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Abstract. We study families of superelliptic curves with fixed automorphism

groups. Such families are parametrized with invariants expressed in terms of
the coefficients of the curves. Algebraic relations among such invariants deter-

mine the lattice of inclusions among the loci of superelliptic curves and their

field of moduli. We give a Maple package of how to compute the normal form
of an superelliptic curve and its invariants. A complete list of all superelliptic

curves of genus g ≤ 10 defined over any field of characteristic 6= 2 is given in

a subsequent paper [3].

1. Introduction

Let Xg be an algebraic curve of genus g ≥ 2 defined over an algebraically closed
field k of characteristic p 6= 2. What is the group of automorphisms of Xg over
k? Given the group of automorphisms G of a genus g curve, can we determine
the equation of the curve? These two questions have been studied for a long time
and a complete answer is not known for either one. There are some families of
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curves where we can answer completely the above questions, such as the hyperellip-
tic curves. The Klein’s curve was the first celebrated example of a non-hyperelliptic
curve where the the automorphisms of the curve and its equation are shown ex-
plicitly. The main purpose of this paper is to show that we can do this for a larger
family of curves.

In characteristic zero, the first question is answered by work of Magaard, Shaska,
Shpectorov, Völklein, et al. Based on previous work of Breuer and using computer
algebra systems as GAP, they show how one can compute the list of full automor-
phism groups for any fixed genus g ≥ 2. It is still an unsettled question the case
of positive characteristic, where many tedious cases of wild ramifications need to
be considered. The second question is unsettled even in characteristic zero. It is
much harder to determine a parametric equation for the curve, given its group of
automorphisms G.

However, if we go through the lists of groups G which occur as automorphism
groups of genus g curves we notice, as to be expected, that the majority of them have
the following property; there is a central element τ ∈ G such that the quotient space
Xg/〈τ〉 has genus zero. Such curves in the literature are called superelliptic curves
or cyclic curves. For the purposes of this paper we will use the term superelliptic
curves of level n.

Hence, for a fixed genus g, certain families of curves have equation yn = f(x),
for some n ∈ Z and a generic polynomial f(x) ∈ k[x]. The values of n depend solely
on the genus g and the field k. Such cases we call them root cases or fundamental
cases. For a given n let Hn denote a connected component of the space of genus g
curves with equation as above. Isomorphism classes of curves in Hn are determined
by the invariants of degree n binary forms. Such invariants were the main focus of
classical invariant theory in the 19-th century and they are only known for n ≤ 8.
Even for n ≤ 8 the expressions of such invariants in terms of the coefficients of f(x)
are quite long and not so convenient for computations.

If the curve has an additional automorphism then this automorphism has to
permute the roots of f(x). In this case, additional invariants can be defined in terms
of the coefficients of f(x). These invariants were first discovered by Shaska for genus
two curves in [29] and then generalized by Shaska/Gutierrez for all hyperelliptic
curves in [13], where they were called dihedral invariants. Moreover, in [13]
was determined a relation among such invariants, for any genus g, in the case of
hyperelliptic curves with an extra involution. In [12] algebraic relations among
such invariants were computed for the case of genus three hyperelliptic curves and
a method was described how to compute such relations in general. Extending
work done by Gutierrez/Shaska in [13], Antoniadis and Kontogeorgis defined these
invariants [1] for cyclic covers of P1(k) for positive characteristic. In these paper we
will call them s-invariants and will describe how to compute them for any genus
g superelliptic curve of level n.

Superelliptic curves are quite important in many applications. They are the only
curves where we fully understand the automorphism groups for every characteristic
and can associate an equation of the curve in each case of the group. The full
groups of automorphisms of superelliptic curves defined over a field of characteristic
zero followed from previous work of Magaard et al, [14]. However, for the first
time a complete list of full automorphism groups of superelliptic curves for odd
characteristic was determined by Sanjeewa in [16]. The equations for each family,
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when the full automorphism group was fixed, were determined by Sanjeewa and
Shaska in [15]. Such curves were further studied in [2, 4], where singular subloci
of M2 were studied, in applications in coding in [9]. The s-invariants which we
study in section 4 were discovered in [29] and used by several authors in many
applications since them. For further applications of such invariants one can check
[3, 6, 7, 17–19,19–27,29,30].

In this paper we give a list of automorphism groups of superelliptic curves of
genus g and the corresponding equation for each group. We define invariants for
such curves and give algorithms how to compute such invariants and how to deter-
mine algebraic relations among them. Such computations are completely done in
the case of genus 3, in order to provide some general idea of the genus g > 3 case.

Notation: Throughout this paper by g we denote an integer ≥ 2 and k denotes
an algebraically closed field of characteristic 6= 2. Unless otherwise noted, by a
”curve” we always mean the isomorphism class of an algebraic curve defined over
k. The automorphism group of a curve always means the full automorphism group
of the curve.

2. Preliminaries on automorphisms of the projective line.

In this section we set the notation and describe briefly some general facts. Fix an
integer g ≥ 2. Let Xg denote a genus g generic curve defined over an algebraically
closed field k of characteristic p ≥ 0. We denote by G the full automorphism group
of Xg. Hence, G is a finite group. Denote by K the function field of Xg and assume
that the affine equation of Xg is given some polynomial in terms of x and y.

Let H = 〈τ〉 be a cyclic subgroup of G such that |H| = n and H / G, where
n ≥ 2. Moreover, we assume that the quotient curve Xg/H has genus zero. The
reduced automorphism group of Xg with respect to H is called the group
Ḡ := G/H, see [10,16].

Assume k(x) is the genus zero subfield of K fixed by H. Hence, [K : k(x)] = n.
Then, the group Ḡ is a subgroup of the group of automorphisms of a genus zero
field. Hence, Ḡ < PGL2(k) and Ḡ is finite. It is a classical result that every finite
subgroup of PGL2(k) is isomorphic to one of the following: Cm, Dm, A4, S4, A5,
semidirect product of elementary Abelian group with cyclic group, PSL(2, q) and
PGL(2, q), see [31].

The group Ḡ acts on k(x) via the natural way. The fixed field of this action is
a genus 0 field, say k(z). Thus, z is a degree |Ḡ| := m rational function in x, say
z = φ(x). We illustrate with the following diagram:

K = k(x, y)

n H

k(x) = k(x, yn)

m Ḡ

E = k(z)

Xg

φ0 H

��
P1(k)

φ Ḡ

��
P1(k)

Figure 1. The automorphism groups and the corresponding covers
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It obvious that G is a degree n extension of Ḡ and Ḡ is a finite subgroup of
PGL2(k). Hence, if we know all the possible groups that occur as Ḡ then hopefully
we can figure out G and the equation for K.

To do this we have to recall some classical result on finite subgroups of the
projective linear group PGK2(k) and their fixed fields. First we define a semidirect
product of an elementary Abelian group with a cyclic group as follows, see [31] for
details.

Let char k = p and k = Fq for q = pr. For each m | (pt − 1), t = 1, . . . , r, we
define Um as follows

Um := {a ∈ k | (a

pt−1
m −1∏
j=0

(am − bj)) = 0, bj ∈ k∗}.

Obviously Um is a subgroup of the additive group of k. Let

Km := 〈{σa(x) = x+ a, τ(x) = ξ2x | ∀a ∈ Um}〉,

where ξ is a primitive 2m-th root of unity. Now we are ready to state the following
classical result.

Theorem 1. i) Let k be an algebraically closed field of characteristic p 6= 2 of size
q when k is finite and G be a finite subgroup of PGL2(k). Then, G is isomorphic
to one of the following groups

Cm, Dm, A4, S4, A5, U = Ctp,Km, PSL2(q), and PGL2(q),

where (m, p) = 1 and Cm (resp. Dm) denotes the cyclic (resp. dihedral) group of
size m.

ii) Let G act on k(x) in the natural way. The fixed field of G is a genus zero

subfield k(z), where z is given as in Table 1, with α = q(q−1)
2 , β = q+1

2 and Ht is
a subgroup of the additive group of k with order |Ht| = pt and bj ∈ k∗.

Proof of the first part can be found in [31] and verifying the second part is an
easy computational exercise. Next, we continue with our tasks of determining G
and an equation for K.

Let φ0 : Xg → P1(k) be the cover which corresponds to the degree n extension
K/k(x). Then Φ := φ ◦ φ0 has monodromy group G := Aut (Xg). From the basic
covering theory, the group G is embedded in the group Sl where l = deg Φ = nm.
There is an r-tuple σ := (σ1, . . . , σr), where σi ∈ Sl such that σ1, ..., σr generate G
and σ1, . . . , σr = 1. The signature of Φ is an r-tuple of conjugacy classes

σ := (C1, . . . , Cr)

in Sl such that Ci is the conjugacy class of σi. We use the notation i to denote the
conjugacy class of permutations which is cycle of length i. Using the signature of
φ : P1(k) → P1(k) one finds out the signature of Φ : Xg → P1(k) for any given g
and G.

For the extension K/E, from the Hurwitz genus formula we have that

(1) 2(gK − 1) = 2(gE − 1)|G|+ deg(DK/E)

with gK and gE the genera of K and E respectively and DK/E the different of

K/E. Let P 1, P 2, ..., P r be ramified primes of E. If we set di = deg(P i) and let



ON SUPERELLIPTIC CURVES OF LEVEL n AND THEIR QUOTIENTS, I. 119

ei be the ramification index of the P i and let βi be the exponent of P i in DK/E .
Hence, (1) may be written as

(2) 2(gK − 1) = 2(gE − 1)|G|+ |G|
r∑
i=1

βi
ei
di

If P i is tamely ramified then βi = ei − 1 or if P i is wildly ramified then βi =
e∗i qi + qi − 2 with ei = e∗i qi, e

∗
i relatively prime to p, qi a power of p and e∗i |qi − 1.

For a fixed G and σ the family of covers Φ : Xg → P1(k) is a Hurwitz space
H(G, σ). H(G, σ) is an irreducible algebraic variety of dimension δ(G, σ). Using
Eq. (2) and signature σ one can find out the dimension for each G.

Case Ḡ z = φ(x) Ramification

1 Cm, (m, p) = 1 xm (m,m)

2 D2m, (m, p) = 1 xm + 1
xm (2, 2,m)

3 A4, p 6= 2, 3 x12−33x8−33x4+1
x2(x4−1)2 (2, 3, 3)

4 S4, p 6= 2, 3 (x8+14x4+1)3

108(x(x4−1))4 (2, 3, 4)

5 A5, p 6= 2, 3, 5 (−x20+228x15−494x10−228x5−1)3

(x(x10+11x5−1))5 (2, 3, 5)

A5, p = 3 (x10−1)6

(x(x10+2ix5+1))5 (6, 5)

6 U
∏
a∈Ht

(x+ a) (pt)

7 Km (x

pt−1
m −1∏
j=0

(xm − bj))m (mpt,m)

8 PSL(2, q), p 6= 2 ((xq−x)q−1+1)
q+1
2

(xq−x)
q(q−1)

2

(α, β)

9 PGL(2, q) ((xq−x)q−1+1)q+1

(xq−x)q(q−1) (2α, 2β)

Table 1. Rational functions for each finite G < PGL2(k)
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3. Superelliptic curves

The superelliptic curves by definition have the group H as a subgroup of their
automorphism group. However, the curve might have more automorphisms. Deter-
mining the full automorphism group is equivalent to determine degree n extensions
of Ḡ, where G is as above.

The following theorems give us all possible automorphism groups of genus g ≥ 2
superelliptic curves defined over any k such that chark 6= 2, see [10, 15, 16] for
details.

Theorem 2 (Sanjeewa, 2010). Let Xg be a genus g ≥ 2 irreducible superellip-
tic curve defined over an algebraically closed field k, char (k) = p 6= 2. Let
G = Aut(Xg), Ḡ its reduced automorphism group with respect to H, where |H| = n.
Then, G is isomorphic to one of the following:

(1) If Ḡ ∼= Cm then G ∼= Cmn or G is isomorphic to

〈γ, σ| γn = 1, σm = 1, σγσ−1 = γl〉,

where (l, n) = 1 and lm ≡ 1 mod n.

(2) If Ḡ ∼= D2m for some m ∈ Z, then G ∼= D2m × Cn, G ∼= D2mn, or G is
isomorphic to

i) 〈γ, σ, τ | γn = 1, σ2 = γ, τ2 = 1, (στ)m = 1, σγσ−1 = γ, τγτ−1 = γn−1〉
ii) 〈γ, σ, τ | γn = 1, σ2 = γ, τ2 = γn−1, (στ)m = 1, σγσ−1 = γ, τγτ−1 = γ〉
iii) 〈γ, σ, τ | γn = 1, σ2 = γ, τ2 = 1, (στ)m = γ

n
2 , σγσ−1 = γ, τγτ−1 = γn−1〉

iv) 〈γ, σ, τ | γn = 1, σ2 = γ, τ2 = γn−1, (στ)m = γ
n
2 , σγσ−1 = γ, τγτ−1 = γ〉

(3) If Ḡ ∼= A4 and p 6= 3 then G ∼= A4 × Cn or G is isomorphic to

i) 〈γ, σ, τ | γn = 1, σ2 = 1, τ3 = 1, (στ)3 = 1, σγσ−1 = γ, τγτ−1 = γl〉

ii) 〈γ, σ, τ | γn = 1, σ2 = 1, τ3 = γ
n
3 , (στ)3 = γ

n
3 , σγσ−1 = γ, τγτ−1 = γl〉

where (l, n) = 1 and l3 ≡ 1 mod n or

〈γ, σ, τ | γn = 1, σ2 = γ
n
2 , τ3 = γ

n
2 , (στ)5 = γ

n
2 , σγσ−1 = γ, τγτ−1 = γ〉

or

iii) 〈γ, σ, τ | γn = 1, σ2 = 1, τ3 = 1, (στ)3 = 1, σγσ−1 = γ, τγτ−1 = γk〉

iv) 〈γ, σ, τ | γn = 1, σ2 = γ
n
2 , τ3 = 1, (στ)3 = 1, σγσ−1 = γ, τγτ−1 = γk〉

where (k, n) = 1 and k3 ≡ 1 mod n.

(4) If Ḡ ∼= S4 and p 6= 3 then G ∼= S4 × Cn or G is isomorphic to

i) 〈γ, σ, τ | γn = 1, σ2 = 1, τ3 = 1, (στ)4 = 1, σγσ−1 = γl, τγτ−1 = γ〉

ii) 〈γ, σ, τ | γn = 1, σ2 = 1, τ3 = 1, (στ)4 = γ
n
2 , σγσ−1 = γl, τγτ−1 = γ〉

iii) 〈γ, σ, τ | γn = 1, σ2 = γ
n
2 , τ3 = 1, (στ)4 = 1, σγσ−1 = γl, τγτ−1 = γ〉

iv) 〈γ, σ, τ | γn = 1, σ2 = γ
n
2 , τ3 = 1, (στ)4 = γ

n
2 , σγσ−1 = γl, τγτ−1 = γ〉
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where (l, n) = 1 and l2 ≡ 1 mod n.

(5) If Ḡ ∼= A5 and p 6= 5 then G ∼= A5 × Cn or G is isomorphic to

〈γ, σ, τ | γn = 1, σ2 = γ
n
2 , τ3 = γ

n
2 , (στ)5 = γ

n
2 , σγσ−1 = γ, τγτ−1 = γ〉

(6) If Ḡ ∼= U then G ∼= U × Cn or G is isomorphic to

〈γ, σ1, . . . , σt|γn = σp1 = · · · = σpt = 1, σiσj = σjσi, σiγσ
−1
i = γl, 1 ≤ i, j ≤ t〉

where (l, n) = 1 and lp ≡ 1 mod n.

(7) If Ḡ ∼= Km then G is isomorphic to one of the following
i) 〈γ, σ1, ..., σt, v|γn = σp1 = ... = σpt = vm = 1, σiσj = σjσi, vγv

−1 =

γ, σiγσ
−1
i = γl, σivσ

−1
i = vk, 1 ≤ i, j ≤ t〉 where (l, n) = 1 and lp ≡ 1

mod n, (k,m) = 1 and kp ≡ 1 mod m.
ii) 〈γ, σ1, . . . , σt | γnm = σp1 = · · · = σpt = 1, σiσj = σjσi, σiγσ

−1
i =

γl, i ≥ 1, j ≤ t〉, where (l, nm) = 1 and lp ≡ 1 mod nm.

(8) If Ḡ ∼= PSL2(q) then G ∼= PSL2(q)× Cn or SL2(3).

(9) If Ḡ ∼= PGL2(q) then G ∼= PGL2(q)× Cn.

Proof. See [16] for all the details.

For sake of completennes and also because of the fact that the signatures of Φ
were crucial in determining all cases of the theorem above, we display all these
signatures. The proof can be found in [16].

Lemma 1. The signature of cover Φ : X → XG and dimension δ is given in
Table 3, where m = |PSL2(q)| for cases 38-41 and m = |PGL2(q)| for cases 42-45.

Case Ḡ δ(G,C) C = (C1, ..., Cr)

a g+n−1
30(n−1) − 1 (6, 5, n, ..., n)

b g+5n−5
30(n−1) − 1 (6, 5n, n, ..., n)

c A5
g+6n−6
30(n−1) − 1 (6n, 5, n, ..., n)

d g
30(n−1) − 1 (6n, 5n, n, ..., n)

Table 2. δ for Ḡ ∼= A5, p = 3

Remark 1. The above Lemma gives signatures and dimensions for p > 5. Since
Ḡ ∼= Cm, Dm, A4, S4, U,Km, PSL(2, q), PGL(2, q) when p = 5 and Ḡ ∼= Cm, Dm, A5,
U , Km, PSL(2, q), PGL(2, q) when p = 3, then all cases except Ḡ ∼= A5 have ram-
ification as p > 5. However, Ḡ ∼= A5 has different ramification. Hence, that case
has signatures and dimensions as in Table 2.
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# Ḡ δ(G,C) δ, n, g C = (C1, ..., Cr)

1 (p,m) = 1
2(g+n−1)
m(n−1)

− 1 n < g + 1 (m,m, n, ..., n)

2 Cm
2g+n−1
m(n−1)

− 1 (m,mn, n, ..., n)

3 2g
m(n−1)

− 1 n < g (mn,mn, n, ..., n)

4 (p,m) = 1 g+n−1
m(n−1)

(2, 2,m, n, ..., n)

5 2g+m+2n−nm−2
2m(n−1)

(2n, 2,m, n, ..., n)

6 D2m
g

m(n−1)
(2, 2,mn, n, ..., n)

7 g+m+n−mn−1
m(n−1)

n < g + 1 (2n, 2n,m, n, ..., n)

8 2g+m−mn
2m(n−1)

g 6= 2 (2n, 2,mn, n, ..., n)

9 g+m−mn
m(n−1)

n < g (2n, 2n,mn, n, ..., n)

10 n+g−1
6(n−1)

(2, 3, 3, n, ..., n)

11 A4
g−n+1
6(n−1)

(2, 3n, 3, n, ..., n)

12 g−3n+3
6(n−1)

(2, 3n, 3n, n, ..., n)

13 g−2n+2
6(n−1)

δ 6= 0 (2n, 3, 3, n, ..., n)

14 g−4n+4
6(n−1)

(2n, 3n, 3, n, ..., n)

15 g−6n+6
6(n−1)

δ 6= 0 (2n, 3n, 3n, n, ..., n)

16 g+n−1
12(n−1)

(2, 3, 4, n, ..., n)

17 g−3n+3
12(n−1)

(2, 3n, 4, n, ..., n)

18 g−2n+2
12(n−1)

(2, 3, 4n, n, ..., n)

19 g−6n+6
12(n−1)

(2, 3n, 4n, n, ..., n)

20 S4
g−5n+5
12(n−1)

(2n, 3, 4, n, ..., n)

21 g−9n+9
12(n−1)

(2n, 3n, 4, n, ..., n)

22 g−8n+8
12(n−1)

(2n, 3, 4n, n, ..., n)

23 g−12n+12
12(n−1)

(2n, 3n, 4n, n, ..., n)

24 g+n−1
30(n−1)

(2, 3, 5, n, ..., n)

25 g−5n+5
30(n−1)

(2, 3, 5n, n, ..., n)

26 g−15n+15
30(n−1)

(2, 3n, 5n, n, ..., n)

27 g−9n+9
30(n−1)

(2, 3n, 5, n, ..., n)

28 A5
g−14n+14
30(n−1)

(2n, 3, 5, n, ..., n)

29 g−20n+20
30(n−1)

(2n, 3, 5n, n, ..., n)

30 g−24n+24
30(n−1)

(2n, 3n, 5, n, ..., n)

31 g−30n+30
30(n−1)

(2n, 3n, 5n, n, ..., n)

32 2g+2n−2

pt(n−1)
− 2 (pt, n, ..., n)

33 U 2g+npt−pt
pt(n−1)

− 2 (n, p) = 1, n|pt − 1 (npt, n, ..., n)

34
2(g+n−1)

mpt(n−1)
− 1 (m, p) = 1,m|pt − 1 (mpt,m, n, ..., n)

35 2g+2n+pt−npt−2

mpt(n−1)
− 1 (m, p) = 1,m|pt − 1 (mpt, nm, n, ..., n)

36 Km
2g+npt−pt
mpt(n−1)

− 1 (nm, p) = 1, nm|pt − 1 (nmpt,m, n, ..., n)

37 2g

mpt(n−1)
− 1 (nm, p) = 1, nm|pt − 1 (nmpt, nm, n, ..., n)

38
2(g+n−1)
m(n−1)

− 1
(
q−1
2
, p

)
= 1 (α, β, n, ..., n)

39 PSL2(q)
2g+q(q−1)−n(q+1)(q−2)−2

m(n−1)
− 1

(
q−1
2
, p

)
= 1 (α, nβ, n, ..., n)

40
2g+nq(q−1)+q−q2

m(n−1)
− 1

(
n(q−1)

2
, p

)
= 1 (nα, β, n, ..., n)

41 2g
m(n−1)

− 1
(
n(q−1)

2
, p

)
= 1 (nα, nβ, n, ..., n)

42
2(g+n−1)
m(n−1)

− 1 (q − 1, p) = 1 (2α, 2β, n, ..., n)

43 PGL2(q)
2g+q(q−1)−n(q+1)(q−2)−2

m(n−1)
− 1 (q − 1, p) = 1 (2α, 2nβ, n, ..., n)

44
2g+nq(q−1)+q−q2

m(n−1)
− 1 (n(p− 1), p) = 1 (2nα, 2β, n, ..., n)

45 2g
m(n−1)

− 1 (n(q − 1), p) = 1 (2nα, 2nβ, n, ..., n)

Table 3. The signature of curves and dimensions δ for char > 5
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3.1. Equations of superelliptic curves. Next we give the parametric equations
of superelliptic curves based on their group of automorphisms. Such equations for
the first time were computed in [15]. It is exactly the fact that their equations are
easily determined that makes superelliptic curves quite attractive in applications.
Let δ be given as in Table 3 and M,Λ, Q,B,∆,Θ and Ω are as follows:

M =

δ∏
i=1

(
x24 + λix

20 + (759− 4λi)x
16 + 2(3λi + 1228)x12

+ (759− 4λi)x
8 + λix

4 + 1
)

Λ =

δ∏
i=1

(
−x60 + (684− λi)x55 − (55λi + 157434)x50 − (1205λi − 12527460)x45

− (13090λi + 77460495)x40 + (130689144− 69585λi)x
35

+ (33211924− 134761λi)x
30 + (69585λi − 130689144)x25

− (13090λi + 77460495)x20 − (12527460− 1205λi)x
15

−(157434 + 55λi)x
10 + (λi − 684)x5 − 1

)
Q =x30 + 522x25 − 10005x20 − 10005x10 − 522x5 + 1

B =

δ∏
i=1

∏
a∈Ht

((x+ a)− λi)

Θ =

δ∏
i=1

Gλi(x), where Gλi =

x · p
t−1
m∏
j=1

(xm − bj)


m

− λi

∆ =

δ∏
i=1

(((xq − x)q−1 + 1)
q+1
2 − λi(xq − x)

q(q−1)
2 )

Ω =

δ∏
i=1

(((xq − x)q−1 + 1)q+1 − λi(xq − x)q(q−1))

Then we have the following result.

Theorem 3. Let Xg be e genus g ≥ 2 algebraic curve defined over an algebraically
closed field k, G its automorphism group over k, and Cn a cyclic normal subgroup
of G such that g(XCn

g ) = 0. Then, the equation of Xg can be written as in one of
the following cases as in Table 4.
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# Ḡ yn = f(x)

1 xmδ + a1x
m(δ−1) + ...+ aδx

m + 1

2 Cm xmδ + a1x
m(δ−1) + ...+ aδx

m + 1

3 x(xmδ + a1x
m(δ−1) + ...+ aδx

m + 1)

4 F (x) :=
∏δ
i=1(x2m + λix

m + 1)
5 (xm − 1) · F (x)
6 x · F (x)
7 D2m (x2m − 1) · F (x)
8 x(xm − 1) · F (x)
9 x(x2m − 1) · F (x)

10 G(x) :=
∏δ
i=1(x12 − λix10 − 33x8 + 2λix

6 − 33x4 − λix2 + 1)

11 (x4 + 2i
√

3x2 + 1) ·G(x)
12 A4 (x8 + 14x4 + 1) ·G(x)
13 x(x4 − 1) ·G(x)

14 x(x4 − 1)(x4 + 2i
√

3x2 + 1) ·G(x)
15 x(x4 − 1)(x8 + 14x4 + 1) ·G(x)

16 M(x)
17

(
x8 + 14x4 + 1

)
·M(x)

18 x(x4 − 1) ·M(x)
19

(
x8 + 14x4 + 1

)
· x(x4 − 1) ·M(x)

20 S4

(
x12 − 33x8 − 33x4 + 1

)
·M(x)

21
(
x12 − 33x8 − 33x4 + 1

)
·
(
x8 + 14x4 + 1

)
·M(x)

22
(
x12 − 33x8 − 33x4 + 1

)
· x(x4 − 1) ·M(x)

23
(
x12 − 33x8 − 33x4 + 1

)
·
(
x8 + 14x4 + 1

)
· x(x4 − 1)M(x)

24 Λ(x)
25 x(x10 + 11x5 − 1) · Λ(x)
26 (x20 − 228x15 + 494x10 + 228x5 + 1)(x(x10 + 11x5 − 1)) · Λ(x)
27 (x20 − 228x15 + 494x10 + 228x5 + 1) · Λ(x)
28 A5 Q(x) · Λ(x)
29 x(x10 + 11x5 − 1).ψ(x) · Λ(x)
30 (x20 − 228x15 + 494x10 + 228x5 + 1) · ψ(x) · Λ(x)
31 (x20 − 228x15 + 494x10 + 228x5 + 1)(x(x10 + 11x5 − 1)) · ψ(x) · Λ(x)

32 U B(x)
33 B(x)

34 Θ(x)

35 Km x
∏ pt−1

m
j=1 (xm − bj) ·Θ(x)

36 Θ(x)

37 x
∏ pt−1

m
j=1 (xm − bj) ·Θ(x)

38 ∆(x)
39 PSL2(q) ((xq − x)q−1 + 1) ·∆(x)
40 (xq − x) ·∆(x)
41 (xq − x)((xq − x)q−1 + 1) ·∆(x)

42 Ω(x)
43 PGL2(q) ((xq − x)q−1 + 1) · Ω(x)
44 (xq − x) · Ω(x)
45 (xq − x)((xq − x)q−1 + 1) · Ω(x)

Table 4. The equations of the curves related to the cases in Table 3
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Each case in the above table correspond to a δ-dimensional family, where δ can
be found in [15]. Moreover, our parametrizations are exact in the sense that the
number of parameters in each case is equal to the dimension. We would like to find
invariants to classify isomorphism classes of these curves.

4. Isomorphism classes of superelliptic curves

A superelliptic curve Xg is given by an equation of the form yn = f(x) for some
degree d polynomial f(x). Let us assume that

yn = f(x) =

s∏
i=1

(x− αi)di , 0 < di < d.

We have that
∑s
i=1 di = d. We call this the standard form of the curve. The

only places of F0 = k(x) that ramify are the places which correspond to the points
x = αi. We denote such places by Q1, . . . , Qs and by B := {Q1, . . . , Qs} the set of
these places. The ramification indexes are e(Qi) = n

(n,di)
.

Hence, every set B determines a genus g superelliptic curve Xg. However, the
correspondence between the sets B and the isomorphism classes of Xg is not a one to
one correspondence. Obviously the set of roots of f(x) does not determine uniquely
the isomorphism class of Xg since every coordinate change in x would change the set
of these roots. Such isomorphism classes are classified by the invariants of binary
forms. Invariants of binary forms of of degree up to eight are known by classical
work of many invariant theorists and some more recent work, see [7, 11,28].

4.1. Invariants of binary forms. In this section we define the action of GL2(k)
on binary forms and discuss the basic notions of their invariants. Let k[X,Z] be the
polynomial ring in two variables and let Vd denote the (d+1)-dimensional subspace
of k[X,Z] consisting of homogeneous polynomials.

(3) f(X,Z) = a0X
d + a1X

d−1Z + ...+ adZ
d

of degree d. Elements in Vd are called binary forms of degree d. We let GL2(k) act
as a group of automorphisms on k[X,Z] as follows:

(4) M =

(
a b
c d

)
∈ GL2(k), then M

(
X
Z

)
=

(
aX + bZ
cX + dZ

)
This action of GL2(k) leaves Vd invariant and acts irreducibly on Vd.

Remark 2. It is well known that SL2(k) leaves a bilinear form (unique up to scalar
multiples) on Vd invariant. This form is symmetric if d is even and skew symmetric
if d is odd.

Let A0, A1, ... , Ad be coordinate functions on Vd. Then the coordinate ring
of Vd can be identified with k[A0, ..., Ad]. For I ∈ k[A0, ..., Ad] and M ∈ GL2(k),
define IM ∈ k[A0, ..., Ad] as follows

(5) IM (f) := I(M(f))

for all f ∈ Vd. Then IMN = (IM )N and Eq. (5) defines an action of GL2(k)
on k[A0, ..., Ad]. A homogeneous polynomial I ∈ k[A0, . . . , Ad, X, Z] is called a
covariant of index s if

IM (f) = δsI(f),



126 ON SUPERELLIPTIC CURVES OF LEVEL N AND THEIR QUOTIENTS, I.

where δ = det(M). The homogeneous degree in a1, . . . , an is called the degree of I,
and the homogeneous degree in X,Z is called the order of I. A covariant of order
zero is called invariant. An invariant is a SL2(k)-invariant on Vd.

We will use the symbolic method of classical theory to construct covariants of
binary forms. Let

f(X,Z) :=

n∑
i=0

(
n
i

)
aiX

n−i Zi, and g(X,Z) :=

m∑
i=0

(
m
i

)
biX

n−i Zi

be binary forms of degree n and m respectively with coefficients in k. We define
the r-transvection

(f, g)r :=
(m− r)! (n− r)!

n!m!

r∑
k=0

(−1)k
(
r
k

)
· ∂rf

∂Xr−k ∂Zk
· ∂rg

∂Xk ∂Zr−k

It is a homogeneous polynomial in k[X,Z] and therefore a covariant of order m +
n− 2r and degree 2. In general, the r-transvection of two covariants of order m,n
(resp., degree p, q) is a covariant of order m+ n− 2r (resp., degree p+ q).

For the rest of this paper F (X,Z) denotes a binary form of order d := 2g+ 2 as
below

(6) F (X,Z) =

d∑
i=0

aiX
iZd−i =

d∑
i=0

(
n
i

)
biX

iZn−i

where bi = (n−i)! i!
n! · ai, for i = 0, . . . , d. We denote invariants (resp., covariants) of

binary forms by Is (resp., Js) where the subscript s denotes the degree (resp., the
order). We define the following covariants and invariants:

I2 := (F, F )d,

I4 := (J4, J4)4,

I6 := ((F, J4)4, (F, J4)4)d−4,

I∗6 := ((F, J12)12, (F, J12)12)d−12,

M := ((F, J4)4, (F, J8)8)d−10,

J4j := (F, F )d−2j , j = 1, . . . , g,

I ′4 := (J8, J8)8,

I ′6 := ((F, J8)8, (F, J8)8)d−8,

I3 := (F, Jd)
d,

I12 := (M,M)8

(7)

Absolute invariants are called GL2(k)-invariants. We define the following absolute
invariants:

i1 :=
I ′4
I2
2

, i2 :=
I2
3

I3
2

, i3 :=
I∗6
I3
2

, j1 :=
I
′

6

I2
3

, j2 :=
I6
I2
3

, u1 :=
I2
6

I12
, u2 :=

(I
′

6)2

I12

v1 :=
I6
I∗6
, v2 :=

(I
′

4)3

I4
3

, v3 :=
I6
I
′
6

, v4 :=
(I∗6 )2

I3
4

.

In the case g = 10 and I12 = 0 we define

I?6 := ((F, J16)16, (F, J16)16)d−16),

S := (J12, J16)12,

I∗12 := ( (J16, S)4, (J16, S)4 )12

(8)

and v5 :=
I?6
I∗12
.

For a given curve Xg we denote by I(Xg) or i(Xg) the corresponding invariants.
When the above invariants are a good set of invariants to study the small genus
curves, they are not a set of complete invariants for curves of arbitrary genus.
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Example 1. Let C be a genus 4 curve with equation

y3 = x6 + a5x
5 + · · ·+ a1x+ a0,

defined over C. This curve has automorphism group C3. The family V of such
curves is a 3-dimensional variety. The isomorphism classes of curves in this variety
are determined by Igusa invariants J2, J4, J6, J10, see [11, 21] for their definitions.
Two curves C and C ′ in V are isomorphic if and only if

(J2(C), J4(C), J6(C), J10(C)) = λ · (J2(C ′), J4 (C ′), J6(C ′), J10(C ′))

for some λ 6= 0.

Lemma 2. Let Xg be a superelliptic curves of genus g ≥ 2. The following state-
ments are true.

i) If Ḡ ≡ A4 then I4(Xg) = 0.
ii) If Ḡ ≡ A5 then (Ji, Ji)

i = 0 for i = 4, 8, 16, 28.

Proof. See [7] for the proof of these and other properties of superelliptic curves in
terms of invariants of binary forms.

�

5. s-invariants of superelliptic curves

In this section we will introduce s-invariants of superelliptic curves. These in-
variants were introduced in [13] for hyperelliptic curves and generalized in [1] for
superelliptic curves. Here we simply follow the approach from [1].

Let k be an algebraic closed field of characteristic p ≥ 0. Let F0 = k(x) be the
function field of the projective line P1(k). We consider a cyclic extension of F0 of
degree n of the form F := k(x, y) where

(9) yn =

s∏
i=1

(x− ρi)di =: f(x), o < di < n.

If d :=
∑s
i=1 di ≡ 0 mod n then the place at infinity does not ramify at the

above extension. The only places at F0 that are ramified are the places Pi that
correspond to the points x = ρi and the corresponding ramification indices are
given by

ei =
n

(n, di)
.

Moreover if (n, di) = 1 then the places Pi are ramified completely and the Riemann-
Hurwitz formula implies that the function field F has genus

g =
(n− 1)(s− 2)

2
.

Notice that the condition g ≥ 2 is equivalent to s ≥ 2n+1
n−1 . In particular, s > 2.

For the proof of the following Lemmas se [1].

Lemma 3. Let G = Aut(F ). Suppose that a cyclic extension F/F0 of the rational
function field F0 is ramified completely at s places and n := |Gal(F/F0)|. If 2n < s
then Gal(F/F0) / G.
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Lemma 4. Suppose that τ is an extra automorphism of F , and let s be the number
of ramified places at the extension F/F0 and let d be the degree of the defining
polynomial. Then δ|s, δ|d and the defining equation of F can be written as

yn =

d/δ∑
i−0

aix
δ·i,

where a0 = 1.

We will say that the superelliptic curve is in normal form if and only if it is
given by an equation:

yn = xs +

d
δ∑
i−1

aix
δ·i + 1.

Parametrizing superelliptic curves that admit an extra automorphism of order
δ, is the set of coefficients {as/δ−1, · · · , a1} of a normal form up to a change of
coordinate in x. The condition τ(x) = ζx, implies that τ̄ fixes the places 0,∞.
Moreover we can change the defining equation by a morphism γ ∈ PGL(2, k) of
the form γ : x → mx or γ : x → m

x so that the new equation is again in normal

form. Substituting a0 = (−1)d/s
∏d/s
i=1 β

s
i we have

(−1)s/δ
s/δ∏
i=1

γ(βi)
δ = 1

and this gives ms = (−1)s/δ. Then, x is determined up to a coordinate change by
the subgroup Ds/δ generated by

τ1 : x→ εx, τ2 : x→ 1

x

where ε is a primitive s/δ-root of one, see [13] for details.
The action of Ds/δ on the parameter space k(a1, . . . , as/δ) is given by

τ1 : ai → εδiai, for i = 1, . . . s/δ

τ2 : ai → ad/δ−i, for i = 1, . . . [s/δ]

Notice that if s/δ = 1 then the above actions are trivial, therefore the normal
form determines the equivalence class. If s/δ = 2 then

τ1(a1) = −a1, τ1(a2) = a2, τ2 = 1

and the action is not dihedral but cyclic on the first vector.

Lemma 5. Assume that s/δ > 2. The fixed field k(a1, a2, · · · as/δ)Ds/δ is the same
as the function field of the variety Ln,s,δ.

Proof. See [1] for the proof.

Lemma 6. Let r := s/δ > 2 The elements

si := ar−i1 a1 + ar−ir−1ar−i, for i = 1, . . . , r

are invariants under the action of the group Ds/δ defined as above.

Proof. See [1] for the proof.
The elements si are called the dihedral invariants or s-invariants of Ds/δ.
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Theorem 4. Let s = (s1, . . . , sr) be the r− tuple of s-invariants. Then k(Ls,n,δ) =
k(s1, . . . , sr).

Example 2. For genus g = 2 all curves are hyperelliptic and therefore superellip-
tic. The generic curve of genus 2 is given by y2 = f(x), where deg(f) = 5 or 6.
The space is determined by the invariants of binary sextics. When the curves have
extra automorphisms then we have two main cases.

i) The first case is when there is an automorphism of degree 5. Then the full
automorphism group G is isomorphic to Z10 and the corresponding space has di-
mension zero. There is only one curve in this case (up to isomorphism), which is
given by y2 = x5 − 1.

ii) In the second case, the extra automorphism is an involution. Then, G is
isomorphic to the Klein four-group V4 and the curve has equation

y2 = x6 + a1x
4 + a2x

2 + 1.

The s-invariants are

(10) s1 = a3
1 + a3

2, s2 = 2a1a2,

see [29] for a detailed study of this case. In [29] was the first time that such invari-
ants were defined and later generalized in [13].

6. Computational aspects of invariants of superelliptic curves

In this part we give a quick introduction to some computational aspects of s-
invariants. A more detailed study of superelliptic curves and their computational
invariants will appear in [8].

Problem Given a genus g ≥ 3.
1) Find the lattice of inclusions of all the cases based on the automorphism

groups.
2) Compute relations among s-invariants for every group of the table.

In other words, we would like to characterize for every group G the locus of
the curves in each case in the Table 2, in terms of invariants of these curves and
determine the inclusions among such loci. While such lattice can be computed
using only group theory methods, from the computational viewpoint this is really
not very useful. Instead such lattice and such loci need to be computed in terms of
coefficients of the curves, or more precisely invariants of the curves. A step further
would be to characterize the Jacobians of curves in these loci. This can be done
through the theory of theta functions as in [5].

6.1. A Maple package for computing with superelliptic curves. Computing
the s-invariants we first need the equation of the curve in the normal form

yn = f(x).

Once the normal form is determined then it is rather straight forward to compute
the s-invariants. We have implemented some of these tasks in Maple and display
the codes below.
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normalpol:=proc(f,x) # Computes the normal form of a polynomial.

local a,n,f1;

n:=degree(f,x); f1:=f/coeff(f,x,0); a:=coeff(f1,x,n)^(1/n);

RETURN(subs(x=x/a,f1));

end:

s_inv := proc(f, x) # Computing the s-invariants.

local i, a, g, s;

g:=(degree(f, x) - 2)/2;

for i to g do

a[i]:=coeff(f, x, 2*i)

od:

for i to g do

s[i]:=factor(a[1]^(g-i+1)*a[i]+a[g]^(g-i+1)*a[g-i+1])

od;

RETURN([seq(s[i],i=1..g)]);

end;

fg_s:=proc (f,g,x,y,s) # Computing the s-transvection of

local n,m,fg,k; # binary forms f and g.

n:=degree(f,{x,y});

m:=degree(g,{x,y});

fg:=(n-s)!*(m-s)!/(n!*m!)*add((-1)^k*( s!/(k!*(s-k)!))

*diff(f,x$(s-k),y$k) *diff(g,x$k,y$(s-k)),k=0..s );

RETURN(expand(fg));

end:

fg_s2:=proc (f,g,x,y) # fg_s2(f,g,x,y) := fg_s(f,g,x,y,deg(f))

local n,f2,g2,k; # deg(g)=deg(f)

n:=degree(f,{x,y}); # returns an invariant (which means order=0)

f2:=collect(f,[x,y]);

g2:=collect(g,[x,y]);

1/(n!*n!)*add((-1)^k*( n!/(k!*(n-k)!))*(n-k)!*k!

*coeff(coeff(f2,x,n-k),y,k)
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* (n-k)!*k!*coeff(coeff(g2,x,k),y,n-k) ,k=0..n );

RETURN(expand(%));

end:

homogpol:=proc(f,x,y) # Converts a polynomial to a homogenous one.

RETURN(expand(subs(x=x/y,f*y^degree(f,x))));

end:

J_i:=proc(F,x,y,i)

fg_s(F,F,x,y,degree(F,{x,y})-i/2);

RETURN(%);

end:

I4prime:=proc(F,x,y)

J_i(F,x,y,8);

fg_s2(%,%,x,y);

RETURN(%);

end:

I2:=proc(F,x,y)

fg_s2(F,F,x,y);

RETURN(%);

end:

I3:=proc(F,x,y)

J_i(F,x,y,degree(F,{x,y}));

fg_s2(F,%,x,y);

RETURN(%);

end:

7. Genus 3

In this section we will determine all the superelliptic curves of genus 3. Com-
pleting the case in positive characteristic is a natural extension of the methods used
here.

7.1. Automorphism groups of genus 3 superelliptic curves. Applying Thm. 2
we obtain the automorphism groups of a genus 3 superelliptic curves defined over
algebraically closed field of characteristic p 6= 2. Below we list GAP group ID’s of
those groups.

Lemma 7. Let Xg be a genus 3 superelliptic curve defined over a field of charac-
teristic p 6= 2. Then the automorphism groups of Xg are as follows.
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0

1

2

3

4

5 1, C2

12, C2

13, V42, V4

3, C3
2 4, C4 14, C3 15, S3 16, D8

5 6 7 17, C6 18 19, S4

8, C14 9 10 11 20, C9 21 22 23, L3(2)

Figure 2. The lattice of genus 3 case. The blue items correspond
to hyperelliptic curves, the yellow ones to the other superelliptic
cases.

i): p = 3: (2, 1), (4, 2), (3, 1), (4, 1), (8, 2), (8, 3), (7, 1), (14, 2), (6, 2), (8, 1),
(8, 5), (16, 11), (16, 10), (32, 9), (30, 2), (16, 7), (16, 8), (6, 2).

ii): p = 5: (2, 1), (4, 2), (3, 1), (4, 1), (8, 2), (8, 3), (7, 1), (21, 1), (14, 2),
(6, 2), (12, 2), (9, 1), (8, 1), (8, 5), (16, 11), (16, 10), (32, 9), (42, 3), (12, 4),
(16, 7), (24, 5), (18, 3), (16, 8), (48, 33), (48, 48).

iii): p = 7: (2, 1), (4, 2), (3, 1), (4, 1), (8, 2), (8, 3), (7, 1), (21, 1), (6, 2),
(12, 2), (9, 1), (8, 1), (8, 5), (16, 11), (16, 10), (32, 9), (30, 2), (42, 3), (12, 4),
(16, 7), (24, 5), (18, 3), (16, 8), (48, 33), (48, 48).

iv): p = 0 or p > 7: (2, 1), (4, 2), (3, 1), (4, 1), (8, 2), (14, 2), (6, 2), (9, 1),
(8, 5), (16, 11), (32, 9), (12, 4), (16, 13), (24, 5), (48, 33), (48, 48), (96, 64).

Recall that the list for p = 0 is the same as for p > 7. In the diagram below we
display the inclusion among the loci in the case of genus 3. We will briefly discuss
the superelliptic curves and display their equations.

7.2. Equations of hyperelliptic curves of genus three. Let X3 be a hyper-
elliptic curve of genus 3. In Tab. 5 we list the automorphism groups of genus 3
hyperelliptic curves. The first column is the case number, in the second column the
groups which occur as full automorphism groups are given, and the third column
indicates the reduced automorphism group for each case. The dimension δ of the
locus and the equation of the curve are also are given in the next two columns.
The last column is the GAP identity of each group in the library of small groups
in GAP.

Case 1: Z2-hyperelliptic: Then, the equation of X3 is given by

y2 = f(x)
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Aut (Xg) Aut(Xg) δ equation y2 = f(x) Id.

1 Z2 {1} 5 x(x− 1)(x5 + ax4 + bx3 + cx2 + dx+ e) (2, 1)

2 Z2 × Z2 Z2 3 x8 + a3x
6 + a2x

4 + a1x
2 + 1 (4, 2)

3 Z3
2 D4 2 (x4 + ax2 + 1)(x4 + bx2 + 1) (8, 5)

4 Z4 Z2 2 x(x2 − 1)(x4 + ax2 + b) (4, 1)
5 Z2 × Z4 D4 1 (x4 − 1)(x4 + ax2 + 1) (8, 2)
6 D12 D6 1 x(x6 + ax3 + 1) (12, 4)
7 Z2 ×D8 D8 1 x8 + ax4 + 1 (16, 11)
8 Z14 Z7 0 x7 − 1 (14, 2)

9 U6 D12 0 x(x6 − 1) (24, 5)
10 V8 D16 0 x8 − 1 (32, 9)

11 Z2 × S4 S4 0 x8 + 14x2 + 1 (48, 48)

Table 5. Aut (X3) for hyperelliptic X3

where deg f = 7 or 8. To have an explicit way of describing a point in the moduli
space of hyperelliptic curves of genus 3 we need the generators of the field of in-
variants of binary octavics. These invariants are described in terms of covariants
of binary octavics. Such covariants were first constructed by van Gall who showed
that the graded ring of covariants is generated by 70 covariants and explicitly con-
structed them, see [28].

Let f(X,Y ) be the binary octavic

f(X,Y ) =

8∑
i=0

aiX
iY 8−i.

We define the following covariants:

g = (f, f)4, k = (f, f)6, h = (k, k)2, m = (f, k)4,

n = (f, h)4, p = (g, k)4, q = (g, h)4.

Then the following

J2 = (f, f)8, J3 = (f, g)8, J4 = (k, k)4, J5 = (m, k)4,

J6 = (k, h)4, J7 = (m,h)4 J8 = (p, h)4, J9 = (n, h)4, J10 = (q, h)4
(11)

are SL2(k)-invariants. Shioda has shown that the ring of invariants is a finitely
generated module of k[J2, . . . , J7], see [28] for more details.

Case 2: V4-hyperelliptic: Then, X3 has normal equation

Y 2 = X8 + a3X
6 + a2X

4 + a1X
2 + 1,

see [13]. The s-invariants of X3 are

s1 = a4
1 + a4

3, s2 = (a2
1 + a2

3) a2, s3 = 2 a1 a3.
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If a1 = a3 = 0, then s1 = s2 = s3 = 0. In this case

w := a2
2

is invariant. Thus, we define

s(X3) =


w if a1 = a3 = 0,

(s1, w, s3) if a2
1 + a2

3 = 0 and a2 6= 0,

(s1, s2, s3) otherwise.

(12)

The expressions of these covariants are very large in terms of the coefficients of
the curve and difficult to compute. However, in terms of the s-invariants s1, s2, s3

these expressions are smaller. Analogously, J14 is the discriminant of the octavic.
All these invariants are determined explicitly in terms of the s-invariants in [12].

We denote by L3 the sublocus ofM3 of hyperelliptic curves with automorphism
group V4. This is a closed subvariety of M3 determined as below as shown in [12].
The following are true, see [12] for their proofs.

Remark 3. i) k(L3) = k(s1, s2, s3).
ii) The relations among the s-invariants for other hyperelliptic curves of genus

3 are given in the Fig. 3.

0

1

2

3 2, V4: (s1, s2, s3)

3, C3
2 , 2s1 = s2

3

5, Z2 × Z4, 2s1 = −s2
3 6, D12, Eq. (??) 7, Z2 ×D8, a1 = a3

9, s2 = 0 11, (0, 196, 0) or
(

8192
81

,− 1280
27

, 128
9

)
10, a1 = a2 = a3 = 0

Figure 3. Relations among s-invariants for hyperelliptic curves
of genus 3 with extra involutions.

7.3. Equations of other superelliptic curves of genus 3. In this section we
take a quick glance of all superelliptic curves of genus 3 in all positive characteris-
tics 6= 2. Similar tables are computed for all genus g ≤ 10 in all characteristics and
include for each curve the normal equation of the curve, the automorphism group,
the invariants of the corresponding binary forms, s-invariants, the dimension of the
corresponding moduli space. In a current project the half-integer theta character-
istics will be computed in each case and the equation of the corresponding curve in
terms of these characteristics.

In the Table below we present these curves for p = 7 for the cases 1-32 of the
Table 2 so we can give an idea how this tables will look on the website with all the
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Table 6. Superelliptic curves of genus three

# Case Ḡ n Equation

Genus 3, p = 7

1 1 x7 + a1x
6 + a2x

5 + a3x
4 + a4x

3 + a5x
2 + a6x+ 1

2 4 (x2 + a1x+ 1)(x2 + a2x+ 1)(x2 + a3x+ 1)(x2 + a4x+ 1)

3 4 (x4 + a1x
2 + 1)(x4 + a2x

2 + 1)

4 4 x8 + a1x
4 + 1

5 2, 7 x8 − 1

6 6 x(x2 + a1x+ 1)(x2 + a2x+ 1)(x2 + a3x+ 1)

7 6 n=2 x(x6 + a1x
3 + 1)

8 7 (x2 − 1)(x2 + a1x+ 1)(x2 + a2x+ 1)(x2 + a3x+ 1)

9 7 (x4 − 1)(x4 + a1x
2 + 1)

10 8,9 x(x6 − 1)

11 8 x(x2 − 1)(x4 + a1x
2 + 1)

12 9 x(x2 − 1)(x2 + a1x+ 1)(x2 + a2x+ 1)

13 12,17 x8 + 14x4 + 1

14 1 x4 + a1x
3 + a2x

2 + a3x+ 1

15 8 n=3 x(x− 1)(x2 + a1x+ 1)

16 8 x(x3 − 1)

17 4 (x2 + a1x+ 1)(x2 + a2x+ 1)

18 4 x4 + a1x
2 + 1

19 2,7 x4 − 1

20 6 n=4 x(x2 + a1x+ 1)

21 7 (x2 − 1)(x2 + a1x+ 1)

22 8,9 x(x2 − 1)

23 11 x4 + 21
√

3x2 + 1

24 8 n=7 x(x− 1)

data. Clicking on each curve will display all the information about the curve such
as the automorphism group, invariants of the ninary form, s-invariants, an equation
of the curve in terms of the theta-nulls, etc.
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8. Concluding remarks

Finally, we are able to compute for a given genus g ≥ 2 all full automorphism
groups, equations, of genus g superelliptic curves defined over any algebraically
closed field of characteristic different from two. We organize them according to
their level n.

These tables are computed for all genus g ≤ 10 in all characteristics and include
for each curve the normal equation of the curve, the automorphism group, the
invariants of the corresponding binary forms, s-invariants, the dimension of the
corresponding moduli space. Such results will be presented in a continuation of
this paper, [3] where some of the algorithms will be described in more detail.

In a current project we study superelliptic curves defined over C. The half-
integer theta characteristics will be computed in each case and the equation of the
corresponding curve in terms of these characteristics, see [5].
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