.1). Let & = &k » and
assume that € is fized. Setting

£+1
2

se(n) 1= £1Pen) — acke
beﬁx§+%

then, given an arbitrary positive real number § < %,

b

1
(3.1) ¢li>rgo 1113@(561[%%)55] N (@) #{n<z:neN se(n) <z} —o(2)|=0
and

1
(3.2) mlggo rggﬂgcfg{rélg;ié] m# {n<z:nepg s¢(n) <z}—e(2)]=0.

4. AN APPROPRIATE ESTIMATE FOR 7 (x|D)

As a preliminary result to be used in the proof of Theorem 1, we will show the
following lemma.

Lemma 1. Given a positive number § < %, then, as x — oo, we have, uniformly

for & €16,2 9],

(4.1) (x| D) = (14 o(1))m(x) - 1—-——
k k E . (1 - %)
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Proof. Tt is well known that

where

(see for instance the classical paper of Selberg [4]).

Given an integer D > 2, let Bp stand for the multiplicative semigroup generated
by the prime divisors of D.
Let us first write

© uw(n) ®_Lw(n)
(4.2) Z = Z e Ak (s, 2),

n=1 n=1
(n,D)=1
where
-1 00 _ 0
2(1 — 2z)t1 E(m)
Mo =TT (1 D IRt - s
oD pID =1 P e

meBp

where E(m) is a multiplicative function defined on the set Bp by E(1) =1, E(p) =
—z, E(p*) = —2(1 — 2)*~! for each ¢ > 2 and each p € Bp.

Now, let us write each positive integer m as m = M R, where M is the squarefull
part of m and where R is squarefree. Then, clearly,

E(M) = (=2)*M)(1 = 2)?WD=«OD - B(R) = (—2)“1),
implying that if we set A(m) = Q(m) — w(m), then

A(m)
E(m) _ (7Z)w(m)(1 o Z)A(m) _ Z (A(m)) (71)u+w(m)zu+w(m)’

so that it follows from (4.2) that

IO NETSID Dl S S AN ) PN €5)

meBp v=0

Given a fixed positive real number § < 1/2, then it is easy to prove that, uniformly
for k € [dx2, (2 — 0)xo], we have

(4.4 Rt () _ 1 4 eyt (o oo),

where e2(x) — 0 as © — oo.
Using (4.4) in (4.3), we get
A(m)

Wk(x‘D) _ 1 1/+w(m) A(m) w(m)+v
() (L4 e m;jjmz ( v >§
_&)w(m)
= e Y T gam
meEBp
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- (1+52(x))H(1+_5+_5(1_5)+~-~>

2
oD p p
= (tae[[|{1-——
(-5
p|D p ~p
which proves (4.1), thus completing the proof of Lemma 1. a

5. PROOF OF THEOREM 1

From the identity

> Q(n) © _Q(n)
D ok XH<1_Z> (:€C lel <2,5> 1),
= n = D p*
(n,D)=1 p
it follows that
xT
(5.1) Ni(@|D) = >~ u(d)Ni-aq) (5) -

d|D

Let w, be a function which tends to +o0o (as  — o0), but slowly enough so that
wy/log B, — 00 as & — 00.

Let v(n) = ;;*(:})g

and let us introduce the additive function v* defined on prime

powers by
0 if p<w
* (0 a\ __ = W,
vi(p )_{ v(p*) otherwise.

We further introduce the functions g(n) = e’ and g*(n) = ™ ™. It follows
from these definitions that

2 -9 < — —
(52)  maxlg(n) g ()] < clrl max [u(m)] 50 asw o oo

uniformly for £ € [6,2 — 4].
Assume that P(D) < w,. Then ¢g*(d) =1 for every d € Bp and therefore

e Q(n)
Z gngzzg(nk@xn(l_;) (z€C, |z2| <2, s>1).

(nTLD:)IZI n=1 plD
Let
Mi(z|D) = > g"(n);  My(z|l) = My()

<n"f§>lfl

Q(n)=k
Then

xr
(5.3) Mi(«|D) = >~ u(d) My (5) -
d|D

Using Theorem 3 of Kétai and Subbarao [3], we obtain that

S g(n) — ()| =0

n<x

neNy

1
lim sup
w00 eer5.2—5) | Ni(T)
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uniformly for 7 € [—C, C], where C is a positive constant depending only on g (that
is, on f*), implying that, in light of (5.2),

1
(5.4) lim sup
w00 ce(5,2-6] | Nk ()

> 9" () —u(r)| =0.
n<w
neNy
Now, for each divisor d in (5.3), we have
k—Q(d) . Q(d)
T2 ZTo

1)
> 3 provided x is large enough.
Thus, applying (5.4) with §/2 in place of §, we get that
x
(5.5) Mo (3) = (1+0D)Ne(@Dy(r) (x> o0)

uniformly as D runs over the integers satisfying P(D) < w, and |7| < C.
Now, for Y > 2, let Qy stand for H p and By for the multiplicative semigroup

p<Y
generated by {p € p:p <Y}
Observe that
x
(5.6) (@) = Y Thwa) (E'QY> :
deBy
Now split the right hand side of (5.6) as follows:
(57) wk(x) = Z + Z =3 + 2o,
d<YY  d>YY
k—1
say. First, we have, using the Hardy-Ramanujan inequality 7 (z) < C xi (z(ngrci)'
1 — 1)
uniform in k (see Hardy and Ramanujan [2]),
x (zg+ c)f-w@-1 1
2 LTl Lo -
2= YZ dry (k—w(@ -1 T9|" 2
YY <d< =z >z
deBy dEBy
58) < on@w Y 1(k+c>w(d)+0< oy 1)
. < i - L)
YY <d< =z d T2 1‘1/4 deBy \/&
deBy
Clearly,
(5.9) Z 1 H <1 - 1>_1 < exp Z L < exp{cVY}.
deBy v p<Y VP p<Y VP

Thus, it follows from (5.9) that if E(x) stands for the error term in (5.8) and if we
choose Y = Y (z) = x3, then we clearly have

(5.10) E(z) < /5,
say. On the other hand,

1 k+c)“’(d) 1 ( (k—l—c) ( 11 >)
- < 1+ 14—+ —+...
Z d( 9 YY/ngf T N/

vY <d<yz
deBy
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(k+c¢)/z
(5.11) = YY/2 1:[( /12) —0asY =Y (z) = 0.
p<y

Hence, using (5.10) and (5.11) in (5.8) and in light of (5.7), we can replace (5.6) by
x
(5.12) me(z) = (14 o Z Th—uw(d) (E|Qy) (x — ).

dEBy
d<yY

Now, consider the two expressions

_ Z el (n) and Sy (x| D) = Z eimv (n)

n<z n<w
neEPl (nGD«;kl
n,D)=

Then, by choosing Y = w,,, we may write

Si. (I) — Z Z ez’ﬂ/*(n)

MmEB,,  n<w/m

NEPK—w(m)
(N, Quwg )=1
x
5.13 = Sp_ — — .
(5.13) EZB;UI k—w(m) (1Q) + o(mi(z)) (2 = 00)
m<wa

We will now show that the proportion of the non-squarefree integers belonging
to the set {n <z :w(n) ==k, p(n) > w,} is small.
Setting
Q= Qu, and h(n) := Z 1,

p?|n
a>2

then we may write

(5.14) Z Z Ni—o(=|Q)+0O |z Z 1

a
n<x pa <z PA> /T p
(n,Q)=1, neNg a>2 a>2
p>Y

Now, using Theorem 5 from the book of Tenenbaum ([5], page 205) and using
relation (5.1), one can prove that

N@lD) = 32 HDe00)) ()1 +01)
S5|D
= —§ X o
(5.15) = ﬂ)(l p) Nig(z)(1 +o(1)),

as x — 0o. Using (5.15) in (5.14), we obtain that

> k) £ NEl@) Y o0l

n<xz pP>wg
(n,Q)=1, neN} a>2

(5.16) e1(z) N (7Q),

IN

where 1(z) = 0 as © — 0.

2012Albanian J. Math. 81
©


http://www.aulonapress.com

Jean-Marie De Koninck

Then, from Lemma 1, we have

> h(n)gz; > 1

n<z p*In
nEpg, (n,Q)=1 p>Y n=p¥m<zx
meEpp_1, (m,Q)=1

> mea(51Q) +0w

p¥,p>Y
a>2

c _# — €z 23/4
I (1~ i) X me () + o0

< m(zlQ) D p—1a+0(x3/4)

p>Y, a>2
(5.17) = m(z|Q)es(x) + O(z*/),
where e3(x) — 0 as ¢ — oo, thus proving our claim that we may ignore those

non-squarefree integers for which w(n) = k and p(n) > w,.
Hence, from (5.17), we get that

IN

IN

Ni@l@) = > e+ Y1
neNkT,I/S(:.Q)=1 neNkT.IVS(:,Q)=1
n not squarefree
(5.18) = Yo lu)| + Ofes(@)m(x]Q)),

n<xz

neNy, (n,Q)=1

say, where we used (5.17).

We can now move to estimate the main term on the right hand side of (5.13).
To do so, we make use of (5.5), which, in light of (5.18), yields. as z — oo,

S (210) = Mo (210) 0 (5t (210))
(14 0(1) Ny (1@Q) w(7)
(5.19) = A+ oW)mh-wim (1Q) ¥(7).

since |1)(7)| > ¢ for some positive constant ¢ on every finite interval |7| < B.

k
Substituting (5.19) in (5.13), we get that, uniformly for — € [§,2 — §],
)

Sk(x) = L+ o(1))me(z)e(r) (= 00),
thus completing the proof of Theorem 1.

6. PROOF OF THEOREM 2

We will use the method developed in the paper of Bassily, Katai and Wijsmuller

[1]

We first introduce the sequence of completely multiplicative functions 1, £ =
0,1, ..., which we define on primes p by

T0(p) =1, Te(p) = Z Te—1(q) for each ¢ > 1.

qlp—1
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From this definition, it is clear that
0 <w(pe(n)) < 7(n) for all integers n > 1, £ > 0.

Note also that Kétai and Subbarao [3] proved that

T 1 1
> ) et 0l
. - Tég(p) B xgul o wgul/z
(6.2) i(@) = p;c D —(2e+1)(a)2+ 20+1/2)°

Definition. We say that the primes qo,q1, - - -, q¢ constitute an -chain if ¢;—1|q; —1
fori=1,...,L. We denote by Q(n) those £-chains such that q¢|n and by Q¢(n, qo)
those (-chains with qe|n and starting with qo, in which case we write

G = q1— ... = qo, qeln.

Given a positive integer n € N}, with n < z, we will now count the number of
those (-chains ¢y — q1 — ... — qs, qe|n, for which 2%/ < ¢, < z. To do so, let
us choose U € [xl/ 4 2] and let us count those positive integers n € N} for which
there is an (-chain with g¢|n and ¢, € [U,2U]. For such a gy to exist, we must
have qolg1 — 1, q1lg2 — 1, ..., qe—1|ge — 1, thus implying that any prime ¢, can be
considered at most 7y_1(gs — 1) times. Now, for a given prime gy, if n = ggm < x
with n € Ny, then we have m < z/U, m € Nj_1, implying that the number of such
m’s is at most ¢Ny_1(2/U). We have thus established that the number of such
chains is

< Z Tgfl(q — 1) Ni_1 <%) .
U<q<2U

~ Let us now introduce another definition. Let z be a large number and let
Q¢(n,qo) stand for the set of f-chains with gy|n which starts at go and such that
qe < x. Then, since |Q¢(n, qo)| > 1, we have

L = 3N ([Qen o)l - 1)

neNy <y

Z Z Qe(n, q0)|

neNy <y

IN

IN
i?
N

| &
N————

IN
o
i
&
| —

q0—-.-—qyp qe

1/4

qp<z > 40<Y

(©2012Albanian J. Math. 83


http://www.aulonapress.com

Jean-Marie De Koninck

Now, using Lemma 2.5 of Bassily, Kétai and Wijsmuller [1], we have that
x
(64) E,<c Z 2 <cEj 129 <...< CexgE(],
w0 S0y A1
a0 <y
where

1
Ey = Z — < cloglogy.

0<
Substituting (6.4) in (6.3), andqsinie Ni_1(z) <s Ni(x), we obtain that
(6.5) L,(cl) < ez loglogy - Ni(x).
Now, let
L2 =3 3 ([@en.a0)l - 1).
neNy o>y

Since |Q¢(n, qo)| # 1, it follows that there are at least two chains
go —q1 — ... > qy
W= G ==
such that g¢|n, ¢;|n. Using the argument displayed in [1], one can establish that

20+1
LS)<1A@()be ,

so that choosing y = log? z, we obtain that
(6.6) L'® = o(Ni(z))  (z — o).

It follows from (6.5) and (6.6) that, in order to prove Theorem 2, it is enough
to prove it with 7,(n) instead of w(pe(n)). Hence we shall prove that, if ¢ >
1,a0,b0,§ = & are as in Theorem 2 and if we set

te(n) = 7e(n) — ackary™
by - \/‘ Ig+1/2 ’
then

1
(6.7) wlggor?gﬂicger[rél% 5 | N (a )#{n<x n € Ng, te(n) <z} —®(2)| = 0.

In order to prove relation (3.1) of Theorem 2, we use Theorem 1, while to prove
relation (3.2) of Theorem 2, we use the above Theorem A.

We start by choosing the strongly additive function f defined on primes p by
Te(p) - (£ +1)!

f(p) = ———;—. Then, in light of (6.1),
Ly
(t+1
x—zf JF ) ZTZ(p):JCQ—I—O(l).
p<z 2 p<z p

With the additive function f* defined on primes p by f*(p) = f(p) — ﬁ7 we have,

T2
using (6.2),

- Sy I ety I (S0

p<zx p<z p<3L p<x
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()P e’ A f() 1] A2

> > > o5

x% p<z p 2 p<z p<z pJ 2
(C+1)2 2! 1/2 Ay f(p) 1) A7
= (0] —2== = -
N ESy AR Dyl D] b

_ %xz 9 (1+0 (;)) (22 + O(1)) + (22 + O(1)) (1+o (;))

= <(§Zr+1)1—1>x2+0(\/m>) 2€£+1$2+O(\/>)

thereby satisfying the conditions of Theorem 1 (respectively, Theorem A), thus
completing the proof of Theorem 2.

7. FURTHER REMARKS

Using Theorem 1 and Theorem A along with the method elaborated in the paper
of Kétai and Subbarao [3], it is possible to deduce theorems of the same type as that
of Theorem 2. For instance, it would be possible to prove the following assertion.

Theorem 3. Let a > 1 and b # 0 be fixed integers. Consider the multiplicative
function g defined on primes p by g(p) = max(ap + b,1) and assume that there
exists a positive constant ¢ such that g(p*) < cp® for all prime powers p*. Assume
also that g(n) only takes integer positive values. Further let g, stand for the £-fold
iterate of g. Then, there exist computable positive constants ¢, and dy for which the
function

w(ge(n)) — cobay™

pe(n) =
detat™/?
satisfies
1
< — =
xlinéoglgﬁ(ge?;% 4] Nk(x)#{n vin €Np, pu(n) <z} = () 0,
1
< — =
zlgléol?&é‘ge%g 5 (x)#{n z:n € pg, pe(n) <zp—P(2) 0.

In particular, Theorem 3 can be applied to the function ¢ = o, the sum of
the divisors function. It also applies to the multiplicative functions P, P* and P
defined on prime powers p® by P(p®) = (a + 1)p® — ap®~*t, P*(p®) = 2p® — 1 and
ﬁ(p“) = 2p® — p®~1, which were introduced and studied by L. Toth [6].
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