ON PRINCIPALLY QUASI-BAER MODULES

BURCU UNGOR Department of Mathematics Ankara University, Ankara, Turkey Email: burcuungor@gmail.com

NAZIM AGAYEV Department of Computer Engineering European University of Lefke, Cyprus Email: agayev@eul.edu.tr

SAIT HALICIOGLU Department of Mathematics Ankara University, Ankara, Turkey Email: halici@ankara.edu.tr

Abdullah Harmanci Maths Department Hacettepe University, Ankara, Turkey Email: harmanci@hacettepe.edu.tr

ABSTRACT. Let R be an arbitrary ring with identity and M a right R-module with $S = \operatorname{End}_R(M)$. In this paper, we introduce a class of modules that is a generalization of principally quasi-Baer rings and Baer modules. The module $_SM$ is called *principally quasi-Baer* if for any $m \in M$, $l_S(Sm) = Se$ for some $e^2 = e \in S$. It is proved that (1) if $_SM$ is regular and semicommutative module or (2) if M_R is principally semisimple and $_SM$ is abelian, then $_SM$ is a principally quasi-Baer module. The connection between a principally quasi-Baer module $_SM$ and polynomial extension, power series extension, Laurent polynomial extension, Laurent power series extension of $_SM$ is investigated.

1. INTRODUCTION

Throughout this paper R denotes an associative ring with identity, and modules will be unitary right R-modules. For a module M, $S = \operatorname{End}_R(M)$ denotes the ring of right R-module endomorphisms of M. Then M is a left S-module, right R-module and (S, R)-bimodule. In this work, for any rings S and R and any (S, R)bimodule M, $r_R(.)$ and $l_M(.)$ denote the right annihilator of a subset of M in R

©2011 Aulona Press (Albanian J. Math.)

¹⁹⁹¹ Mathematics Subject Classification. 13C99, 16D80, 16U80.

Key words and phrases. Baer modules, quasi-Baer modules, principally quasi-Baer modules.

and the left annihilator of a subset of R in M, respectively. Similarly, $l_S(.)$ and $r_M(.)$ will be the left annihilator of a subset of M in S and the right annihilator of a subset of S in M, respectively. A ring R is reduced if it has no nonzero nilpotent elements. Recently the reduced ring concept was extended to modules by Lee and Zhou in [9], that is, a module M is called *reduced* if for any $m \in M$ and any $a \in R$, ma = 0 implies $mR \cap Ma = 0$. A ring R is called *semicommutative* if for any $a, b \in R, ab = 0$ implies aRb = 0. The module _SM is called *semicommutative* if for any $f \in S$ and $m \in M$, fm = 0 implies fSm = 0 (see [3] for details). Baer rings [7] are introduced as rings in which the right (left) annihilator of every nonempty subset is generated by an idempotent. A ring R is said to be right quasi-Baer [5] if the right annihilator of each right ideal of R is generated (as a right ideal) by an idempotent. A ring R is called right principally quasi-Baer [4] if the right annihilator of a principal right ideal of R is generated by an idempotent. An R-module $_{S}M$ is called *Baer* [12] if for all *R*-submodules N of M, $l_S(N) = Se$ with $e^2 = e \in S$. The module $_{S}M$ is said to be *quasi-Baer* if for all fully invariant *R*-submodules *N* of M, $l_S(N) = Se$ with $e^2 = e \in S$. A ring R is called *abelian* if every idempotent element is central, that is, ae = ea for any $e^2 = e$, $a \in R$. Abelian modules are introduced in the context by Roos in [14] and studied by Goodearl and Boyle [6], Rizvi and Roman [13]. A module $_{S}M$ is called *abelian* if for any $f \in S$, $e^{2} = e \in S$, $m \in M$, we have fem = efm. Note that $_{S}M$ is an abelian module if and only if S is an abelian ring. In what follows, by \mathbb{Z} , \mathbb{Q} , \mathbb{Z}_n and $\mathbb{Z}/n\mathbb{Z}$ we denote integers, rational numbers, the ring of integers modulo n and the \mathbb{Z} -module of integers modulo n, respectively.

2. PRINCIPALLY QUASI-BAER MODULES

Some properties of R-modules do not characterize the ring R, namely there are reduced R-modules but R need not be reduced and there are abelian R-modules but R is not an abelian ring. Because of that the investigation of some classes of modules in terms of their endomorphism rings are done by the present authors (see [2] for details). In this section we introduce a class of modules that is a generalization of principally quasi-Baer rings and Baer modules. We prove that some results of principally quasi-Baer rings can be extended to this general setting.

Definition 2.1. Let M be an R-module with $S = \operatorname{End}_R(M)$. The module ${}_SM$ is called *principally quasi-Baer* if for any $m \in M$, $l_S(Sm) = Se$ for some $e^2 = e \in S$.

It is straightforward that all Baer, quasi-Baer, semisimple modules are principally quasi-Baer. But a submodule of principally quasi-Baer module may not be principally quasi-Baer. If e is an idempotent element in the ring R and ere = re(ere = er) for all $r \in R$, then e is called *left (right) semicentral*. In the following proposition we prove that idempotents in the definition of principally quasi-Baer modules are right semicentral.

Proposition 2.2. Let M be an R-module with $S = End_R(M)$. If ${}_SM$ is a principally quasi-Baer module, then there exists a right semicentral idempotent $e \in S$ such that $l_S(Sm) = Se$ for each $m \in M$.

Proof. Let $m \in M$ and ${}_{S}M$ be a principally quasi-Baer module. By hypothesis, there exists $e^{2} = e \in S$ with $l_{S}(Sm) = Se$. Since $SefSm \subseteq SeSm = 0$, we have SefSm = 0 for all $f \in S$. Hence, $Sef \subseteq l_{S}(Sm) = Se$. Thus, ef = efe for all $f \in S$.

Theorem 2.3. Let M be an R-module with $S = End_R(M)$. The following are equivalent.

- (1) $_{S}M$ is principally quasi-Baer.
- (2) The left annihilator of every finitely generated S-submodule of $_SM$ in S is generated (as a left ideal) by an idempotent.

Proof. (1) \Rightarrow (2) Let $N = \sum_{i=1}^{n} Sm_i$ $(n \in \mathbb{N})$ be a finitely generated S-submodule of M. Then, $l_S(N) = \bigcap_{i=1}^{n} l_S(Sm_i)$. Since M is principally quasi-Baer, there exist $e_i^2 = e_i \in S$ such that $l_S(Sm_i) = Se_i$ for i = 1, 2, ..., n. So $l_S(N) = \bigcap_{i=1}^{n} Se_i$ with each e_i a right semicentral idempotent of S by Proposition 2.2. Now we show that $Se_1 \cap Se_2 = Se_1e_2$. Since $Se_1e_2 = Se_1e_2e_1$, then $Se_1e_2 \subseteq Se_1 \cap Se_2$. In order to see other inclusion, let $f = f_1e_1 = f_2e_2 \in Se_1 \cap Se_2$ for some $f_1, f_2 \in S$. Then, $fe_2 = f_1e_1e_2 = f_2e_2 = f \in Se_1e_2$. Thus, $Se_1 \cap Se_2 \subseteq Se_1e_2$. On the other hand $(e_1e_2)^2 = e_1e_2$, because e_1 is right semicentral. In a similar way, we have $l_S(N) = \bigcap_{i=1}^{n} Se_i = S(e_1e_2 \dots e_n)$ with $(e_1e_2 \dots e_n)^2 = e_1e_2 \dots e_n$.

(2) \Rightarrow (1) It is obvious from (2) since every cyclic S-submodule of $_SM$ is finitely generated.

Corollary 2.4. Let M be an R-module with $S = End_R(M)$. If $_SM$ is a finitely generated module and S is a principal ideal domain (or a Noetherian ring), then the following are equivalent.

- (1) $_{S}M$ is Baer.
- (2) $_{S}M$ is quasi-Baer.
- (3) $_{S}M$ is principally quasi-Baer.

Proposition 2.5. Let M be an R-module with $S = End_R(M)$. If $_SM$ is a principally quasi-Baer module and N a direct summand of M, then $_TN$ is principally quasi-Baer, where $T = End_R(N)$.

Proof. Let N be a direct summand of M. There exists $e^2 = e \in S$ such that N = eM. So the endomorphism ring T of N is eSe. Let $n \in N$. Since ${}_{S}M$ is a principally quasi-Baer module, there exists a right semicentral idempotent f in S such that $l_S(Sn) = Sf$. Hence, efe is an idempotent of eSe. We claim that $l_{eSe}(Tn) = (eSe)(efe)$. For any $g \in S$, egefeTn = 0, and so $(eSe)(efe) \leq l_{eSe}(Tn)$. On the other hand, let $x \in Sf \cap eSe$. Then, $xTn = xeSen = xeSn \leq xSn = 0$. Hence we have $x \in l_{eSe}(Tn)$. This implies that $Sf \cap eSe \leq l_{eSe}(Tn)$. Now let $eye \in l_{eSe}(Tn)$ with $y \in S$. Since eyeTn = eyeSen = eyeSn = 0, we have $eye \in Sf$. It follows that $l_{eSe}(Tn) \leq Sf \cap eSe$. Thus, $l_{eSe}(Tn) = Sf \cap eSe$. In order to see $l_{eSe}(Tn) \leq (eSe)(efe)$, let $x \in l_{eSe}(Tn)$. Then, $x = s_1f = es_2e$ for some $s_1, s_2 \in S$. Notice that $x = xf = s_1f = es_2ef$ and $x = xe = s_1fe = es_2e$. Hence, $x = xe = xfe = s_1fe = es_2efe \in (eSe)(efe)$. Thus, $l_{eSe}(Tn) \leq (eSe)(efe)$. This completes the proof.

The direct sum of principally quasi-Baer modules is not principally quasi-Baer as the following example shows.

Example 2.6. Consider $M = \mathbb{Z} \oplus \mathbb{Z}_2$ as a \mathbb{Z} -module. Since \mathbb{Z} is a domain and \mathbb{Z}_2 is simple, \mathbb{Z} and \mathbb{Z}_2 are Baer and so principally quasi-Baer \mathbb{Z} -modules. It can

be easily determined that $S = \operatorname{End}_{\mathbb{Z}}(M)$ is $\begin{bmatrix} \mathbb{Z} & 0 \\ \mathbb{Z}_2 & \mathbb{Z}_2 \end{bmatrix}$. For $m = (2,\overline{1}) \in M$,

 $l_S(Sm) = \begin{bmatrix} 0 & 0 \\ \mathbb{Z}_2 & 0 \end{bmatrix}$ and $l_S(Sm)$ is not a direct summand of S. This implies that $_SM$ is not principally quasi-Baer.

Theorem 2.7. Let $M = M_1 \oplus M_2$ be an *R*-module with $S = End_R(M)$. If S_1M_1 and S_2M_2 are principally quasi-Baer, where $S_1 = End_R(M_1)$, $S_2 = End_R(M_2)$ and $Hom(M_i, M_j) = 0$ for $i \neq j$, i = j = 1, 2, then SM is also principally quasi-Baer.

Proof. By hypothesis, $Hom(M_i, M_j) = 0$ for $i \neq j$, i = j = 1, 2, we have $S = S_1 \oplus S_2$. Let $m = (m_1, m_2) \in M$ for some $m_1 \in M_1$ and $m_2 \in M_2$. Since $S_i M_i$ is principally quasi-Baer, there exists an idempotent $e_i \in S_i$ with $l_{S_i}(S_im_i) = S_ie_i$ for i = 1, 2. On the other hand, we have $l_S(Sm) = l_{S_1}(S_1m_1) \oplus l_{S_2}(S_2m_2)$, and so $l_S(Sm)$ is a direct summand of S.

Let M be an R-module with $S = \operatorname{End}_R(M)$. Recall that the submodule N of M is called *fully invariant* if $f(N) \leq N$ for all $f \in S$.

Proposition 2.8. Let M be an R-module with $S = End_R(M)$. If $_SM$ is a principally quasi-Baer module, then every principal fully invariant submodule of M is not essential in M.

Proof. Let mR be a fully invariant submodule of M. Since ${}_{S}M$ is a principally quasi-Baer module, there exists $e^{2} = e \in S$ with $l_{S}(Sm) = Se$. Then we have $Sm \subseteq r_{M}(l_{S}(Sm)) = r_{M}(Se) = (1-e)M$. Hence, mR is not essential in M. \Box

A module M is said to be *principally semisimple* if every principal submodule is a direct summand of M.

Proposition 2.9. Let M be an R-module with $S = End_R(M)$. If M_R is principally semisimple and $_SM$ is abelian, then $_SM$ is a principally quasi-Baer module.

Proof. If $m \in M$, then by hypothesis $M = mR \oplus K$ for some submodule K of M. Let e denote the projection of M onto mR. It is routine to show that $l_S(Sm) \leq S(1-e)$. Since m = em and $_SM$ is abelian, we have S(1-e)Sm = S(1-e)Sem = S(1-e)Sem = S(1-e)Sm = 0. Thus, $S(1-e) \leq l_S(Sm)$. This completes the proof. \Box

A left *T*-module *M* is called *regular* (in the sense Zelmanowitz [15]) if for any $m \in M$ there exists a left *T*-homomorphism $M \xrightarrow{\phi} T$ such that $m = \phi(m)m$.

Proposition 2.10. Let M be an R-module with $S = End_R(M)$. If $_SM$ is regular and semicommutative, then $_SM$ is a principally quasi-Baer module.

Proof. If $m \in M$, then by hypothesis there exists a left S-homomorphism $M \stackrel{\phi}{\to} S$ such that $m = \phi(m)m$. Note that $\phi(m)$ is an idempotent of S. We prove $l_S(Sm) = S(1-\phi(m))$. Since $(1-\phi(m))m = 0$ and $_SM$ is semicommutative, we have $(1-\phi(m))Sm = 0$. Then, $S(1-\phi(m)) \leq l_S(Sm)$. Now let $f \in l_S(Sm)$. Hence, fm = 0 and so $\phi(fm) = f\phi(m) = 0$. Thus, $f = f - f\phi(m) = f(1-\phi(m)) \in S(1-\phi(m))$. Therefore, $l_S(Sm) \leq S(1-\phi(m))$, and this completes the proof. \Box

Lemma 2.11. Let M be an R-module with $S = End_R(M)$. If $_SM$ is a semicommutative module, then $l_S(Sm) = l_S(m)$ for any $m \in M$.

Proof. We always have $l_S(Sm) \subseteq l_S(m)$. Conversely, let $f \in l_S(m)$. Since ${}_SM$ is a semicommutative module, fm = 0 implies $f \in l_S(Sm)$.

According to Lambek, a ring R is called symmetric [8] if whenever $a, b, c \in R$ satisfy abc = 0 implies cab = 0. The module M_R is called symmetric ([8] and [10]) if whenever $a, b \in R, m \in M$ satisfy mab = 0, we have mba = 0. Symmetric modules are also studied by the present authors in [1] and [11]. In our case, we have the following.

Definition 2.12. Let M be an R-module with $S = \text{End}_R(M)$. The module ${}_SM$ is called *symmetric* if for any $m \in M$ and $f, g \in S, fgm = 0$ implies gfm = 0.

Example 2.13. Let M be a finitely generated torsion \mathbb{Z} -module. Then M is isomorphic to the \mathbb{Z} -module $(\mathbb{Z}/\mathbb{Z}p_1^{n_1}) \oplus (\mathbb{Z}/\mathbb{Z}p_2^{n_2}) \oplus ... \oplus (\mathbb{Z}/\mathbb{Z}p_t^{n_t})$ where p_i (i = 1, ..., t) are distinct prime numbers and n_i (i = 1, ..., t) are positive integers. End_{\mathbb{Z}}(M) is isomorphic to the commutative ring $(\mathbb{Z}_{p_1^{n_1}}) \oplus (\mathbb{Z}_{p_2^{n_2}}) \oplus ... \oplus (\mathbb{Z}_{p_t^{n_t}})$. So $_SM$ is a symmetric module.

Lemma 2.14. Let M be an R-module with $S = End_R(M)$. If $_SM$ is symmetric, then $_SM$ is semicommutative. Converse is true if $_SM$ is a principally quasi-Baer module.

Proof. Let $f \in S$ and $m \in M$ with fm = 0. Then for all $g \in S$, gfm = 0implies fgm = 0. So fSm = 0. Conversely, let $f, g \in S$ and $m \in M$ with fgm = 0. By Lemma 2.11, $f \in l_S(gm) = l_S(Sgm) = Se$ for some $e^2 = e \in S$. So f = fe and egm = 0. Since $_SM$ is semicommutative, egSm = 0. Therefore, gfm = gfem = gefm = egfm = 0 because e is central. \Box

The proof of Proposition 2.15 is straightforward.

Proposition 2.15. Let M be an R-module with $S = End_R(M)$. Consider the following conditions for $f \in S$.

(1)
$$SKerf \cap Imf = 0.$$

(2) Whenever $m \in M$, fm = 0 if and only if $Imf \cap Sm = 0$.

Then (1) \Rightarrow (2). If _SM is a semicommutative module, then (2) \Rightarrow (1).

A module $_{S}M$ is called *reduced* if condition (2) of Proposition 2.15 holds for each $f \in S$.

Example 2.16. Let p be any prime integer and M the \mathbb{Z} -module $(\mathbb{Z}/p\mathbb{Z}) \oplus \mathbb{Q}$. Then $S = \operatorname{End}_R(M)$ is isomorphic to the matrix ring $\left\{ \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \mid a \in \mathbb{Z}_p, b \in \mathbb{Q} \right\}$. It is evident that ${}_SM$ is a reduced module.

Proposition 2.17. Let M be an R-module with $S = End_R(M)$. Then the following are equivalent.

(1) $_{S}M$ is a reduced module.

(2) For any $f \in S$ and $m \in M$, $f^2m = 0$ implies fSm = 0.

Proof. It follows from [9, Lemma 1.2].

Lemma 2.18. Let M be an R-module with $S = End_R(M)$. If $_SM$ is a reduced module, then $_SM$ is symmetric. The converse holds if $_SM$ is a principally quasi-Baer module.

Proof. For any $f, g \in S$ and $m \in M$ suppose that fgm = 0. Then, $(fg)^2(m) = 0$ and by hypothesis fgSm = 0. So fgfm = 0 and $(gf)^2m = 0$. Then, gfSm = 0implies gfm = 0. Therefore, $_SM$ is symmetric. Conversely, let $f \in S$ and $m \in M$ with $f^2m = 0$. By Lemma 2.14, $_SM$ is semicommutative and from Lemma 2.11, $f \in l_S(fm) = l_S(Sfm) = Se$ for some $e^2 = e \in S$. So f = fe and efm = 0. Since $_SM$ is semicommutative, efSm = 0. Then, fgm = fegm = efgm = 0 for any $g \in S$. Therefore, fSm = 0 and so $_SM$ is a reduced module.

Next example shows that the reverse implication of the first statement in Lemma 2.18 is not true in general, i.e., there exists a symmetric module which is neither reduced nor principally quasi-Baer.

Example 2.19. Consider the ring

$$R = \left\{ \left[\begin{array}{cc} a & b \\ 0 & a \end{array} \right] \mid a, b \in \mathbb{Z} \right\}$$

and the right R-module

$$M = \left\{ \left[\begin{array}{cc} 0 & a \\ a & b \end{array} \right] \mid a, b \in \mathbb{Z} \right\}.$$

Let $f \in S$ and $f \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & c \\ c & d \end{bmatrix}$. Multiplying the latter by $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ we have $f \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & c \end{bmatrix}$. For any $\begin{bmatrix} 0 & a \\ a & b \end{bmatrix} \in M$, $f \begin{bmatrix} 0 & a \\ a & b \end{bmatrix} = \begin{bmatrix} 0 & ac \\ ac & ad + bc \end{bmatrix}$. Similarly, let $g \in S$ and $g \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & c' \\ c' & d' \end{bmatrix}$. Then, $g \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & c' \end{bmatrix}$. For any $\begin{bmatrix} 0 & a \\ a & b \end{bmatrix} \in M$, $g \begin{bmatrix} 0 & a \\ a & b \end{bmatrix} = \begin{bmatrix} 0 & ac' \\ ac' & ad' + bc' \end{bmatrix}$. Then it is easy to check that for any $\begin{bmatrix} 0 & a \\ a & b \end{bmatrix} \in M$,

$$fg\begin{bmatrix} 0 & a \\ a & b \end{bmatrix} = f\begin{bmatrix} 0 & ac' \\ ac' & ad' + bc' \end{bmatrix} = \begin{bmatrix} 0 & ac'c \\ ac'c & ad'c + adc' + bc'c \end{bmatrix}$$

and

$$gf\begin{bmatrix} 0 & a \\ a & b \end{bmatrix} = g\begin{bmatrix} 0 & ac \\ ac & ad + bc \end{bmatrix} = \begin{bmatrix} 0 & acc' \\ acc' & acd' + ac'd + bcc' \end{bmatrix}$$

Hence, fg = gf for all $f, g \in S$. Therefore, S is commutative and so ${}_{S}M$ is symmetric. Define $f \in S$ by $f \begin{bmatrix} 0 & a \\ a & b \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & a \end{bmatrix}$ where $\begin{bmatrix} 0 & a \\ a & b \end{bmatrix} \in M$. Then, $f \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ and $f^{2} \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} = 0$. Hence, ${}_{S}M$ is not reduced. Let $m = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$. By Lemma 2.14, ${}_{S}M$ is semicommutative and so by Lemma 2.11, $l_{S}(Sm) = l_{S}(m) \neq 0$ since the endomorphism f defined preceding belongs to the $l_{S}(m)$. The module M is indecomposable as a right R-module, therefore S does not have any idempotents other than zero and identity. Hence, $l_{S}(Sm)$ can not be generated by an idempotent as a left ideal of S.

We can summarize the relations between reduced modules, symmetric modules and semicommutative modules by using principally quasi-Baer modules. **Theorem 2.20.** Let M be an R-module with $S = End_R(M)$. If $_SM$ is a principally quasi-Baer module, then the following conditions are equivalent.

- (1) $_{S}M$ is a reduced module.
- (2) $_{S}M$ is a symmetric module.
- (3) $_{S}M$ is a semicommutative module.

Proof. It follows from Lemma 2.18 and Lemma 2.14.

In the sequel we investigate extensions of principally quasi-Baer modules. We show that there is a strong connection between principally quasi-Baer modules and polynomial extension, power series extension, Laurent polynomial extension, Laurent power series extension of M.

Let $R[x], R[[x]], R[x, x^{-1}]$ and $R[[x, x^{-1}]]$ be the polynomial ring, the power series ring, the Laurent polynomial ring and the Laurent power series ring over R, respectively and M an R-module with $S = \operatorname{End}_R(M)$. Lee and Zhou [9] introduced the following notations. Consider

$$M[x] = \left\{ \sum_{i=0}^{s} m_{i} x^{i} : s \ge 0, m_{i} \in M \right\},\$$

$$M[[x]] = \left\{ \sum_{i=0}^{\infty} m_{i} x^{i} : m_{i} \in M \right\},\$$

$$M[x, x^{-1}] = \left\{ \sum_{i=-s}^{t} m_{i} x^{i} : s \ge 0, t \ge 0, m_{i} \in M \right\},\$$

$$M[[x, x^{-1}]] = \left\{ \sum_{i=-s}^{\infty} m_{i} x^{i} : s \ge 0, m_{i} \in M \right\}.$$

Each of these is an abelian group under an obvious addition operation. For a module M, M[x] is a left S[x]-module by the scalar product:

$$m(x) = \sum_{j=0}^{s} m_j x^j \in M[x] \quad , \quad \alpha(x) = \sum_{i=0}^{t} f_i x^i \in S[x]$$
$$\alpha(x)m(x) = \sum_{k=0}^{s+t} \left(\sum_{i+j=k} f_i m_j\right) x^k.$$

With a similar scalar product, M[[x]], $M[x, x^{-1}]$ and $M[[x, x^{-1}]]$ become left modules over S[[x]], $S[x, x^{-1}]$ and $S[[x, x^{-1}]]$, respectively. The modules M[x], M[[x]], $M[x, x^{-1}]$ and $M[[x, x^{-1}]]$ are called the *polynomial extension*, the *power* series extension, Laurent polynomial extension and the Laurent power series extension of M, respectively. The module M[x] is called a *principally quasi-Baer* if for any $m(x) \in M[x]$, there exists $e^2 = e \in S[x]$ such that $l_{S[x]}(S[x]m(x)) = S[x]e$. Also M[[x]], $M[x, x^{-1}]$ and $M[[x, x^{-1}]]$ may be defined in a similar way.

Theorem 2.21. Let M be an R-module with $S = End_R(M)$. Then

(1) M[x] is a principally quasi-Baer module if and only if $_{S}M$ is a principally quasi-Baer module.

(2) If M[[x]] is a principally quasi-Baer module, then ${}_{S}M$ is a principally quasi-Baer module.

(3) If $M[x, x^{-1}]$ is a principally quasi-Baer module, then _SM is a principally quasi-Baer module.

(4) If $M[[x, x^{-1}]]$ is a principally quasi-Baer module, then _SM is a principally quasi-Baer module.

Proof. (1) Assume that M[x] is a principally quasi-Baer module and $m \in M$. There exists $e(x)^2 = e(x) \in S[x]$ such that $l_{S[x]}(S[x]m) = S[x]e(x)$. Thus, $S[x]e(x) \subseteq l_{S[x]}(Sm) = l_S(Sm)[x].$ For $f(x) = \sum_{i=0}^{n} f_i x^i \in l_S(Sm)[x], f_i Sm = 0$ for all $i \ge 0$. For any $g(x) = \sum_{j=0}^{k} g_j x^j \in S[x]m, f(x)g(x) = \sum_{i} \sum_{j} f_i g_j x^{i+j} = 0$. So $f(x) \in l_{S[x]}(S[x]m)$. Thus, $l_S(Sm)[x] = S[x]e(x)$. Write $e(x) = \sum_{i=0}^t e_i x^i$, where all $e_i \in l_S(Sm)$. Then for any $h \in l_S(Sm), h = h_1(x)e(x)$ for some $h_1(x) \in S[x]$. So $he(x) = h_1(x)e(x)e(x) = h_1(x)e(x) = h$. It follows that $h = he_0$ for all $h \in l_S(Sm)$. Thus, $l_S(Sm) = Se_0$ with $e_0^2 = e_0$. It means that $_SM$ is principally quasi-Baer. Conversely, assume $_{S}M$ is a principally quasi-Baer module. Let $m(x) = m_0 + m_1 x + \dots + m_n x^n \in M[x]$. Then, $l_S(Sm_i) = Se_i$ where e_i 's are right semicentral idempotents for all i = 0, 1, ..., n. Let $e = e_0 e_1 ... e_n$. Then e is also a right semicentral in S and $Se = \bigcap_{i=0}^{n} l_S(Sm_i)$. Hence, $S[x]e \subseteq l_{S[x]}(S[x]m(x))$. Note that $l_{S[x]}(S[x]m(x)) = l_{S[x]}(Sm(x))$. So, $S[x]e \subseteq l_{S[x]}(Sm(x))$. Now, let $h(x) = h_0 + h_1 x + \dots + h_k x^k \in l_{S[x]}(Sm(x))$. Then, $(h_0 + h_1 x + \dots + h_k x^k)S(m_0 + \dots + h_k x^k)S$ $m_1x + \ldots + m_nx^n = 0$. Hence for any $\alpha \in S$, we have

$$h_{0}\alpha m_{0} = 0 \quad (1)$$

$$h_{0}\alpha m_{1} + h_{1}\alpha m_{0} = 0 \quad (2)$$

$$+ h_{1}\alpha m_{1} + h_{2}\alpha m_{0} = 0 \quad (3)$$

By the first equation, $h_0 \in l_S(Sm_0) = Se_0$. It means that $h_0 = h_0e_0$ and $Se_0Sm_0 = 0$. For $f \in S$ consider e_0f instead of α in (2). Then, $h_0e_0fm_1 + f_0e_0fm_1$ $h_1e_0fm_0 = h_0e_0fm_1 = h_0fm_1 = 0$. So $h_0 \in l_S(Sm_1) = Se_1$. Thus, $h_0 \in Se_0e_1$. Since $h_0Sm_1 = 0$, (2) yields $h_1Sm_0 = 0$. Hence, $h_1 \in l_S(Sm_0) = Se_0$. Now we take $\alpha = e_0 e_1 f \in S$ and apply in (3). Then, $h_0 e_0 e_1 f m_2 + h_1 e_0 e_1 f m_1 + h_2 e_0 e_1 f m_0 = 0$. $\begin{array}{l} a = c_0 c_1 f \in S \text{ and apply in (5). Then, } h_0 c_0 c_1 f m_2 + h_1 c_0 c_1 f m_1 + h_2 c_0 c_1 f m_0 = 0. \\ \text{But } h_1 c_0 c_1 f m_1 = h_2 c_0 c_1 f m_0 = 0. \\ \text{Hence, } h_0 c_0 c_1 f m_2 = h_0 f m_2 = 0. \\ \text{So } h_0 \in I_S(Sm_i)) = S c_0 c_1 c_2. \\ \text{By (3), we have } h_1 Sm_1 + h_2 Sm_0 = 0. \\ \text{Then we have } h_1 c_0 f m_1 + h_2 c_0 f m_0 = 0. \\ \text{But } h_2 c_0 f m_0 = 0, \text{ so } h_1 c_0 f m_1 = h_1 f m_1 = 0. \\ \text{Thus, } h_1 \in I_S(\bigcap_{i=0}^{1} l_S(Sm_i)) = S c_0 c_1 \text{ and } h_2 Sm_0 = 0. \\ \text{Hence, } h_2 \in I_S(Sm_0) = S c_0. \end{array}$ Continuing this procedure, yields $h_i \in Se$ for all i = 1, 2, ..., k. Hence, $h(x) \in S[x]e$. Consequently $S[x]e = l_{S[x]}(S[x]m(x)).$

(2), (3) and (4) are proved similarly.

 $h_0 \alpha m_2$

References

[1] N. Agayev, S. Halicioglu and A. Harmanci, On symmetric modules, Riv. Mat. Univ. Parma 8(2)(2009), 91-99.

- [2] N. Agayev, S. Halicioglu and A. Harmanci, On Rickart modules, appears in Bull. Iran. Math. Soc. available at http://www.iranjournals.ir/ims/bulletin/
- [3] N. Agayev, T. Ozen and A. Harmanci, On a Class of Semicommutative Modules, Proc. Indian Acad. Sci. 119(2)(2009), 149-158.
- [4] G. F. Birkenmeier, J. Y. Kim and J. K. Park, A sheaf representation of quasi-Baer rings, J. Pure Appl. Algebra, 146(3)(2000), 209-223.
- [5] W. E. Clark, Twisted matrix units semigroup algebras, Duke Math. J. Volume 34, Number 3 (1967), 417-423.
- [6] K. R. Goodearl and A. K. Boyle, Dimension theory for nonsingular injective modules, Memoirs Amer. Math. Soc. 7(177), 1976.
- [7] I. Kaplansky, Rings of Operators, Math. Lecture Note Series, Benjamin, New York, 1965.
- [8] J. Lambek, On the representation of modules by sheaves of factor modules, Canad. Math. Bull. 14(3)(1971), 359-368.
- [9] T. K. Lee and Y. Zhou, *Reduced Modules*, Rings, modules, algebras and abelian groups, 365-377, Lecture Notes in Pure and Appl. Math., 236, Dekker, New York, (2004).
- [10] R. Raphael, Some remarks on regular and strongly regular rings, Canad. Math.Bull. 17(5)(1974/75), 709–712.
- [11] M. B. Rege and A. M. Buhphang, On reduced modules and rings, Int. Electron. J. Algebra, 3(2008), 58-74.
- [12] S. T. Rizvi and C. S. Roman, Baer and Quasi-Baer Modules, Comm. Algebra 32(2004), 103-123.
- [13] S. T. Rizvi and C. S. Roman, On K-nonsingular Modules and Applications, Comm. Algebra 34(2007), 2960-2982.
- [14] J. E. Roos, Sur les categories auto-injectifs a droit, C. R. Acad.Sci. Paris 265(1967), 14-17.
- [15] J. M. Zelmanowitz, Regular modules, Trans. Amer. Math. Soc. 163(1972),341-355.