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Abstract. Let R be a ring and M a right R–module. In this paper we prove
that if M is weakly F-supplemented, then every factor module and every F-
coclosed submodule of M is again weakly F-supplemented. In [5], it is shown
that Rad(M) has finite uniform dimension iff M does not contain an infinite
direct sum of nonzero small submodules. Here we replace F-small submodules
instead of small submodules (which is a weaker condition) and obtain the same
result; i.e, we show that ifM does not contain an infinite direct sum of F-small
submodules, then Rad(M) has finite uniform dimension.

1. Introduction

Throughout this article, R denotes an associative ring with identity, and modules
are unitary right R-modules.

We write N ≤ M to denote that N is a submodule of the module M while
N ⊆⊕ M means that N is a direct summand of M . A submodule L of M is
called small in M (denoted by L � M) if, for every proper submodule K of M ,
L+K 6=M . A module M is called hollow if every proper submodule of M is small
in M .

We denote the ring of all endomorphisms of M by End(M) and the Jacobson
radical of M by Rad(M) and the Jacobson radical of the ring R by J(R).

A module M is called lifting (or said to satisfy condition D1) if for every sub-
module N of M , M has a decomposition M = A ⊕ B such that A ≤ N and
N ∩B � B.

For two submodulesN andK of a moduleM , N is called a supplement ofK inM
if N is minimal with respect to the propertyM = K+N , equivalentlyM = K+N
and N ∩K � N . Also N is called a weak supplement of K in M if, M = N +K
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and N ∩K � M . A module M is called supplemented if every submodule of M
has a supplement in M . M is called amply supplemented if whenever M = A+B
for submodules A, B of M , then A has a supplement in M contained in B. Also
M is called weakly supplemented if any submodule of M has a weak supplement
in M .

Let M be a module and B ≤ A ≤ M . If A/B � M/B, then B is called a
cosmall submodule of A in M . The submodule A of M is called coclosed in M if A
has no proper cosmall submodule. Also B is called a coclosure of A in M if B is a
cosmall submodule of A and B is coclosed in M .

Supplemented and lifting modules and some generalizations of these kinds of
modules are studied by many authors, see for example [16, 8, 13, 14]. We refer for
other basic notions to [6, 17].

2. F-small submodules

The class of small modules and some other classe of modules relative to small
modules (for example semiperfect modules, supplemented modules and ...) are
studied by many authors. For example, see [10, 4, 11, 12, 1, 9, 15, 7]. In this
section we define the F–small class and then in section 3, we investigate the class
of F–supplemented modules. Let M be a module and K ≤M , then K is called an
F-small submodule of M , denoted by K �F M , if K is a finitely generated small
submodule of M . It is clear that any F-small submodule of M is small in M , and
in noetherian modules small submodules and F-small submodules coincide.

Lemma 2.1. Let M be a module and N ≤ M such that N ≤ Rad(M) and N is
finitely generated. Then N �F M .

Proof. It is clear by the proof of [3, Proposition 9.13]. �

It is an immediate conclusion of Lemma 2.1 that the sum of all F-small submod-
ules of the module M is equal to Rad(M).

The proof of following three statements are straightforward and are omitted.

Proposition 2.2. Let M be a module and A,B submodules of M . If A�F M and
B �F M , then A + B �F M . The converse is true if both A and B are finitely
generated. Especially for submodules A1, A2, ..., An of M ,

⊕n
i=1Ai �F M if and

only if Ai �F M (i = 1, 2, ..., n).

Proposition 2.3. Let M be a module and K ≤ N ≤ M . If K �F M and
N/K �F M/K, then N �F M . Moreover N �F M implies that N/K �F M/K.

Proposition 2.4. Let M be a module and K1 ≤ M1 ≤ M , K2 ≤ M2 ≤ M , sucht
that M =M1 ⊕M2. Then K1 ⊕K2 �F M1 ⊕M2 iff K1 �F M1 and K2 �F M2.

Example 2.5. Let M denote the Z-module
⊕∞

i=1 Z/4Z. Consider the submodule
N =

⊕∞
i=1 2Z/4Z of M . Then N is a small submodule of M but not F-small.

3. F-Supplemented Modules

Let M be a module and N,K submodules of M . Then N is called an F −
supplement of K in M if, M = N +K and N ∩K �F N . Similarly N is called a
weak F−supplement of K inM ifM = N+K and N ∩K �F M . The submodule
N of M is called an F-supplement (weak F-supplement, resp.) submodule, if there
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exists a submodule K of M such that N is an F-supplement (weak F-supplement,
resp.) of K in M .

The module M is called F-supplemented if every submodule of M has an F-
supplement in M . M is called weakly F-supplemented if every submodule of M
has a weak F-supplement in M and M is called amply F-supplemented if whenever
M = A+B for submodules A,B ofM , then A has an F-supplement inM contained
in B.

For two submodules K ≤ N ≤M of M , we say that K is an F-cosmall submod-
ule of N in M , if N/K �F M/K. The submodule N of M is called F-coclosed in
M if N has no proper F-cosmall submodule, equivalently N/K �F M/K implies
N = K for any submodule K of N .

For two submodules N,K of M , we say K is an F-coclosure of N in M , if
N/K �F M/K (K is an F-cosmall submodule of N in M) and K is F-coclosed in
M .

The module M is called F-lifting if for any submodule N of M there exists a
direct summand A of M such that A ≤ N and N/A�F M/A. By the definition of
F-lifting, we deduce that a module M is F-lifting iff for every submodule N of M ,
there is a decomposition M =M1 ⊕M2 such that M1 ≤ N and N ∩M2 �F M2.

In this section we show that in an F-lifting module every F-coclosed submodule
is a direct summand. Especially we show that a module M is F-lifting iff M is
amply F-supplemented and any F-coclosed submodule of M is a direct summand
of M .

Lemma 3.1.
(i) Let M be a module and A ≤ N ≤M . If N is an F-coclosed submodule of M

and A�F M , then A�F N .
(ii) In any weakly F-supplemented module, every F-coclosed submodule is an F-

supplement submodule.

Proof. (i) It is enough to show that A� N . Suppose that A+ L = N for L ≤ N .
Now We prove that N/L � M/L. Let N/L + K/L = M/L for L ≤ K ≤ M .
So M = N + K = A + L + K. Since A � M , we get M = L + K = K. Hence
N/L�M/L. Note thatN/L ∼= A/A∩L is finitely generated and soN/L�F M/L.
Therefore N = L, i.e. A� N .

(ii) Suppose that M is a weakly F-supplemented module and N ≤ M is an F-
coclosed submodule ofM . There exists a submodule A ofM such that N +A =M
and A∩N �F M . By (1), A∩N �F N and so N is an F-supplement submodule
of M . �

Theorem 3.2. Let M be a module. Then the following are equivalent:
(i) M is F-lifting;
(ii) Every submodule A of M can be written as A = N ⊕ F with N ⊆⊕ M and

F �F M ;
(iii) M is amply F-supplemented and every F-coclosed submodule of M is a direct

summand of M .

Proof. (i) =⇒ (ii) Let A ≤ M . Since M is F-lifting, there is a decomposition
M = M1 ⊕M2 such that M1 ≤ A and A ∩M2 �F M2 ≤ M . By modularity
A =M1 ⊕A ∩M2.
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(i) =⇒ (iii) Let M = X + Y . By (2) we may assume that Y ⊆⊕ M . Again by
(2), X∩Y = Y1⊕F for Y1 ⊆⊕ M and F �F M . By Lemma 3.1, F �F Y . Clearly
Y1 ⊆⊕ Y and so write Y = Y1 ⊕ Y2. Let π : Y1 ⊕ Y2 −→ Y2 denote the projection
map. We have X∩Y = Y1⊕X∩Y ∩Y2 and also X∩Y2 = X∩Y ∩Y2 = π(X∩Y ) =
π(Y1 +F ) = π(F ). Therefore X ∩ Y2 �F Y2 by Proposition 2.3. Finally we obtain
M = X + Y = X + Y1 + Y2 = X + Y2. So Y2 is an F-supplement of X contained
in Y .

Now suppose that H is an F-coclosed submodule of M . Then H = A⊕ F with
F �F M . Thus H/A�F M/A and so H = A a direct summand of M .

(iii) =⇒ (i) Let X ≤M . Then by (3), X has an F-supplement Y and Y has an
F-supplement M1 such that M1 ≤ X and M1 ⊆⊕ M . Write M =M1 ⊕M2. Then
X = M1 ⊕ X ∩M2. Furthermore M = M1 + Y and so X = M1 + X ∩ Y . Let
π : M1 ⊕M2 −→ M2 be the projection map. Then X ∩M2 = π(X) = π(X ∩ Y ).
Since X ∩ Y �F M , X ∩M2 �F M . Therefore M is F-lifting.

�

Example 3.3. Let M = Z/p2Z ⊕ Z/p3Z as Z-module. Then M is F-lifting and
so is F-supplemented by Theorem 3.4. Let N = pZ/p2Z ⊕ pZ/p3Z. Then N is a
submodule of M which is not a direct summand of M , so N is not F-coclosed in
M . Now consider the submodule K = Z/p2Z of M . Clearly K is not F-small in
M . Also if K/L �F M/L for L ≤ K, then K = L and so K is an F-coclosed
submodule of M .

Let M be a module, then M is called F-hollow if every proper submodule of M
is F-small in M . By the last Theorem we conclude the following Corollary;

Corollary 3.4. An indecomposable module M is F-lifting iff it is F-hollow.

Remark 3.5. Let M be a module and N an F-hollow submodule of M . If N is not
F-small inM then N is not small inM and so N +K =M for a proper submodule
K of M . Since N is F-hollow, we have N ∩K �F N and so N is an F-supplement
submodule of M . Moreover if M is F-lifting, then N is a direct summand of M by
Theorem 3.4.

Theorem 3.6. Let M be a module. Then the following hold
(i) If M is amply F-supplemented, then for every submodule N of M that is not

small in M , there is an F-supplement submodule L of M such that L ≤ N
and N/L�F M/L.

(ii) If A is an F-coclosed submodule of M and B ≤ A, then A/B is F-coclosed in
M/B.

(iii) If L is a supplement submodule of M and K ≤ L, then K is F-coclosed in L
iff K is F-coclosed in M .

Proof. (i) Since N is not small in M we get a proper submodule K of M such that
N + K = M . Let X be an F-supplement of N contained in K and L be an F-
supplement of X contained in N . Since N∩X �F X, we have (N∩X)/(L∩X)�F

X/(L∩X). Furthermore (N ∩X)/(L∩X) ∼= N/L and X/(L∩X) ∼= (X +L)/L =
M/L. So N/L�F M/L.

(ii) Let (A/B)/(C/B)�F (M/B)/(C/B) for B ≤ C ≤ A. Then A/C �F M/C
and so A = C.

(iii) Let L be a supplement submodule of M . If K is F-coclosed in M then
obviously K is F-coclosed in L.
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For converse assume that K is F-coclosed in L. Let H be a submodule of K such
that K/H �F M/H. It is clear that L/H is a supplement submodule of M/H. So
by Lemma 3.1, K/H �F L/H. Hence K = H, as K is F-coclosed in L. Therefore
K is F-coclosed in M . �

Proposition 3.7. Every direct summand of an amply F-supplemented module is
again amply F-supplemented.

Proof. Let M be any amply F-supplemented module and K ⊆⊕ M . Write M =
K⊕K ′. Suppose that K = C+D, then M = C+(D⊕K ′). So there exists P ≤ C
such that M = P +(D⊕K ′) and P ∩ (D⊕K ′)�F P . Thus K = K ∩M = P +D
and P ∩D = P ∩ (D ⊕K ′)�F P ; i.e., K is amply F-supplemented. �

Suppose that M is a module and N ≤ M . Then N is said to have ample F-
supplement in M if N has an F-supplement contained in L, whenever M = N + L
for submodule L of M .

Proposition 3.8. Let M be a module and U1, U2 submodules of M such that M =
U1 + U2. If U1 and U2 have ample F-supplement in M , then so does U1 ∩ U2.

Proof. Let V ≤ M and U1 ∩ U2 + V = M . Then U1 = U1 ∩ U2 + V ∩ U1 and
U2 = U1∩U2+V ∩U2. SoM = U1+V ∩U2 andM = U2+V ∩U1. Therefore there
exist V ′2 ≤ V ∩ U2 and V ′1 ≤ V ∩ U1 such that U1 + V ′2 = M and U1 ∩ V ′2 �F V ′2 ,
and U2 + V ′1 =M and U2 ∩ V ′1 �F V ′1 . Thus V ′1 + V ′2 ≤ V and U1 = U1 ∩ U2 + V ′1
and U2 = U1 ∩U2 +V ′2 . So (U1 ∩U2)+ (V ′1 +V ′2) =M and (U1 ∩U2)∩ (V ′1 +V ′2) =
(U2 ∩ V ′1) + (U1 ∩ V ′2)�F V ′1 + V ′2 , that completes the proof. �

Proposition 3.9. Let M be a module and U ≤ M . Then the following are equiv-
alent
(i) There is a decomposition M = X ⊕X ′ with X ≤ U and X ′ ∩ U �F X ′;
(ii) There is an idempotent e ∈ End(M) such that (M)e ≤ U and (U)(1− e)�F

(M)(1− e);
(iii) There is a direct summand X of M such that X ≤ U and U/X �F M/X;
(iv) U has an F-supplement V in M such that U ∩ V is a direct summand of U .

Proof. (i) =⇒ (ii) For M = X ⊕X ′, there exists an idempotent e ∈ End(M) such
that (M)e = X and (M)(1 − e) = X ′. Since X ≤ U , we conclude (U)(1 − e) ≤
U ∩ (M)(1− e)�F (M)(1− e).

(ii) =⇒ (iii) Take X = (M)e. Then M = X ⊕ (M)(1− e) and U/X �F M/X.
(iii) =⇒ (i) Write M = X ⊕X ′. So U = X ⊕ (X ′ ∩ U) by modularity. Also we

have X ′ ∩ U ∼= U/X �) FM/X ∼= X ′. Thus X ′ ∩ U �F X ′.
(i) =⇒ (iv) By (1), X ′ is an F-supplement of U inM and also U = X⊕(X ′∩U).
(iv) =⇒ (i) Let V be an F-supplement of U in M such that U = X ⊕ (V ∩ U)

for some X ≤ U . Then M = U + V = X + (V ∩ U) + V = X + V and X ∩ V =
(X ∩ U) ∩ V = X ∩ (U ∩ V ) = 0, i.e., X is a direct summand of M . �

Example 3.10. Let M denote the Z-module Z/24Z and U = 4Z/24Z ≤ M . Let
X = 8Z/24Z and X ′ = 3Z/24Z be submodules of M . We have M = X ⊕ X ′.
Since X ≤ U , by Proposition 3.11 (4), there exists an F-supplement V of U in M
such that U ∩ V ⊆⊕ U . If we get V = X ′ in this example, then obviously V is
an F-supplement of U in M and U ∩ V = 12Z/24Z is a direct summand of U ; as
desired.
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Proposition 3.11. Let M be module such that every submodule of M is F-supple-
mented. Then, M is amply F-supplemented.

Proof. Suppose thatM = X+Y for some submodulesX,Y ofM . Then there exists
a submodule A of X such that (X ∩ Y ) +A = X and (X ∩ Y )∩A = Y ∩A�F A.
ThusM = X+Y = (X∩Y )+A+Y = A+Y , and soM is amply F-supplemented.

�

Corollary 3.12. Let R be a ring. Then every R–module is amply F-supplemented
if and only if every R–module is F-supplemented.

Let M be a module. Then M is called π − projective if for two submodules X,
Y of M , there exists f ∈ End(M) with Im(f) ≤ X and Im(1− f) ≤ Y .

Proposition 3.13. Let M be a π–projective module. If M is F-supplemented, then
M is amply F-supplemented.

Proof. Suppose that M = A + B for A,B ≤ M . Then there is an endomorphism
e of M such that (M)e ≤ A and (M)(1 − e) ≤ B. Let C be an F-supplement of
A in M . Therefore we have M = (M)e + (M)(1 − e) = (M)e + (A + C)(1 − e) ≤
A + (C)(1 − e). So M = A + (C)(1 − e), where (C)(1 − e) ≤ B. Now we have
A ∩ (C)(1− e) = (A ∩C)(1− e)�F (C)(1− e); as A ∩C �F C. Thus (C)(1− e)
is an F-supplement of A in M contained in B; i.e, M is amply F-supplemented.

�

Proposition 3.14. Let M be a weakly F-supplemented module. Then
(i) Every F-coclosed submodule of M is weakly F-supplemented.
(ii) Every factor module of M is weakly F-supplemented.

Proof. (i) Let K be an F-coclosed submodule ofM and N ≤ K. SinceM is weakly
F-supplemented, there exists L ≤ M such that M = N + L and N ∩ L �F M .
Thus K = N + (K ∩ L). Also N ∩ (K ∩ L) = N ∩ L�F K by Lemma 3.1.

(ii) Let N be a submodule of M and L/N �F M/N . Since M is weakly F-
supplemented, there exists K ≤ M such that M = K + L and K ∩ L �F M . So
M/N = L/N +(K+N)/N . Let π :M −→M/N denote the natural epimorphism.
Then L/N ∩ (K +N)/N = (N + L ∩K)/N = π(L ∩K)�F M/N by Proposition
2.3. Therefore M/N is weakly F-supplemented.

�

Lemma 3.15. Let M be a module and B ≤ C ≤ M . Moreover suppose that
M = A+B. Then C/B ∼= (A ∩ C)/(A ∩B).

Proof. Let B′ = A ∩ C, then B′ ∩ B = A ∩ B. Now B′/(B′ ∩ B) ∼= (B + B′)/B′,
so that B +B′ = A ∩ C +B = C. Hence (A ∩ C)/(A ∩B) ∼= C/B. �

Lemma 3.16. Let M be a module such that M = A + B = (A ∩ B) + C for
submodules A,B,C of M . Then M = (B ∩ C) +A = (A ∩ C) +B.

Proof. See [5, Lemma 1.2]. �

Lemma 3.17. Let M be a module such that M = A+B, for A,B ≤M . If B ≤ C
and C/B �F M/B, then (A ∩ C)/(A ∩B)�F M/(A ∩B).
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Proof. By [5, Lemma 1.3], (A ∩ C)/(A ∩ B) � M/(A ∩ B) and by Lemma 3.15,
(A ∩B)/(A ∩ C) is finitely generated. So (A ∩ C)/(A ∩B)�F M/(A ∩B).

�

Proposition 3.18. Let M be a module and B ≤ C ≤ M . If C/B is an F-
supplement submodule of M/B and B is an F-supplement submodule of M . Then
C is an F-supplement submodule of M .

In particular if M is weakly F-supplemented, then we can replace F-supplement
by F-coclosed.

Proof. Let M/B = C/B + C ′/B and C/B ∩ C ′/B �F C/B. Also suppose that
M = B + B′ and B ∩ B′ �F B, for B ≤ C ′ ≤ M and B′ ≤ M . Since B ≤ C
and also B ≤ C ′, we have M = (C ∩ C ′) + B′. Also M = C + C ′. These
implies M = C + (B′ ∩ C ′) by Lemma 3.16. Therefore it remains we show that
C ∩ C ′ ∩ B′ �F C. For this, since C = C ∩ (B + B′) = B + (C ∩ B′) and
(C ∩C ′)/B �F C/B, we obtain (C ∩C ′∩B′)/(B∩B′)�F C/(B∩B′) by Lemma
3.17. Moreover B ∩ B′ �F C. Now by Proposition 2.2, C ∩ C ′ ∩ B′ �F C. The
last statement follows immediately from Lemma 3.1. �

Proposition 3.19. Homomorphic images of amply F-supplemented modules are
amply F-supplemented.

Proof. Suppose that M is an amply F-supplemented module and f : M −→ N is
an epimorphism where N is an arbitrary module. Assume N = N1 + N2 for two
submodules N1, N2 of N . ThenM = f−1(N) = f−1(N1)+f

−1(N2). So there exists
X ≤ f−1(N2) ≤ M such that M = f−1(N1) +X and X ∩ f−1(N1) �F X. Thus
N = N1 + f(X) and N1 ∩ f(X) = f(f−1(N1)∩X)�F f(X) and also f(X) ≤ N2.
Therefore N is amply F-supplemented. �

Let M be a module. Then M is said to have finite uniform (Goldie) dimension
if, M does not contain an infinite set of independent submodules.

If Sup{k ∈ N|M contains k independent submodules} = n, then M is said to
have uniform dimension n and denoted by u.dim(M) = n. In this case M contains
n independent uniform submodules N1, N2, ..., Nn with

⊕n
i=1Ni Ee M . So there

exists an essential monomorphism from a direct sum of n uniform modules to M .
If M = 0 then we denote u.dim(M) = 0, else u.dim(M) ≥ 1.

It is clear that if M has finite uniform dimension and M =
⊕n

i=1Ni, then
u.dim(M) =

∑n
i=1 u.dim(Ni).

Suppose that N is a submodule of M and M has finite uniform dimension, then
u.dim(N) ≤ u.dim(M).

Proposition 3.20. Let M be a module. Then the following statements are equiv-
alent:
(i) Rad(M) has finite uniform dimension;
(ii) Every F-small submodule of M has finite uniform dimension and there exists

a positive integer n such that u.dim(N) ≤ n for every F-small submodule N
of M ;

(iii) M deos not contain an infinite direct sum of nonzero F-small Submodules.

Proof. 1 =⇒ 2: This is clear.
2 =⇒ 3: Suppose that N1 ⊕ N2 ⊕ ... is an infinite direct sum of non-zero F-

small submodules of M . Then N1 ⊕ N2 ⊕ ... ⊕ Nn+1 is F-small in M , and also
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u.dim(N1 ⊕N2 ⊕ ...⊕Nn+1) ≥ n+ 1, that is a contradiction by hypothesis. So M
does not contain an infinite direct sum of non-zero F-small submodules.

3 =⇒ 1: Let K1 ⊕K2 ⊕ ... be an infinite direct sum of non-zero submodules of
Rad(M) and 0 6= xi ∈ Ki for each i ≥ 1. Then xiR �F M by Lemma 2.1 and so
x1R⊕x2R⊕ ... is an infinite direct sum of non-zero F-small submodules of M , that
is a contradiction. So Rad(M) has finite uniform dimension. �

Example 3.21. Suppose thatM is a module with Rad(M) =M . Then by Propo-
sition 3.20,M has finite uniform dimension iffM does not contain an infinite direct
sum of non-zero F-small submodules. Abelean groups as Z-modules have no max-
imal submodule, so such modules have finite uniform dimension iff they do not
contain an infinite direct sum of non-zero F-small submodules. Especially QZ has
finite uniform dimension.
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