ALBANIAN JOURNAL OF MATHEMATICS Volume 5, Number 2, Pages 87–94 ISSN 1930-1235: (2011)

ON γ -SEMI- θ -CLOSED SETS AND LOCALLY γ -S-REGULAR SPACES

SABIR HUSSAIN Department of Mathematics, Islamia University Bahawalpur, Pakistan. Email: sabiriub@yahoo.com

BASHIR AHMAD Department of Mathematics, King Abdul Aziz University, PO Box 80203, Jeddah 21589, Saudi Arabia. Email: drbashir9@gmail.com

ABSTRACT. We continue studying the properties and characterizations of γ -semi- θ -closed sets, γ -s-closed relative to a space X and locally γ -s-regular spaces defined and discussed by B. Ahmad and S. Hussain in 2008 and S. Hussain and B. Ahmad in 2007 and 2009.

1. INTRODUCTION

In 1969, Signal and Arya [22] defined a new separation axiom called almost regularity which is weaker than regularity. It has been shown in [17], that for Hausdorff spaces, this axiom occupies a position between Urysohn's separation axiom and T_3 axiom. Maheswari and Prasad [18] have defined another axiom called s-regularity which is weaker than regularity (without T_2). In 1982, C. Dorsett [8] defined and investigated a new separation axiom called semi-regular space. It is shown that s-regularity is weaker than semi-regularity. In 1979, S. Kasahara [14] defined an operation α on topological spaces. B. Ahmad and M. Khan [7] defined and study locally s-regular spaces. It is interesting to mention that class of s-regular spaces is a proper subclass of locally s-regular spaces. In 1992 (1993), B. Ahmad and F. U. Rehman [1] [21] introduced the notions of γ -interior, γ -boundary and γ -exterior points in topological spaces. B. Ahmad and S. Hussain further studied the properties of γ -operations in topological spaces in [2] [3]. Recently S. Hussain, B. Ahmad and T. Noiri [12] introduced and discussed γ -semi-open sets in topological spaces. Further B. Ahmad and S. Hussain [5] explored the characterizations of γ -semi-open (closed), γ -semi-closure (interior) and γ -semi-continuous functions. They defined and discussed γ -s-closed spaces and subspaces([4], [10]) using γ -semi-closure. It is

©2011 Aulona Press (Albanian J. Math.)

²⁰¹⁰ Mathematics Subject Classification. 54A05, 54A10, 54D10.

Key words and phrases. γ -closed(open), γ -closure, γ -regular(open), γ^* -semi-closed (open), γ -semi-closure(interior), γ -s-regular space, γ -semi- θ -closed (open), γ -s-closed relative, γ -semi- θ -perfect, γ -regular-open(closed).

known [10] that the concept of γ -s-closed space is a generalization of s-closed space [16]. They defined and discussed the characterizations and properties of γ -semi- θ closed sets [10], γ -s-closed relative to a space X [4] and Locally γ -s-Regular spaces [4].

In this paper, we continue studying the properties and characterizations of γ -semi- θ -closed sets, γ -s-closed relative to a space X and locally γ -s-regular spaces defined and discussed in [4], [10], [11].

2. Preliminaries

Hereafter X will be represented as a topological space and we shall write a space in place of a topological space for our convenience.

Now we recall some notions defined in [5],[11], [12], [14] and [15]. In [14] an operation $\gamma : \tau \to P(X)$ is defined as a function from τ to the power set of X such that $V \subseteq V^{\gamma}$, for each $V \in \tau$, where V^{γ} denotes the value of γ at V. The operations defined by $\gamma(G) = G$, $\gamma(G) = cl(G)$ and $\gamma(G) = intcl(G)$ are examples of operation γ . Let A be a subset of space X. A point $x \in A$ is said to be γ -interior point [15] of A, if there exists an open nbd N of x such that $N^{\gamma} \subseteq A$. We denote the set of all such points by $int_{\gamma}(A)$. Thus

$$int_{\gamma}$$
 (A) = { $x \in A : x \in N \in \tau$ and $N^{\gamma} \subseteq A$ }.

Note that A is γ -open [15] iff A $=int_{\gamma}(A)$. A is called γ - closed [21] iff X - A is γ -open. A point $\mathbf{x} \in \mathbf{X}$ is called a γ -closure point [15] of A, if $U^{\gamma} \cap A \neq \phi$, for each open nbd U of x. The set of all γ -closure points of A is called γ -closure of A and is denoted by $cl_{\gamma}(A)$. A is called γ -closed, if $cl_{\gamma}(A) \subseteq A$. Note that $cl_{\gamma}(A)$ is contained in every γ -closed superset of A. An operation γ on τ is said be regular [15], if for any open nbds U, V of $x \in X$, there exists an open nbd W of x such that $U^{\gamma} \cap V^{\gamma} \supseteq W^{\gamma}$. An operation γ on τ is said to be open [15], if for every nbd U of each $x \in X$, there exists γ -open set B such that $x \in B$ and $U^{\gamma} \subseteq B$. A subset A of a space X is said to be a γ -semi-open set [12], if there exists a γ -open set O such that $O \subseteq A \subseteq cl_{\gamma}(O)$. The set of all γ -semi-open sets is denoted by $SO_{\gamma}(X)$. A is γ -semi-closed iff X - A is γ -semi-open in X. Note that A is γ -semi-closed iff $int_{\gamma}(cl_{\gamma}(A)) \subseteq A$. The intersection of all γ -semi-closed sets containing A is called γ -semi-closure [5] of A and is denoted by $scl_{\gamma}(A)$. Note that A is γ -semi-closed iff $scl_{\gamma}(A) = A$. The union of γ -semi-open subsets of A is called γ -semi-interior [5] of A and is denoted by $sint_{\gamma}(A)$. A is γ -semi-regular [5], if it is both γ -semi-open and γ -semi-closed. The class of all γ -semi-regular sets of X is denoted by $SR_{\gamma}(A)$. Note that if γ is a regular operation, then the union of γ -semi-regular sets is γ semi-regular. A space X is said to be γ -s-regular [11], if for any γ -semi-regular set A and $x \notin A$, there exist disjoint γ -open sets U and V such that $A \subseteq U$ and $x \in V$.

3. γ -semi- θ -closed Sets.

In [10] a point x of a space X is defined as the γ -semi- θ -closure point of a subset A of X, if $A \cap scl_{\gamma}(U) \neq \phi$, for every $U \in SO_{\gamma}(X)$ containing x. The set of all γ -semi- θ -closure points of A is called γ -semi- θ -closure of A and is denoted by $s_{\gamma}cl_{\theta}(A)$. A subset A is said to be γ -semi- θ -closed, if $A = s_{\gamma}cl_{\theta}(A)$. The complement of a γ -semi- θ -closed set is said to be γ -semi- θ -open.

Now we define:

Definition 3.1. A function $f : X \to Y$ is said to be a γ -semi- θ -closed, if f(K) is γ -semi- θ -closed in Y, for every γ -semi- θ -closed set K of X.

Theorem 3.2. A function $f : X \to Y$ is γ -semi- θ -closed iff $s_{\gamma}cl_{\theta}(f(A)) \subseteq f(s_{\gamma}cl_{\theta}(A))$, for every subset A of X, where γ is open.

Proof. Necessity: let f be γ -semi- θ -closed and A any subset of X. Then $f(s_{\gamma}cl_{\theta}(A))$ is γ -semi- θ -closed. But $f(A) \subseteq f(s_{\gamma}cl_{\theta}(A))$ implies that $s_{\gamma}cl_{\theta}(f(A)) \subseteq f(s_{\gamma}cl_{\theta}(A))$ [10].

Sufficiency: let $s_{\gamma}cl_{\theta}(f(A)) \subseteq f(s_{\gamma}cl_{\theta}(A))$, for every subset A of X. Let B be a γ -semi- θ -closed set of X. Then $s_{\gamma}cl_{\theta}(f(B)) \subseteq f(s_{\gamma}cl_{\theta}(B)) = f(B)$. But $f(B) \subseteq s_{\gamma}cl_{\theta}(f(B))$. This proves that $s_{\gamma}cl_{\theta}(f(B)) = f(B)$. This gives that f(B) is γ -semi- θ -closed. Hence the proof.

Theorem 3.3. Let γ be an open operation. Then the following are equivalent for a function $f: X \to Y$:

(1) f is γ -semi- θ -closed.

(2) $s_{\gamma}cl_{\theta}(f(A)) \subseteq f(s_{\gamma}cl_{\theta}(A))$, for every subset A of X.

(3) For every subset B of Y and every γ -semi- θ -open set U of X containing $f^{-1}(B)$, there exists a γ -semi- θ -open set V of Y containing B such that $f^{-1}(V) \subseteq U$.

(4) For every point $y \in Y$ and every γ -semi- θ -open set U of X containing $f^{-1}(y)$, there exists a γ -semi- θ -open set V of Y containing y such that $f^{-1}(V) \subseteq U$.

Proof. The proof is similar to that of Theorem 5.2 [6] and is thus omitted. \Box

Recall [Lemma 1 [4]] that a subset A of a space X is γ -s-closed relative to X iff every cover of A by γ -semi- θ -open sets of X has a finite subcover.

Theorem 3.4. Let $f : X \to Y$ be a γ -semi- θ -closed function such that $f^{-1}(y)$ is γ -s-closed relative to X, for each point y of Y. If K is γ -s-closed relative to Y, then $f^{-1}(K)$ is γ -s-closed relative to X, where γ is a regular operation.

Proof. Let $\{U_{\alpha} : \alpha \in I\}$ be any cover of $f^{-1}(K)$ by γ -semi- θ -open sets of X. For each $y \in K$, $f^{-1}(y)$ is γ -s-closed relative to X and by Lemma 1 [4], there exists a finite subset I(y) of I such that $f^{-1}(y) \subseteq \bigcup \{U_{\alpha} : \alpha \in I(y)\}$. Let $U(y) = \bigcup \{U_{\alpha} : \alpha \in I(y)\}$, then U(y) is γ -semi- θ -open in X [4]. Since f is γ -semi- θ -closed, by Theorem 3.4, there exists a γ -semi- θ -open set V(y) containing y such that $f^{-1}(V(y)) \subseteq U(y)$, since $\{V(y) : y \in K\}$ is a γ -semi- θ -open cover of K. By Lemma 1 [4], there exists a finite subset K_0 of K such that $K \subseteq \bigcup \{V(y) : y \in K_0\}$. Therefore, we obtain

$$f^{-1}(K) \subseteq \cup \{f^{-1}(V(y)) : y \in K_0\} \subseteq \cup \{U_\alpha(y) : \alpha \in I(y), y \in K_0\}.$$

This shows that $f^{-1}(K)$ is γ -s-closed relative to X. This completes the proof. \Box

Corollary 1. Let $f : X \to Y$ be a γ -semi- θ -closed surjection such that $f^{-1}(y)$ is γ -s-closed relative to X for each point $y \in Y$. If Y is γ -s-closed, then X is γ -s-closed, where γ is a regular operation.

In [4], we defined that a filterbase \Im on X is said to γ -SR-converge to $x \in X$, if for each $V \in SR_{\gamma}(X)$, there exists $F \in \Im$ such that $F \subseteq V$.

Definition 3.5. A point $x \in X$ is called γ -semi- θ -adherent point of a filterbase \Im in X, if $x \in [s_{\gamma}ad]_{\theta}(\Im) = \bigcap \{s_{\gamma}cl_{\theta}(F) : F \in \Im\}.$

Definition 3.6. A filterbase \Im is said to be γ -semi- θ -directed towards $S \subseteq X$, if every filterbase subordinate to \Im has a γ -semi- θ -adherent point in S.

Definition 3.7. A function $f : X \to Y$ is said to be γ -semi- θ -perfect, if for every filterbase \Im in f(X) γ -SR-converges to $y \in Y$, $f^{-1}(\Im)$ is γ -semi- θ -directed towards $f^{-1}(y)$.

Theorem 3.8. Every γ -semi- θ -perfect function is γ -semi- θ -closed, where γ is open.

Proof. Let $f: X \to Y$ be a γ -semi- θ -perfect function and A any subset of X. Let $y \in s_{\gamma}cl_{\theta}(f(A))$. Then there exists a filterbase \Im on f(A) which γ -SR-converges to y. Put $\xi = \{f^{-1}(F) \cap A : F \in \Im\}$. Then ξ is a γ -filterbase on X subordinate to the filterbase $f^{-1}(\Im)$. Since $f^{-1}(\Im)$ is γ -semi- θ -directed towards $f^{-1}(y)$, we have $f^{-1}(y) \cap [s_{\gamma}ad]_{\theta}(\xi) \neq \phi$. Therefore, we obtain $y \in f(s_{\gamma}cl_{\theta}A)$. By Theorem 3.2, f is γ -semi- θ -closed. Hence the proof.

Theorem 3.9. A function $f : X \to Y$ is γ -semi- θ -perfect iff $[s_{\gamma}ad]_{\theta}f(\mathfrak{F}) \subset f([s_{\gamma}ad]_{\theta}(\mathfrak{F}))$, for every filterbase \mathfrak{F} in X.

Proof. Necessity: suppose that $f: X \to Y$ is γ -semi- θ -perfect. Let \mathfrak{F} be a filterbase in X and $y \in [s_{\gamma}ad]_{\theta}f(\mathfrak{F})$. Then there exists a filterbase ξ in f(X) which is subordinate to $f(\mathfrak{F})$ and γ -SR-converges to y. Put $H = \{f^{-1}(G) \cap F : F \in \mathfrak{F}, G \in \xi\}$. Then H is filterbase in X subordinate to $f^{-1}(\xi)$. Since f is γ -semi- θ perfect, $f^{-1}(\xi)$ is γ -semi- θ -directed towards $f^{-1}(y)$. Therefore we have $f^{-1}(y) \cap [s_{\gamma}ad]_{\theta}(H) \neq \phi$ and hence $y \in f([s_{\gamma}ad]_{\theta}(\mathfrak{F}))$. This proves that $[s_{\gamma}ad]_{\theta}f(\mathfrak{F}) \subset f([s_{\gamma}ad]_{\theta}\mathfrak{F})$. This proves necessity.

Sufficiency: suppose that $[s_{\gamma}ad]_{\theta}f(\mathfrak{F}) \subset f([s_{\gamma}ad]_{\theta}(\mathfrak{F}))$, for every filterbase \mathfrak{F} in X. We prove that f is γ -semi- θ -perfect. Assume contrary that f is not γ -semi- θ -perfect, then there exists a filterbase \mathfrak{F} in f(X) such that $\mathfrak{F} \gamma$ -SR-converges to a point $y \in Y$. But $f^{-1}(\mathfrak{F})$ is not γ -semi- θ -directed towards $f^{-1}(y)$. Thus there exists a filterbase ξ in X which is subordinate to $f^{-1}(\mathfrak{F})$ and $f^{-1}(y) \cap [s_{\gamma}ad]_{\theta}(\xi) = \phi$. Therefore we have $y \notin [s_{\gamma}ad]_{\theta}f(\xi)$ and hence $y \notin s_{\gamma}cl_{\theta}(f(G_1))$, for some $G_1 \in \xi$. Then there exists a γ -semi-open set V containing y such that $scl_{\gamma}(V) \cap f(G_1) = \phi$. Since $\mathfrak{F} \gamma$ -SR-converges to y and ξ is subordinate to $f^{-1}(\mathfrak{F})$, there exists a $G_2 \in \xi$ such that $f(G_2) \subset scl_{\gamma}(V)$. Consequently, we obtain $G_1 \cap G_2 = \phi$. This contradicts that ξ is a filterbase. This proves that f is γ -semi- θ -perfect. Hence the proof. \Box

4. γ -S-CLOSED RELATIVE TO A SPACE.

In [10] a subset A of a space X is defined to be γ -s-closed relative to X, if for every cover of A by γ -semi-open sets of X, there exists a finite subset I_0 of I such that $A \subseteq \bigcup_{\alpha \in I_0} scl_{\gamma}(V_{\alpha})$.

Theorem 4.1. A subset K of a space X is γ -s-closed relative to X iff $K \cap [s_{\gamma}ad]_{\theta}(\mathfrak{F}) \neq \phi$, for every filterbase \mathfrak{F} in K.

Proof. Necessity: suppose that K is γ -s-closed relative to X. Assume that \Im is a filterbase in K such that $K \cap [s_{\gamma}ad]_{\theta}(\Im) = \phi$. Then for each $x \in K$, there exists a γ -semi-open set U_x containing x and $F_x \in \Im$ such that $F_x \cap scl_{\gamma}(U_x) = \phi$. Since K is γ -s-closed relative to X, there exists a finite number of points $x_1, x_2, ..., x_n$ in K such that $K \subset \bigcup \{scl_{\gamma}(U_x) : j = 1, 2, ..., n\}$. Put $F = \bigcap \{F_{x_j} : j = 1, 2, ..., n\}$, then we obtain $F \cap K = \phi$. This contradicts that \Im is a filterbase in K. Therefore $K \cap [s_{\gamma}ad]_{\theta}(\Im) \neq \phi$. This completes necessity.

Sufficiency: suppose that $K \cap [s_{\gamma}ad]_{\theta}(\mathfrak{F}) \neq \phi$, for every filterbase \mathfrak{F} in K. Assume that K is not γ -s-closed relative to X. Then there exists a cover $\{U_{\alpha} : \alpha \in I\}$ of K be γ -semi-open sets of X such that $K \not\subseteq \bigcup \{scl_{\gamma}(U_{\alpha}) : \alpha \in I_o\}$ for every $I_0 \in J(I)$, where J(I) denotes the family of all finite subsets of I. Put $F_{I_o} = \bigcap \{K - scl_{\gamma}(U_{\alpha}) : \alpha \in I_o\}$, for each $I_o \in J(I)$. Then $\mathfrak{F} = \{F_{I_o} : I_o \in J(I)\}$ is a filterbase in K and $K \cap [s_{\gamma}ad]_{\theta}(\mathfrak{F}) = \phi$. This is a contradiction. Therefore, K is γ -s-closed relative to X. This completes the proof.

Theorem 4.2. If $f : X \to Y$ is a γ -semi- θ -perfect function, then $f^{-1}(K)$ is γ -sclosed relative to X, for every $K \subseteq Y$, γ -s-closed relative to Y. Where γ is open.

Proof. Let $f: X \to Y$ be a γ -semi- θ -perfect function and $K \subset Y$ γ -s-closed relative to Y. We prove that $f^{-1}(K)$ is γ -s-closed relative to X. Let \mathfrak{F} be a filterbase in X. Then $\xi = \{f(F) \cap K : F \in \mathfrak{F}\}$ is a filterbase in K subordinate to the filterbase $f(\mathfrak{F})$. By Theorem 4.1, $K \cap [s_{\gamma}ad]_{\theta}(\xi) \neq \phi$ and hence we obtain $K \cap [s_{\gamma}ad]_{\theta}f(\mathfrak{F}) \neq \phi$. Since f is γ -semi- θ -perfect, therefore by Theorem 3.8, we obtain $K \cap f([s_{\gamma}ad]_{\theta}(\mathfrak{F})) \neq \phi$. This gives $f^{-1}(K) \cap [s_{\gamma}ad]_{\theta}(\mathfrak{F}) \neq \phi$. Hence by Theorem 4.1, we conclude that $f^{-1}(K)$ is γ -s-closed relative to X. Hence the proof. \Box

Theorem 4.3. Let γ be an open operation. A function $f : X \to Y$ is γ -semi- θ -perfect iff

(1) f is γ -semi- θ -closed, and

(2) $f^{-1}(y)$ is γ -s-closed relative to X, for each $y \in Y$.

Proof. Necessity: let $f : X \to Y$ be a γ -semi- θ -perfect function. Then (1) follows from Theorem 3.8 and (2) follow from Theorem 4.2, because each singleton set in Y is γ -s-closed relative to Y [10].

Sufficiency: we suppose on the contrary that conditions (1) and (2) hold but fis not γ -semi- θ -perfect. Then there exists a filterbase \Im in f(X) such that $\Im \gamma$ -SRconverges to a point $y \in Y$. But $f^{-1}(\Im)$ is not γ -semi- θ -directed towards $f^{-1}(y)$. Thus there exists a filterbase ξ in X which is subordinate to $f^{-1}(\Im)$ and $f^{-1}(y) \cap$ $[s_{\gamma}ad]_{\theta}(\xi) = \phi$. Therefore we have $y \notin [s_{\gamma}ad]_{\theta}f(\xi)$ and hence $y \notin s_{\gamma}cl_{\theta}(f(G_1))$, for some $G_1 \in \xi$. Then there exists a γ -semi-open set V containing y such that $scl_{\gamma}(V) \cap f(G_1) = \phi$. Since $\Im \gamma$ -SR-converges to y and ξ is subordinate to $f^{-1}(\Im)$, therefore, there exists a $G_2 \in \xi$ such that $f(G_2) \subset scl_{\gamma}(V)$. Consequently, we obtain $G_1 \cap G_2 = \phi$. This contradicts that ξ is filterbase. This proves that f is γ -semi- θ -perfect. This completes the proof. \Box

5. Locally γ -s-Regular Spaces .

In [10] a subset A of a space X is called γ -regular-open, if $A = int_{\gamma}(cl_{\gamma}(A))$. The set of all γ -regular-open sets in X is denoted by $RO_{\gamma}(X, \tau)$. Note that $RO_{\gamma}(X, \tau) \subseteq \tau_{\gamma} \subseteq \tau$ [10].

A space X is a γ -extremally disconnected space [10], if $cl_{\gamma}(U)$ is a γ -open set, for every γ -open set U in X. A space X is said to be locally γ -s-regular [11], if for each point of X has a γ -regular-open nbd which is γ -s-regular subspace of X.

The following Theorem shows that locally γ -s-regularity is a γ -regular-open hereditary property:

Theorem 5.1. Every γ -regular-open subspace of a locally γ -s-regular space is locally γ -s-regular, where γ is a regular operation.

Proof. Let Y be a γ -regular-open subspace of a locally γ -s-regular space X and $x \in Y$. Since X is locally γ -s-regular, therefore $x \in X$ has a γ -regular-open set V containing x which is γ -s-regular subspace of X. Since $int_{\gamma\gamma}((cl_{\gamma\gamma})(A)) = Y \cap$ $int_{\gamma_X}((cl_{\gamma_X})(A))$ [2], for any γ -open set Y of X and any set A of Y. Therefore, there exists a γ -regular-open set U of Y such that $U = Y \cap V$ and $x \in U$. Now we show that U is γ -s-regular subspace of Y. Since V is γ -s-regular, by Theorem 3.4 [11], for γ -semi-regular set V_1 of V containing x, there exists γ -open set W such that $x \in W \subset cl_{\gamma_V}(W) \subset V_1$. Since $V \in RO_{\gamma}(X)$ and $W \subseteq V$, therefore we have $x \in W \subseteq cl_{\gamma_X}(W) \cap V \subseteq V_1$ [11]. But $cl_{\gamma_X}(W) \subset cl_{\gamma_X}(V_1) = V_1$. This gives $x \in W \subset cl_{\gamma_X}(W) \subset V_1$. Thus we have $x \in W \cap U \subset cl_{\gamma_V}(W) \cap U \subset V_1 \cap U$. Since Y is γ -semi-closed in X [5], therefore we obtain $cl_{\gamma_X}(W \cap U) \subset cl_{\gamma_X}(W) \cap cl_{\gamma_X}(U) =$ $cl_{\gamma_X}(W) \cap U$ or $cl_{\gamma_X}(W \cap U) \subset cl_{\gamma_X}(W) \cap U$. This gives that $x \in W \cap U \subset U$ $cl_{\gamma_X}(W \cap U) \subseteq cl_{\gamma_X}(W) \cap U \subseteq V_1 \cap U \text{ or } x \in W \cap U \subset cl_{\gamma_U}(W \cap U) \subset V_1 \cap U,$ where $W \cap U$ is γ -open and $V_1 \cap U$ is γ -semi-regular in U, since γ is regular. Thus, by Theorem 3.4 [11], U is γ -s-regular. This proves that Y is γ -s-regular. This completes the proof.

Corollary 2. Every γ -clopen subspace of a locally γ -s-regular space is locally γ -s-regular, where γ is a regular operation.

Corollary 3. Every γ -open subspace of a locally γ -s-regular space is locally γ -s-regular, if X is γ -extremally disconnected, where γ is a regular operation.

Next we characterize locally γ -s-regular spaces as:

Theorem 5.2. In a space X, the following are equivalent:

(1) X is locally γ -s-regular.

(2) Every point $x \in X$ has a γ -regular-open set containing x which is a γ -s-regular subspace of X.

(3) Every point $x \in X$ has a γ -open nbd U of x such that $int_{\gamma_X}(cl_{\gamma_X}(U))$ is a γ -s-regular subspace of X.

(4) Every point $x \in X$ has a γ -open set U containing x such that $scl_{\gamma_X}(U)$ is a γ -s-regular subspace of X.

(5) Every point $x \in X$ has a γ -open nbd U such that $s_{\gamma}cl_{\theta}(U)$ is a γ -s-regular subspace of X.

Proof. $(1) \Rightarrow (2)$. This is straightforward.

(2) \Rightarrow (3). Let U be γ -open nbd of $x \in X$. Then $int_{\gamma_X}(cl_{\gamma_X}(U))$ is a γ -regularopen set containing x. By (2), $int_{\gamma_X}(cl_{\gamma_X}(U))$ is a γ -s-regular subspace of X. This proves (3).

(3) \Rightarrow (4). Let U be γ -open nbd of a point $x \in X$. Then by Lemma 3.5 [10], $scl_{\gamma_X}(U) = int_{\gamma_X}(cl_{\gamma_X}(U))$. This shows that $scl_{\gamma_X}(U)$ is a γ -regular-open set of X containing x. By (3), $scl_{\gamma_X}(U)$ is γ -s-regular subspace of X. This proves (4).

 $(4) \Rightarrow (5)$. Let U be γ -open nbd of x in X. Then by Proposition 3.9 [10], $s_{\gamma} cl_{\theta_X}(U) = scl_{\gamma_X}(U)$. By (4), $s_{\gamma} cl_{\theta_X}(U)$ is a γ -s-regular subspace of x. This proves (5).

 $(5) \Rightarrow (1)$. Let $x \in X$ and U a γ -regular-open nbd of x. Then by (5), $s_{\gamma}cl_{\theta_X}(U) = scl_{\gamma_X}(U) = int_{\gamma_X}(cl_{\gamma_X}(U)) = U$ is γ -s-regular subspace of X. This proves that X is locally γ -s-regular. This completes the proof.

Theorem 5.3. A space X is locally γ -s-regular iff for each point $x \in X$, there exists a γ -regular-open set A of X such that $x \in A$ and A is locally γ -s-regular, where γ is regular.

Proof. Necessity follows from Theorem 5.1.

Sufficiency: Let $x \in X$ and A a γ -regular-open set of X such that $x \in A$ and A is locally γ -s-regular. This gives that there exists a γ -regular-open set U in A such that $x \in U$ and U is γ -s-regular subspace of A. Hence by Lemma 3.5 [10], $U = scl_{\gamma_X}(U) = int_{\gamma_X}(cl_{\gamma_X}(U))$. Thus for each $x \in X$, there exists a γ -regular-open set U in X such that $x \in U$ and U is a γ -s-regular subspace of X. This proves that X is locally γ -s-regular. This completes the proof.

In [5] a function $f : X \to Y$ is defined to be γ -semi-continuous, if for any γ open B of Y, $f^{-1}(B)$ is γ -semi-open in X. A function $f : X \to Y$ is defined to be γ -semi-open (respt. γ -semi-closed) [6], if for each γ -open (respt. γ -closed) set U in X, f(U) is γ -semi-open (respt. γ -semi-closed) in Y.

Theorem 5.4. Let $f : X \to Y$ be γ -semi-continuous, γ -semi-open and γ -semiclosed preserving surjection. If X is γ -s-regular, then Y is γ -s-regular, where γ is an open operation.

Proof. Let U be a γ -regular-open set in Y and $y \in U$. Let $x \in f^{-1}(y)$. Then $f^{-1}(U)$ is γ -semi-open in X and $x \in f^{-1}(U)$. Since X is γ -s-regular , therefore by Theorem 3.4 [11], there exists a γ -open set V such that $x \in V \subset cl_{\gamma}(V) \subset f^{-1}(U)$ or $y \in f(V) \subset f(cl_{\gamma}(V)) \subset f(f^{-1}(U)) \subset U$ or $y \in f(V) \subset f(cl_{\gamma}(V)) \subset U$, where f(V) is γ -semi-open and $f(cl_{\gamma}(V))$ is γ -semi-closed [5]. Therefore $cl_{\gamma}(f(V)) \subset f(cl_{\gamma}(V))$ and $y \in f(V) \subset cl_{\gamma}(f(V)) \subset f(cl_{\gamma}(V)) \subset U$ or $y \in f(V) \subset cl_{\gamma}(f(V)) \subset U$. This proves that Y is γ -s-regular [11]. Hence the proof.

Theorem 5.5. Let $f : X \to Y$ be γ -semi-continuous, γ -semi-open preserving bijection. If X is γ -s-regular, then Y is locally γ -s-regular, where γ is a regular operation.

Proof. Let U be γ -regular open set in Y such that $y \in U$. Let F be γ -closed set of U such that $y \notin F$. Then there exists a γ -closed set G of Y such that $F = U \cap G$ [2] and $y \notin G$. Then $f^{-1}(G)$ is γ -semi-closed in X and $f^{-1}(y) \notin f^{-1}(G)$. Since X is γ -s-regular, therefore there exists disjoint γ -open sets U_1, U_2 in X such that $f^{-1}(y) \in U_1, f^{-1}(G) \subset U_2$ or $y \in f(U_1), G \subset f(U_2)$, where $f(U_1)$ and $f(U_2)$ are γ -semi-open in Y. Clearly $y \in U \cap f(U_1)$ and $F = U \cap G \subseteq U \cap f(U_2)$, where $U \cap f(U_1)$ and $U \cap f(U_2)$ are disjoint γ -semi-open sets in U [5]. This proves that Y is locally γ -s-regular. This completes the proof.

References

- B. Ahmad and F. U. Rehman: Operations on Topological Spaces-II, Math. Today, 11 (1993),13-20.
- B. Ahmad and S. Hussain: Properties of γ-Operations in Topological Spaces, Aligarh Bull. Math., 22 (1) (2003),45-51.
- [3] B. Ahmad and S. Hussain: γ^{*}- Regular and γ-Normal Spaces, Math. Today, 22 (1)(2006), 37-44.
- [4] B. Ahmad and S. Hussain: On γ-s-Closed Subspaces, Far East Jr. Math. Sci., 31 (2)(2008), 279-291.
- [5] B. Ahmad and S. Hussain: γ-Semi-Open Sets in Topological Spaces-II, Southeast Asian Bull. Maths., 34(6)(2010), 997-1008.

- [6] B. Ahmad, S. Hussain and T. Noiri: On Some Mappings in Topological Spaces, Eur. J. Pure Appl. Math., 1(2008),22-29.
- [7] B. Ahmad, M. Khan and T. Noiri: On Locally s-Regular Spaces, Indian Jr. Pure Appl. Math., 27(1996), 1078-1092.
- [8] C. Dorsett: Semi-Regular Spaces, Soochow Jr. Math, 8(1982), 45-53.
- [9] C. Dorsett: s-Regular and s-Normal Spaces, Math. Nachr., 115(1984), 265-270.
- [10] S. Hussain and B. Ahmad : On γ-s-Closed Spaces, Sci. Magna Jr., 3(4)(2007), 89-93.
- S. Hussain and B. Ahmad : On γ-s*-Regular Spaces and Almost γ-s-Continuous Functions, Lobachevskii J. Math., 30(4) (2009), 263-268. DOI:10.1134/S1995080209040039.
- [12] S. Hussain, B. Ahmad and T. Noiri: γ-Semi-Open Sets in Topological Spaces, Asian Eur. J. Math., 3(3) (2010), 427-433. DOI: 10.1142/S1793557110000337
- [13] D. S. Jankovic: On Functions with Closed Graphs, Glasnik Mat., 18(1983), 141-146.
- [14] S. Kasahara: Operation-Compact Spaces, Math. Japon., 24(1979), 97-105.
- [15] H. Ogata: Operations on Topological Spaces and Associated Topology, Math. Japon., 36 (1) (1991), 175-184.
- [16] G. D. Maio and T. Noiri: On s-Closed Spaces, Indian jr. Pure Appl. Math, 18 (3) (1987), 226-233.
- [17] G. D. Maio and T. Noiri: Week and Strong Forms of Irresolute Functions, Third National Conference on Topology (Italian)(Trieste, 1986). Rend. Circ. Mat. palermo, (2) Suppl. No., 18 (1988), 255-273.
- [18] S. N. Maheshwari and R. Prasad: On s-Regular Spaces, Glasnik Mat., 10 (30) (1975), 347-350.
- [19] T. Noiri: On Semi-Continuous Mappings, Bull. Cal. Math. Soc., 65(1973), 197-201.
- [20] T. Noiri, B. Ahmad amd M. Khan: Almost S-Continuous Functions, Kyungpook Math. Jr., 35 (1995), 311-322.
- [21] F.U. Rehman and B. Ahmad: Operations on Topological Spaces-I, Math. Today, 10(1992), 29-36.
- [22] M. K. Singal and S. P. Arya: On Almost-Regular Spaces, Glasnik Mat., 4 (24)(1969), 89-99.