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ABSTRACT. The Schottky Problem is to characterize the Jacobians in the space
of principally polarized abelian varieties (PPAVs). Besides its intrinsic inter-
est, it is related to deep questions in PDE and Physics. The perspective of
Information Theory leads to the numerical investigation of properties of the
distribution of the periods, especially in cases of relatively large genus. In turn,
numerical results lead to conjectures that the periods of hyperelliptic curves
are band-limited, and that the squared moduli of the periods of a general
surface are Zipfian.

1. INTRODUCTION

1.1. Introduction. Interest in two classical problems from the study of compact
Riemann Surfaces of genus at least two continues to grow as new interpretations
and new computational tools arise. The first of these, the Schottky Problem,
is to characterize the Jacobians in the space of principally polarized abelian va-
rieties (PPAVs). Besides its intrinsic interest, its solutions involve such diverse
areas as classical algebraic geometry and partial differential equations, especially
the Korteweig-deVries (KdV) and the Kadomtsev—Petviashvili (KP) equations [9],
which relate it to problems of physics. Additionally, one of the earliest modern
solutions to the Schottky problem, that of Andreootti and Mayer [2], used the heat
equation in an essential way.

The second of the two problems, the Torelli problem, seeks methods to determine
properties of a Riemann Surface from its period matrix, which, in principle, is
possible due to Torelli’s Theorem [10], but which, in practice, has proven to be
rather difficult, involving detailed properties of Riemann’s theta function.
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More recently, Information Theory has become a prominent technique in many
areas of mathematics and applications. For present purposes, the basic idea of
information theory is to understand the minimum number of bits required for Alice
to send a message to Bob. A simple but telling example comes from the idea of a
Huffman code, which optimally determines the length of symbols used with respect
to their frequency of use. In a Huffman code for ordinary English, the letters T and
E are assigned the smallest number of bits, because they are used most often, while
seldom—used letters like Q and Z are encoded with more bits.

This work describes numerical exploration of the Schottky and Torelli problems
from the perspective of information theory. Alice wants to tell Bob about a Rie-
mann surface, and, by Torelli’s theorem, she can do so by giving him its period
matrix. These experiments lead to conjectures about the information-theoretic na-
ture of the period matrix of a general Riemann surface (a Schottkly problem), about
distinguishing the period matrix of a hyperelliptic Riemann surface from that of
a general Riemann surface (a Torelli problem), and about the effects of truncated
arithmetic.

1.2. Computational Perspective. New computational tools now allow us to ex-
amine the Schottky and Torelli problems from a computational perspective. When
Alice tells Bob about a Riemann surface using its period matrix,this message’s
length is g(g + 1)/2 complex numbers, although in practice the information might
be g(g+1)b/2 bits, where each complex number is approximated by a binary number
with b or fewer bits.

However, since the moduli space of compact Riemann Surfaces of genus g has
dimension 3g — 3 when g > 1, the message is intrinsically compressible, that is, it
contains much less information than its naive length would indicate. The nature
of the Information-Theoretic Schottky Problem is to exploit the compressibility to
try to characterize period matrices in Hg4, and that of the Information-Theoretic
Torelli Problem is to exploit properties of the signal to determine properties of the
curve.

In a sense, the Information Theoretic Schottky Problem was anticipated by
Rauch over 50 years ago [l1]. He proved that if there is a set of g periods
T = fbj d¢; on a non-hyperelliptic compact Riemann Surface W of genus g such
that the products d(;, d¢;, formed a basis for the quadratic differentials (there being
3g — 3 such pairs), then any Riemann surface with periods ﬂgjthat agreed with m;;
at the associated indices is conformally equivalent to W. In other words, in some
cases one can choose 3g — 3 elements of the period matrix as (local) moduli, or, put
differently, Alice need only send these 3g — 3 periods to Bob.

Communication complexity depends on the distribution of the messages to be
sent, so one is led to consider the distribution of the periods. When the genus is
small, the periods have no statistical properties to speak of, but when the genus
is large there is enough “data” to look for statistical properties. In practice this
means to take the set of all periods, create a corresponding set of real numbers (by,
e.g., taking the modulus-squared, the argument, or imaginary part), and sorting
that set. One thus obtains a distribution (in the sense of statistics). One can view
this as a generalization of the approach of Buser and Sarnak [BS], who showed that
the smallest period of a Riemann surface is smaller than expected.
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2. GENERAL CONJECTURES

Numerical experiments, described below, lead to three conjectures. The first two
are specific to the case of hyperelliptic surfaces.

If the arguments of the periods of a compact hyperelliptic Riemann surface were
distributed uniformly over the unit circle, the expected value of the distance between
arguments would be R, = 7/g(g + 1).

Conjecture 1. The periods of a hyperelliptic Riemann surface are band-limited,
that is, there exists an argument o and a radius € < Ry such that no arguments fall
outside of the intervals (o — e, +¢) and (a + 7 —e,a+ 7w +¢). In other words,
there is a large interval containing no argument of periods.

Conjecture 2. The distribution of the magnitudes of the periods of a hyperelliptic
Riemann surface are characterized by large gaps.

See below for more specifics about the nature of the gaps.
The third conjecture is more general.

Conjecture 3. The distribution of the squared modulus of the periods of a non-
hyperelliptic Riemann Surface is Zipfian, that is, there is a power p < 1 such that
the n*™ modulus squared grows like n™P.

3. REMARKS ON TRUNCATED ARITHMETIC

While Alice can send Bob an exact representation of an irrational or transcen-
dental period matrix entry (e.g., %+i§), it is important to be aware of the effect of
truncation to something like (.5+1.124). Since the various loci of compact Riemann
Surfaces with interesting properties are small, it seems likely that an approximation
to the period matrix of a compact Riemann Surface with some interesting property
will fail to reveal the property. For example, if a Riemann Surface has a non-trivial
conformal automorphism, period matrices of Riemann Surfaces without non-trivial
automorphisms are arbitrarily close.

This section presents some reassuring results in this regard. Consider Bring’s
curve, which is the unique compact Riemann surface of genus four with the full
symmetric group Sy of automorphisms. Its period matrix was determined by Riera
and Rodriguez [12]. Their matrix depends on a parameter, that is, there is a 1-
parameter family of such matrices in H4, one of which is actually the period matrix
for Bring’s curve. This value is transcendental, so any numerical investigation of
the matrix will necessarily involve an approximation.

Using the techniques of Accola [1], it is possible to determine a large number
of vanishings of Riemann’s theta function at quarter periods of the Jacobian of
Bring’s curve from the various involutions in the automorphism group. Remarkably,
an exhaustive search for vanishings of 6 at the quarter periods of the principally
polarized abelian variety constructed from an approximation to the period matrix
of Riera and Rodriguez found the vanishings predicted by Accola’a method. In
other words, while one must be cautious about using approximations, it may still
be possible to determine interesting properties of a compact Riemann surface from
an approximation to its period matrix

(The data files from this investigation are too large to appear in print; the author
will gladly make them available on request.)
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4. NOTATION

All Riemann surfaces to be considered are compact and and of genus g > 1.
Choose a symplectic homology basis, that is, a basis {41,...,4,, By,...,B,} for
the singular homology group Hi(W,Z). Let A - B denote the intersection product
of the cycles A and B. In a symplectic basis, these are, by definition, as follows:
for all 4 and j7 Az 'Aj = Bz 'Bj = 0, and Al . Bj = (5”

One can also choose a normalized basis w; for H9) (W), the vector space of
holomorphic 1-forms; normalization means that f 4,W5 = d;j. The matrix

*=1],4]

is called the period matrix, and the columns of [I, ], where I is the g x g identity,
define a lattice Lg in C9. The complex torus

JacW = CY/Lq

is the Jacobian of W. Torelli’s Theorem asserts that either € or, equivalently, JaciW
completely determines the conformal type of a Riemann surface W.

Now, let H, denote the Siegel upper half space of symmetric g x g complex
matrices with positive-definite imaginary part; every period matrix lies in the Siegel
upper half space. The symplectic group SP(2g,Z) acts on H4, and the quotient
Ay, = Hy/SP(2g,Z) is a Hausdorff analytic space, providing a moduli space for
PPAVs. The geometric meaning of this action is change-of-basis in the homology
and cohomology groups.

Let z € C9 and Q) € H,4, and define Riemann’s theta function by

0(z,Q) = Z exp mi("nQn + 2'nz);
nezI
here, *A denotes the transpose of the matrix A. The series converges absolutely
and uniformly on compact subsets when 2 € H,.
It is important to keep in mind that most of the results presented here are
experimental.

5. HYPERELLIPTIC PERIOD MATRICES

Of particular interest are the periods of hyperelliptic Riemann Surfaces. In
the communications scenario, the question becomes “If Alice sends Bob a period
matrix, can an eavesdropper Eve determine whether it comes from a hyperelliptic
surface?” In principle, Eve could apply the by-now classical theorems of Farkas
[8] showing that certain vanishings of Riemann’s Theta function at half-periods
determine whether a surface is hyperelliptic. However, this calculation is daunting
when the genus ¢ is large, since there are 229 half periods to check.

Rauch’s Theorem, mentioned in the previous section, does not apply in the
hyperelliptic case.

Numerical experiments (using Maple) suggest that Eve might have an easier way
to reject the hypothesis that the period matrix comes from a hyperelliptic curve.
Note that if the arguments of the periods were distributed uniformly about the
circle, the expected distance between an argument and its nearest neighbor would
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be R, = 4m/g(g + 1). Deviations from uniformity indicate some special property
of the associated Riemann Surface.

These conjectures only make sense when the genus is large.s

Previous results about the periods, such as the results of Bujalence, Costa, Gam-
boa, and Riera [3] on the periods of Accola-MacLachlan and Kulkarni Surfaces,
depend on special properties of the surface. They did not examine the distribu-
tion of the arguments of the periods. These results apply to a specific family of
hyperelliptic surfaces as well.

The rest of this paper will present some of the numerical evidence in support of
the conjecture as well as some arguments supporting the idea that the distribution
of hyperelliptic periods is somewhat intrinsic.

5.1. Numerical Experiments. Maple includes a package algcurves for com-
puting period matrices, described in [De]. There is an intrinsic limitation that the
coefficients must be Gaussian rationals, and there are extrinsic limitations in com-
puting power. These experiments used Version 14 of Maple running on a 12 core
3.47GHz server, as well as on a variety of smaller machines.

5.2. Procedures. To generate a “random” hyperelliptic curve, choose a degree d,
number of terms 7, and degrees di, ..., d,—1. The coefficient c; of x% is formed by
choosing four “random” integers a;,, b;,, a;,, b;, and setting
cj = N + Zaﬁ
bj bjz

Maple then computes the period matrix of the curve y? — [J(z — ¢;), where ¢;
denotes Maple’s internal representation of ¢; (the algcurves routine uses decimal
representations of the coefficients of the curve).

Once the period matrix is computed, the complex argument and complex modu-
lus functions are mapped onto the matrix. The moduli and arguments are extracted
as a vector, whose entries are sorted in decreasing order of argument, and finally
plotted.

The computational limitation appears to be on the size of d and on the number
of terms r. Maple is unable to handle curves when either is large. For many of
the cases here the clock time for generating the period matrix was approximately
1 minute, but for some the computation did not terminate in a reasonable amount
of time.

5.3. Results. Figure 1 shows a scatterplot of the periods of a “random” hyper-
ellliptic of genus 39. The horizontal axis is the argument; the vertical axis is the
magnitude.

Notice that the two clusters differ by about m, i.e., the periods are clustered
around a line in C. This occurred for all of the hyperelliptic curves tested.

To show that this pattern is not general, consider in Figure 2 the scatterplot of
a “random” trigonal curve of similar genus.

While there is evidence of clustering, there are no large gaps between the argu-
ments as there were in the hyperelliptic case.

For further contrast, Figure 3 is a scatterplot of the periods of the Fermat curve
whose projective equation is 219 +4'°4 210 = 0. While there seems to be a preferred
argument, the remaining arguments are well distributed around the circle.
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FI1GURE 1. Periods of a Hyperelliptic Curve, Genus 39.

As further evidence that the distributions of periods of hyperelliptic curves have
distinctive characteristics, consider the plot below of the magnitudes of the periods
of a hyperelliptic curve y? = f(x) where the degree of f is 96.

Notice that there are large “gaps” in the distribution of the magnitudes, which
would be larger for the distribution of the squared magnitudes. All hyperelliptic
curves investigated had such gaps, while no non-hyperelliptic curves investigated
had comparable gaps. This is the evidence for 2.

5.4. Analytical Evidence. The examples shown (and many similar examples)
motivate the conjecture above. Further evidence comes from the following Propo-
sition, which indicates that the distribution of the periods of hyperelliptic curves
maintains its basic shape as the curve varies in moduli space; in other words, the
distributions seen in the examples hold, at least qualitatively, for “nearby” curves.
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FIGURE 2. Periods of a Trigonal Curve, Genus 39.

Figure 4 shows the image of a canonical homology basis under the projection
(z,y) — z for a hyperelliptic curve X of genus 2 given by an equation y? = f(z),
where f has degree 6. The the branch cuts between the ramification points are
black. The red (rectilinear) cycles represent the a—cycles, and the blue (curved)
cycles represent the b—cycles. While some of the a—cycles appear to meet b—cycles
twice, the second intersection does not occur on X itself. The images of the b—
cycles cross the image of two branch cuts; this is necessary in order for the cycle to
“jump” properly between sheets of X. Each cycle a; encloses ¢ branch cuts in such
a way that the intersection products are correct.

The forms “3:1/‘%”” (0 < a < g—1) form a basis for H%(X). Normalize these to

a basis {w, } such that faj w; = 0;5.
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2.5 7

FI1GURE 3. Periods of Fermat Curve of Degree 10

Lemma 1. There is a canonical homology basis such that one of the branch points
is not in the interior of any of the images of the a— or b—cycles in the x—plane. Call
this the free ramification point.

Proof. Examining Figure 4 shows that one of the branch points is not enclosed by
any of the a— or b—cycles. This is because the number of branch cuts is one more
than the genus, so one branch cut is not enclosed by any b-cycle, and since the
image of each a—cycle encloses two points, two of the 2g 4+ 2 branch points are not
enclosed by such a cycle. O

The point labelled s in Figure 4 is a free ramification point. Clearly the choice
of free ramification point depends on the choice of canonical homology basis.
Rewrite the equation for X as

y? = (z — 5) foo();
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Magnitudes Degree 96

Series1
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1 131 261 391 521 651 781 911 1041 1171 1301 1431 1561 1691 1821 1951 2081

FI1GURE 4. Magnitudes Periods of Hyperelliptic Curve of Degree 96

where f., has degree 2g — 1. The curve y? = f.(x) has genus g but is ramified
at infinity. Let X, denote the curve y? = (x — ) foo(2), and X, denote the curve

Proposition 1. When the free ramification point on a hyperelliptic curve is large
the period matriz is approzimately that of X .

Proof. Let s denote the free ramification point. The key to the proof is to notice
that the canonical homology basis stays the same as s becomes large, although the
basis for H(1:%)(X) depends on s. For convenience, let ¢ = /z — s, so the equation
for X, is y% = 02 foo (2).

When s is large, o is approximately constant, so the unnormalized period ma-
trix is approximately é times the period matrix for X,,. Tracing through the
normalization computation leads immediately to the result. (I
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FI1GURE 5. Canonical Homology Basis.

6. THE GENERAL CASE

Using numerical procedures similar to those described above, one can examine
Maple-generated period matrices for arbitrary (within Maple’s limitations) plane
curves. These results deal with the modulus (absolute value) of the periods, rather
than the arguments. This list was sorted in descending order.

Notice that it is possible to construct elements of H, with any distribution by
choice of the entries. In particular, the distribution may be concave down, concave
up, have apparent discontinuities, or even be linear. But compare these possibilities
with a typical result, the periods of the Fermat curve of degree 11, which appears
below.

All of the period matrices of non-hyperelliptic surfaces examined have had a
similar shape to the distribution, that is, generally concave up (which is consistent
with a Zipfian distribution), hence conjecture 3.
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Periods of Fermat Entekic

105 209 313 417 521 625 729 833 937 1041 1145 1249 1353 1457 1561 1665 1769 1873 1977

FIGURE 6. Periods of the Fermat Curve of degree 11

From the perspective of signal processing, this conjecture would imply that the
period matrix of a Riemann surface has a fairly small number of large coefficients,
while most are small — in effect, noise.

7. CONCLUSIONS

The numerical experiments outlined here demonstrate that the information-
theoretic perspective leads to interesting new questions about the period matrices
of compact Riemann surfaces.

In addition to proving or refuting the conjectures presented here, further work
should explore the application of ideas from Compressed Sensing [6] [5], a technique
from signal processing which can often find exact reconstruction of sparse signals
from small samples. Sparsity occurs in natural signals such as image. A period
matrix, whose size is O(g?) but which depends on only O(g) parameters, is also
a sparse signal. Rauch’s 1954 result mentioned above suggests that this approach
could be fruitful.
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