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Abstract. In this paper, we obtain the general solution and the generalized
Hyers-Ulam stability for the following functional equation

f
(∑m

i=1 xi

m

)
+

m∑
i=1
i6=j

f
(xj − xi

m

)
= f(xj).

This is applied to investigate derivations and their stability in proper Lie CQ∗-
algebras.

1. Introduction and preliminaries

Ulam [42] gave a talk before the Mathematics Club of the University of Wisconsin

in which he discussed a number of unsolved problems. Among these problems was

the following question concerning the stability of homomorphisms.
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152 STABILITY OF DERIVATIONS

Let (G1, ∗) be a group and let (G2, �, d) be a metric group with the metric d(·, ·).
Given ε > 0, does there exist a δ(ε) > 0 such that if a mapping f : G1 → G2

satisfies the inequality

d(f(x ∗ y), f(x) � f(y)) < δ

for all x, y ∈ G1, then there is a homomorphism T : G1 → G2 with

d(f(x), T (x)) < ε

for all x ∈ G1?

If the answer is affirmative, we say that the equation of homomorphism T (xy) =

T (x)T (y) is stable. The concept of stability for a functional equation arises when

we replace the functional equation by an inequality which acts as a perturbation

of the equation. Thus the stability question of functional equations is that how do

the solutions of the inequality differ from those of the given functional equation?

Hyers [18] considered the case of approximately additive mappings f : E → E′,

where E and E′ are Banach spaces and f satisfies Hyers inequality

‖f(x+ y)− f(x)− f(y)‖ ≤ ε

for all x, y ∈ E. It was shown that the limit

L(x) = lim
n→∞

f(2nx)

2n

exists for all x ∈ E and that L : E → E′ is the unique additive mapping satisfying

‖f(x)− L(x)‖ ≤ ε.

Hyers’ theorem was generalized by Aoki [3] for additive mappings and inde-

pendently by Th.M. Rassias [36] for linear mappings by considering an unbounded

Cauchy difference. In 1994, a generalization of Th.M. Rassias
,

theorem was ob-

tained by Găvruta [15]. J.M. Rassias [31]-[34] generalized Hyers result. During the

last two decades, a number of papers and research monographs have been published

on various generalizations and applications of the generalized Hyers-Ulam stability

to a number of functional equations and mappings (see [11]-[13], [20], [24]-[28],[30],

[37]-[39]). We also refer the readers to the books [1], [10], [19], [21] and [37].

We recall some basic facts concerning quasi ∗-algebras.

Definition 1.1. Let A be a linear space and A0 be a ∗-algebra contained in A as

a subspace. We say that A is a quasi ∗-algebra over A0 if

(i) the right and left multiplications of an element of A and an element of A0

are always defined and linear;

(ii) x1(x2a) = (x1x2)a, (ax1)x2 = a(x1x2) and x1(ax2) = (x1a)x2 for all

x1, x2 ∈ A0 and all a ∈ A;
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(iii) an involution ∗, which extends the involution of A0, is defined in A with

the property (ab)∗ = b∗a∗, whenever the multiplication is defined.

Quasi ∗-algebras [22, 23] arise in natural way as completions of locally convex

∗-algebras whose multiplication is not jointly continuous; in this case one has to

deal with topological quasi ∗-algebras.

A quasi ∗-algebra (A,A0) is called topological if a locally convex topology τ on

A is given such that:

(i) the involution a 7→ a∗ is continuous for each a ∈ A,

(ii) the mappings a 7→ ab and a 7→ ba are continuous for each a ∈ A and b ∈ A0,

(iii) A0 is dense in A[τ ].

Throughout this paper, we suppose that a locally convex quasi ∗-algebra (A,A0)

is complete. For an overview on partial ∗-algebra and related topics we refer to [2].

In a series of papers [4], [5], [6], [7] many authors have considered a special

class of quasi ∗-algebras, called proper CQ∗-algebras, which arise as completions of

C∗-algebras. They can be introduced in the following way:

Definition 1.2. Let A be a Banach module over the C
∗
-algebra A0 with involution

∗ and C∗-norm ‖.‖0 such that A0 ⊂ A. We say that (A,A0) is a proper CQ∗-algebra

if

(i) A0 is dense in A with respect to its norm ‖.‖;
(ii) (ab)∗ = b∗a∗ whenever the multiplication is defined;

(iii) ‖y‖0 = max{ supa∈A,‖a‖≤1 ‖ay‖, supa∈A,‖a‖≤1 ‖ya‖ } for all y ∈ A0.

A proper CQ∗-algebra (A,A0) is said to have a unit e if there exists an element

e ∈ A0 such that ae = ea = a for all a ∈ A. In this paper we will always assume

that the proper CQ∗-algebra under consideration have an identity.

Definition 1.3. A proper CQ∗-algebra (A,A0), endowed with a bilinear multipli-

cation [, ] : (A×A0)∪ (A0 ×A)→ A, called the bracket, which satisfies two simple

properties:

(i) [x1, x2] = −[x2, x1] for all (x1, x2) ∈ (A×A0) ∪ (A0 ×A);

(ii) [x1, [x2, x3]] = [[x1, x2], x3] + [x1, [x2, x3]] for all x1, x2, x3 ∈ A0

is called a proper Lie CQ∗-algebra.

Definition 1.4. Let (A,A0) be a proper Lie CQ∗-algebras. A C-linear mapping

δ : A0 → A is called a Lie derivation if

δ([z, x]) = [δ(z), x] + [z, δ(x)]

for all x, z ∈ A0 (see [28]).
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Throughout this paper, we assume that m and j are fixed positive integers with

m ≥ 2.

In this paper, we obtain the general solution and the generalized Ulam-Hyers

stability for the following functional equation

(1.1) f
(∑m

i=1 xi

m

)
+

m∑
i=1
i6=j

f
(xj − xi

m

)
= f(xj)

where m is a fixed positive integer with m ≥ 2. This is applied to investigate

derivations and their stability on proper Lie CQ∗-algebras.

2. Solution of functional equation (1.1)

Throughout this section, let both X and Y be real vector spaces. We here present

the general solution of (1.1).

Theorem 2.1. A mapping f : X → Y satisfies (1.1) if and only if the mapping

f : X → Y is additive.

We first assume that the mapping f : X → Y satisfies (1.1). Setting xj = x and

xi = 0 for all 1 ≤ i ≤ m and i 6= j in (1.1), we get

(2.1) f
( x
m

)
=

1

m
f(x)

for all x ∈ X. Setting xj = x, xj+1 = y and xi = 0 for i 6= j, j + 1 in (1.1) and

using (2.1), we get

(2.2) f

(
x+ y

m

)
+ f

(
x− y
m

)
=

2

m
f(x)

for all x, y ∈ X. Replacing x and y by mx and my in (2.2), we get

(2.3) f(x+ y) + f(x− y) = 2f(x)

for all x, y ∈ X. Setting y = x in (2.3), we get

(2.4) f(2x) = 2f(x)

for all x ∈ X. Replacing x by x+y
2 and y by x−y

2 in (2.3), and using (2.4) we get

f(x+ y) = f(x) + f(y)

for all x, y ∈ X. So the mapping f : X → Y is additive.

Conversely, let the mapping f : X → Y be additive. By a simple computation,

one can show that the mapping f satisfies the functional equation (1.1).
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3. Stability of derivation on proper Lie CQ∗-algebras

Throughout this section, assume that (A,A0) is a proper Lie CQ∗-algebra with

C∗-norm ‖.‖A0
and norm ‖.‖A. For convenience, we use the following abbreviation

for a given mapping f : A0 ×A0 × ...×A0︸ ︷︷ ︸
m−times

→ A

Dµf(x1, ..., xm) := f

(∑m
i=1 µxi

m

)
+

m∑
i=1
i6=j

f

(
µxj − µxi

m

)
− µf(xj)

for all x1, · · · , xm ∈ A0, where µ ∈ T1 := {µ ∈ C : |µ| = 1}.
We will use the following lemma:

Lemma 3.1. [29] Let f : A0 → A be an additive mapping such that f(µx) = µf(x)

for all x ∈ A0 and all µ ∈ T1. Then the mapping f is C-linear.

Theorem 3.2. Let ϕ : A0 ×A0 × ...×A0︸ ︷︷ ︸
m−times

→ [0,∞) and ψ : A0 × A0 → [0,∞) be

mappings such that

(3.1) lim
n→∞

1

mn
ϕ(mnx1, ...,m

nxm) = 0,

(3.2) lim
n→∞

1

m2n
ψ(mnx1,m

nx2) = 0,

(3.3) ϕ̃j(x) :=

∞∑
i=1

1

mi
ϕ(0, ..., mix︸︷︷︸

j th

, ...0) <∞

for all x, x1, · · · , xm ∈ A0. Suppose that f : A0 → A is a mapping such that

(3.4) ‖Dµf(x1, ..., xm)‖A ≤ ϕ(x1, ..., xm),

(3.5)
∥∥f([x1, x2])− [f(x1), x2]− [x1, f(x2)]

∥∥
A
≤ ψ(x1, x2)

for all x1, · · · , xm ∈ A0 and all µ ∈ T1. Then there exists a unique Lie derivation

δ : A0 → A such that

(3.6) ‖f(x)− δ(x)‖A ≤ ϕ̃j(x)

for all x ∈ A0.

Letting µ = 1, xj = mx and xi = 0 for all 1 ≤ i ≤ m with i 6= j in (3.4) , we get

(3.7) ‖f(mx)−mf(x)‖A ≤ ϕ(0, ..., mx︸︷︷︸
j th

, ...0)

for all x ∈ A0. Replacing x by mnx in (3.7) and dividing both sides of (3.7) by

mn+1, we get

(3.8)
∥∥∥ 1

mn+1
f(mn+1x)− 1

mn
f(mnx)

∥∥∥
A
≤ 1

mn+1
ϕ(0, ...,mn+1x︸ ︷︷ ︸

j th

, ..., 0)
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for all x ∈ A0 and all non-negative integers n. Hence

(3.9)

∥∥∥ 1

mn+1
f(mn+1x)− 1

mk
f(mkx)

∥∥∥
A
≤

n∑
i=k

∥∥∥ 1

mi+1
f(mi+1x)− 1

mi
f(mix)

∥∥∥
A

≤
n+1∑
i=k+1

1

mi
ϕ(0, ..., mix︸︷︷︸

j th

, ..., 0)

for all x ∈ A0 and all non-negative integers n and k with n ≥ k. Therefore, we

conclude from (3.3) and (3.9) that the sequence { 1
mn f(mnx)}n is a Cauchy sequence

in A for all x ∈ A0. Since A is complete, the sequence { 1
mn f(mnx)}n converges in

A for all x ∈ A0. So one can define the mapping δ : A0 → A by

(3.10) δ(x) := lim
n→∞

1

mn
f(mnx)

for all x ∈ A0. Letting k = 0 and passing the limit n → ∞ in (3.9), we get (3.6).

Now, we show that δ is a C-linear mapping. It follows from (3.1), (3.4) and (3.10)

that

‖D1δ(x1, ..., xm)‖A = lim
n→∞

1

mn

∥∥D1f(mnx1, ...,m
nxm)

∥∥
A

≤ lim
n→∞

1

mn
ϕ(mnx1, ...,m

nxm) = 0

for all x1, · · · , xm ∈ A0. So the mapping δ satisfies (1.1). By Theorem 2.1, the

mapping δ is additive.

Letting xj = mx and xi = 0 for all 1 ≤ i ≤ m with i 6= j in (3.4), we get

(3.11) ‖mf(µx)− µf(mx)‖A ≤ ϕ(0, ..., mx︸︷︷︸
j th

, ..., 0)

for all x ∈ A0. Replacing x by mnx in (3.11) and dividing both sides of (3.11) by

mn+1, we get

(3.12)

∥∥∥ 1

mn
f(µmnx)− µ

mn+1
f(mn+1x)

∥∥∥
A

≤ 1

mn+1
ϕ(0, ...,mn+1x︸ ︷︷ ︸

j th

, ..., 0)

for all x ∈ A0 and all non-negative integers n. Passing the limit n → ∞ in (3.12)

and using (3.1) and (3.10), we get

δ(µx) = µδ(x)

for all µ ∈ T1 and for all x ∈ A0. So by Lemma 3.1, we infer that the mapping

δ : A0 → A is C-linear. To prove the uniqueness of δ, let δ′ : A0 → A be another

additive mapping satisfying (3.6). It follows from (3.6) and (3.10) that

‖δ(x)− δ′(x)‖A = lim
n→∞

1

mn

∥∥f(mnx)− δ′(mnx)
∥∥
A

≤ lim
n→∞

1

mn
ϕ̃j(m

nx) = 0
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for all x ∈ A0. So δ = δ′.

It follows from (3.2), (3.5) and (3.10) that∥∥δ([x1, x2])− [δ(x1), x2]− [x1, δ(x2)]
∥∥
A

= lim
n→∞

1

m2n

∥∥f(m2n[x1, x2])− [f(mnx1),mnx2]− [mnx1, f(mnx2)]
∥∥
A

≤ lim
n→∞

1

m2n
ψ(mnx1,m

nx2) = 0

for all x1, x2 ∈ A0. So

δ([x1, x2]) = [δ(x1), x2] + [x1, δ(x2)]

for all x1, x2 ∈ A0. Hence the mapping δ : A0 → A is a unique Lie derivation

satisfying (3.6).

Corollary 3.3. Let δ, α1, α2, s1, s2, {θi}mi=1 and {ri}mi=1 be non-negative real num-

bers such that 0 < s1, s2 < 2, and 0 < ri < 1 for all 1 ≤ i ≤ m. Suppose that

f : A0 → A is a mapping such that

‖Dµf(x1, ..., xm)‖A ≤ δ +

m∑
i=1

θi‖xi‖riA0
,

‖f([x1, x2])− [f(x1), x2]− [x1, f(x2)]‖A ≤ δ + α1‖x1‖s1A0
+ α2‖x2‖s2A0

,

for all x1, · · · , xm ∈ A0 and all µ ∈ T1. Then there exists a unique Lie derivation

δ : A0 → A such that

‖f(x)− δ(x)‖A ≤
δ

m− 1
+ γ(x)

for all x ∈ A0, where

γ(x) := min
1≤i≤m

{ θim
ri

m−mri
‖x‖riA0

}
.

Corollary 3.4. Let δ, α1, α2, α3, s1, s2 and {ri}mi=1 be non-negative real numbers

such that s1 + s2 < 2 and 0 <
∑m
i=1 ri < 1 for all 1 ≤ i ≤ m. Suppose that

f : A0 → A is a mapping such that

‖Dµf(x1, ..., xm)‖A ≤ δ +

m∑
i=1

‖xi‖riA0
+

m∏
i=1

‖xi‖riA0
,

‖f([x1, x2])−[f(x1), x2]−[x1, f(x2)]‖A ≤ δ+α1‖x1‖s1A0
+α2‖x2‖s2A0

+α3‖x1‖s1A0
‖x2‖s2A0

,

for all x1, · · · , xm ∈ A0 and all µ ∈ T1. Then there exists a unique Lie derivation

δ : A0 → A such that

‖f(x)− δ(x)‖A ≤
δ

m− 1
+ τ(x)
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for all x ∈ A0, where

τ(x) := min
1≤i≤m

{ mri

m−mri
‖x‖riA0

}
.

Note that the mixed ”product-sum” function was introduced by J. M. Rassias

in 2008-09 ([8, 9, 16, 17, 40, 41]).

Theorem 3.5. Let Φ : A0 ×A0 × ...×A0︸ ︷︷ ︸
m−times

→ [0,∞) and Ψ : A0 × A0 → [0,∞) be

mappings such that

lim
n→∞

mnΦ
( x1
mn

, ...,
xm
mn

)
= 0,

(3.13) lim
n→∞

m2nΨ
( x1
mn

,
x2
mn

)
= 0,

Φ̃j(x) :=

∞∑
i=0

miΦ(0, ...,
x

mi︸︷︷︸
j th

, ..., 0) <∞

for all x, x1, · · · , xm ∈ A0. Suppose that f : A0 → A is a mapping such that

‖Dµf(x1, ..., xm)‖A ≤ Φ(x1, ..., xm),∥∥f([x1, x2])− [f(x1), x2]− [x1, f(x2)]
∥∥
A
≤ Ψ(x1, x2)

for all x1, · · · , xm ∈ A0 and all µ ∈ T1. Then there exists a unique Lie derivation

δ : A0 → A such that

(3.14) ‖f(x)− δ(x)‖A ≤ Φ̃j(x)

for all x ∈ A0.

Similarly to the proof of Theorem 3.2, we have

(3.15) ‖f(mx)−mf(x)‖A ≤ Φ(0, ..., mx︸︷︷︸
j th

, ...0)

for all x ∈ A0. Replacing x by x
mn+1 in (3.15) and multiplying both sides of (3.15)

to mn, we get∥∥∥mn+1f
( x

mn+1

)
−mnf

( x

mn

)∥∥∥
A
≤ mnΦ

(
0, ...,

x

mn︸︷︷︸
j th

, ...0)

for all x ∈ A0 and all non-negative integers n. Hence

(3.16)

∥∥∥mn+1f
( x

mn+1

)
−mkf

( x
mk

)∥∥∥
A
≤

n∑
i=k

∥∥∥mi+1f
( x

mi+1

)
−mif

( x
mi

)∥∥∥
A

≤
n∑
i=k

miΦ
(
0, ...,

x

mi︸︷︷︸
j th

, ...0)

for all x ∈ A0 and all non-negative integers n and k with n ≥ k. Therefore the

sequence {mnf
(
x
mn

)
} is a Cauchy sequence in A for all x ∈ A0. Since A is complete,
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the sequence {mnf
(
x
mn

)
} converges in A for all x ∈ A0. So one can define the

mapping δ : A0 → A by

δ(x) := lim
n→∞

mnf
( x
mn

)
for all x ∈ A0. Letting k = 0 and passing the limit n→∞ in (3.16), we get (3.14).

The rest of the proof is similar to the proof of Theorem 3.2.

Corollary 3.6. Let α1, α2, s1, s2, {θi}mi=1 and {ri}mi=1 be non-negative real numbers

such that s1, s2 > 2 and ri > 1 for all 1 ≤ i ≤ m. Suppose that f : A0 → A is a

mapping such that

‖Dµf(x1, ..., xm)‖A ≤
m∑
i=1

θi‖xi‖riA0
,

‖f([x1, x2])− [f(x1), x2]− [x1, f(x2)]‖A ≤ α1‖x1‖s1A0
+ α2‖x2‖s2A0

,

for all x1, · · · , xm ∈ A0 and all µ ∈ T1. Then there exists a unique Lie derivation

δ : A0 → A such that

‖f(x)− δ(x)‖A ≤ Γ(x)

for all x ∈ A0, where

Γ(x) := min
1≤i≤m

{ θim
ri

mri − 1
‖x‖riA0

}
.

Corollary 3.7. Let α1, α2, α3, s1, s2 and {ri}mi=1 be non-negative real numbers such

that s1, s2 > 2 and ri > 1 for all 1 ≤ i ≤ m. Suppose that f : A0 → A is a mapping

such that

‖Dµf(x1, ..., xm)‖A ≤
m∑
i=1

‖xi‖riA0
+

m∏
i=1

‖xi‖riA0
,

‖f([x1, x2])− [f(x1), x2]− [x1, f(x2)]‖A ≤ α1‖x1‖s1A0
+α2‖x2‖s2A0

+α3‖x1‖s1A0
‖x2‖s2A0

,

for all x1, · · · , xm ∈ A0 and all µ ∈ T1. Then there exists a unique Lie derivation

δ : A0 → A such that

‖f(x)− δ(x)‖A ≤ ∆(x)

for all x ∈ A0, where

∆(x) := min
1≤i≤m

{ mri

mri −m
‖x‖riA0

}
.

4. subadditive mapping and stability of Eq. (1.1)

Next, using some idea of [35], we are going to establish other theorems about

the stability of Eq. (1.1)

We call that a subadditive mapping is a mapping ϕ : A → B, having a domain

A and a codomain (B,≤) that are both closed under addition, with the following

property:

ϕ(x+ y) ≤ ϕ(x) + ϕ(y)
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for all x, y ∈ X. Now we say that a mapping ϕ : X → Y is contractively subadditive

if there exists a constant L with 0 < L < 1 such that

ϕ(x+ y) ≤ L[ϕ(x) + ϕ(y)]

for all x, y ∈ X. Therefore ϕ satisfies the following properties ϕ(mx) ≤ mLϕ(x)

and so ϕ(mnx) ≤ (mL)nϕ(x), for all x ∈ X and all positive integer m ≥ 2.

Similarly, we say that a mapping ϕ : A → B is expansively superadditive if there

exists a constant L with 0 < L < 1 such that

ϕ(x+ y) ≥ 1

L
[ϕ(x) + ϕ(y)]

for all x, y ∈ X. Therefor ϕ satisfies the following properties ϕ(x) ≤ L
mϕ(mx) and

so ϕ( x
mn ) ≤ ( Lm )nϕ(x), for all x ∈ X and all positive integer m ≥ 2.

Theorem 4.1. Let ϕ : A0 ×A0 × ...×A0︸ ︷︷ ︸
m−times

→ [0,∞) be a contractively subadditive

with the constant L and ψ : A0 ×A0 → [0,∞) be a mapping such that

(4.1) lim
n→∞

1

m2n
ψ(mnx1,m

nx2) = 0,

for all x1, x2 ∈ A0. Suppose that f : A0 → A is a mapping such that

(4.2) ‖Dµf(x1, ..., xm)‖A ≤ ϕ(x1, ..., xm),

(4.3)
∥∥f([x1, x2])− [f(x1), x2]− [x1, f1(x2)]

∥∥
A
≤ ψ(x1, x2)

for all x1, · · · , xm ∈ A0 and all µ ∈ T1. Then there exists a unique Lie derivation

δ : A0 → A such that

(4.4) ‖f(x)− δ(x)‖A ≤
L

1− L
ϕ(0, ..., x︸︷︷︸

j th

, ...0)

for all x ∈ X.

Letting µ = 1, xj = mx and xi = 0 for all 1 ≤ i ≤ m with i 6= j in (4.2) , we get

(4.5) ‖f(mx)−mf(x)‖A ≤ ϕ(0, ..., mx︸︷︷︸
j th

, ...0)

for all x ∈ A0.

Replacing x by mnx in (4.5) and dividing both sides of (4.5) by mn+1, we get

(4.6)

∥∥∥ 1

mn+1
f(mn+1x)− 1

mn
f(mnx)

∥∥∥
A
≤ 1

mn+1
ϕ(0, ...,mn+1x︸ ︷︷ ︸

j th

, ..., 0)

≤ (mL)n+1

mn+1
ϕ(0, ..., x︸︷︷︸

j th

, ..., 0)

≤ Ln+1ϕ(0, ..., x︸︷︷︸
j th

, ..., 0)
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for all x ∈ A0 and all non-negative integers n. Hence

(4.7)

∥∥∥ 1

mn+1
f(mn+1x)− 1

mk
f(mkx)

∥∥∥
A
≤

n∑
i=k

∥∥∥ 1

mi+1
f(mi+1x)− 1

mi
f(mix)

∥∥∥
A

≤
n+1∑
i=k+1

Liϕ(0, ..., x︸︷︷︸
j th

, ..., 0)

for all x ∈ A0 and all non-negative integers n and k with n ≥ k. Therefore, we

conclude from and (4.7) that the sequence { 1
mn f(mnx)} is a Cauchy sequence in A

for all x ∈ A0. Since A is complete, the sequence { 1
mn f(mnx)} converges in A for

all x ∈ A0. So one can define the mapping δ : A0 → A by

(4.8) δ(x) := lim
n→∞

1

mn
f(mnx)

for all x ∈ A0. Letting k = 0 and passing the limit n → ∞ in (4.7), we get (4.4).

Now, we show that δ is a C-linear mapping. It follows from (4.8) that

‖D1δ(x1, ..., xm)‖A = lim
n→∞

1

mn

∥∥D1f(mnx1, ...,m
nxm)

∥∥
A

≤ lim
n→∞

1

mn
ϕ(mnx1, ...,m

nxm)

≤ lim
n→∞

Lnϕ(x1, ..., xm) = 0

for all x1, · · · , xm ∈ A0. So the mapping δ satisfies (1.1). By Lemma 2.1, the

mapping δ is additive.

Letting xj = mx and xi = 0 for all 1 ≤ i ≤ m with i 6= j in (4.2), we get

(4.9) ‖mf(µx)− µf(mx)‖A ≤ ϕ(0, ..., mx︸︷︷︸
j th

, ..., 0)

for all x ∈ A0. Replacing x by mnx in (4.9) and dividing both sides of (4.9) by

mn+1, we get

(4.10)

∥∥∥ 1

mn
f(µmnx)− µ

mn+1
f(mn+1x)

∥∥∥
A

≤ 1

mn+1
ϕ(0, ...,mn+1x︸ ︷︷ ︸

j th

, ..., 0)

for all x ∈ A0 and all non-negative integers n. Passing the limit n → ∞ in (4.10)

and using (4.8), we get

δ(µx) = µδ(x)

for all µ ∈ T1 and for all x ∈ A0. So by Lemma 3.1, we infer that the mapping

δ : A0 → A is C-linear. To prove the uniqueness of δ, let δ′ : A0 → A be another



162 STABILITY OF DERIVATIONS

additive mapping satisfying (4.4). It follows from (4.8) that

‖δ(x)− δ′(x)‖A = lim
n→∞

1

mn

∥∥f(mnx)− δ′(mnx)
∥∥
A

≤ lim
n→∞

Ln+1

1− L
ϕ(0, ..., x︸︷︷︸

j th

, ...0) = 0

for all x ∈ A0. So δ = δ′.

The rest of the proof is similar to the proof of Theorem 3.2.

Corollary 4.2. Let θ be non-negative real number and f : A0 → A be a mapping

for which

‖Dµf(x1, ..., xm)‖A ≤ θ∥∥f([x1, x2])− [f(x1), x2]− [x1, f1(x2)]
∥∥
A
≤ θ

for all x1, ..., xm ∈ A0. Then there exists a unique Lie derivation δ : A0 → A such

that

(4.11) ‖f(x)− δ(x)‖A ≤ θ

for all x ∈ A0.

The proof follows from Theorem 4.1 by taking

ϕ(x1, ..., xm) := θ

for all x1, ..., xm ∈ A0.

Replacing contractively subadditive by expansively superadditive in Theorem

4.1, one can obtain the following theorem:

Theorem 4.3. Let ϕ : A0 ×A0 × ...×A0︸ ︷︷ ︸
m−times

→ [0,∞) be a expansively superadditive

with the constant L and ψ : A0 ×A0 → [0,∞) be a mapping such that

(4.12) lim
n→∞

m2nψ
( x1
mn

,
x2
mn

)
= 0,

for all x1, x2 ∈ A0. Suppose that f : A0 → A is a mapping such that

(4.13) ‖Dµf(x1, ..., xm)‖A ≤ ϕ(x1, ..., xm),

(4.14)
∥∥f([x1, x2])− [f(x1), x2]− [x1, f1(x2)]

∥∥
A
≤ ψ(x1, x2)

for all x1, · · · , xm ∈ A0 and all µ ∈ T1. Then there exists a unique Lie derivation

δ : A0 → A such that

(4.15) ‖f(x)− δ(x)‖A ≤
1

1− L
ϕ(0, ..., x︸︷︷︸

j th

, ...0)

for all x ∈ X.
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