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ON A GENERALIZATION OF ATOMIC DECOMPOSITIONS

S.K. KAUSHIK AND S.K. SHARMA

Abstract. We generalize atomic decomposition for Banach spaces and called

it T -atomic decomposition. A necessary condition for T -atomic decomposition

is given. A characterization for a triangular atomic decomposition is also given.
Finally, as an application of triangular atomic decompositions, we prove that

if a Banach space has a triangular atomic decomposition, then it also has an

approximative atomic decomposition, an atomic decomposition and a fusion
Banach frame.

1. Introduction

Coifman and Weiss [3] introduced the notion of atomic decomposition for func-
tion spaces. Feichtinger and Gröchenig [5] extended the notion of atomic decom-
position to Banach spaces. Frazier and Jawerth [6] had constructed wavelet atomic
decompositions for Besov spaces which they called as φ-transform. Feichtinger [4]
constructed Gabor atomic decompositions for the modulation spaces which are Ba-
nach spaces similar in many respects to Besov spaces, defined by smoothness and
decay conditions. Atomic decompositions have played a key role in the development
of wavelet theory and Gabor theory. Atomic decompositions and Banach frames
were further studied in [1, 2, 8].

Motivated by Kozolov [10], we generalize atomic decompositions for Banach
spaces. Infact, we introduce the notion of T -atomic decomposition for Banach
spaces. Also, a necessary condition for T -atomic decomposition has been obtained.
Further, a characterization for triangular atomic decomposition and a characteriza-
tion for Banach frames have been obtained. Finally, as an application of triangular
atomic decompositions, it has been proved that if a Banach space E has a triangular
atomic decomposition, then E also has an approximative atomic decomposition, an
atomic decomposition and a fusion Banach frame.

2. Preliminaries

Throughout this paper, E will denote a Banach space over the scalar field K (R
or C), E∗ the dual space of E, L(E) the space of all linear operator on E, [xn]
the closed linear span of {xn} in the norm topology of E, Ed an associated Banach
space of scalar-valued sequences, indexed by N.

A sequence {xn} in E is said to be complete if [xn] = E and a sequence {fn} in
E∗ is said to be total over E if {x ∈ E : fn(x) = 0, n ∈ N} = {0}. A sequence of
projections {vn} on E is total on E if {x ∈ E : vn(x) = 0, n ∈ N} = {0}.

Definition 2.1 ([5]). Let E be a Banach space and Ed be an associated Banach
space of scalar-valued sequences, indexed by N. Let {xn} ⊂ E and {fn} ⊂ E∗.
Then, ({fn}, {xn}) is called an atomic decomposition for E with respect to Ed, if

(i) {fn(x)} ∈ Ed, x ∈ E
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(ii) there exist constants A and B with 0 < A ≤ B <∞ such that

A‖x‖E ≤ ‖{fn(x)}‖Ed
≤ B‖x‖E , x ∈ E

(iii) x =
∞∑
i=1

fi(x)xi, x ∈ E.

The constants A and B, respectively, are called lower and upper atomic bounds
of the atomic decomposition ({fn}, {xn}).

Definition 2.2 ([7]). Let E be a Banach space and Ed be an associated Banach
space of scalar-valued sequences, indexed by N. Let {fn} ⊂ E∗ and S : Ed → E be
given. Then, ({fn}, S) is called a Banach frame for E with respect to Ed, if

(i) {fn(x)} ∈ Ed, x ∈ E
(ii) there exist constants A and B with 0 < A ≤ B <∞ such that

A‖x‖E ≤ ‖{fn(x)}‖Ed
≤ B‖x‖E , x ∈ E(2.1)

(iii) S is a bounded linear operator such that

S({fn(x)}) = x, x ∈ E.

The constants A and B, respectively, are called lower and upper frame bounds of
the Banach frame ({fn}, S). The operator S : Ed → E is called the reconstruction
operator (or, the pre-frame operator). The inequality (2.1) is called the Banach
frame inequality.

A generalization of the concept of Banach frame namely, fusion Banach frame
was introduced and studied in [9] and defined as follows:

Definition 2.3. Let E be a Banach space. Let {Gn} be a sequence of subspaces
of E and {vn} be a sequence of non-zero linear projections such that vn(E) = Gn,
n ∈ N. Let A be a Banach space associated with E and S : A → E be an operator.
Then, ({Gn, vn}, S) is called a frame of subspaces (or, fusion Banach frame) for E
with respect to A, if

(i) {vn(x)} ∈ A, x ∈ E
(ii) there exist constants A and B with 0 < A ≤ B <∞ such that

A‖x‖E ≤ ‖{vn(x)}‖A ≤ B‖x‖E , x ∈ E
(iii) S is a bounded linear operator such that

S({vn(x)}) = x, x ∈ E.

The constants A and B, respectively, are called lower and upper frame bounds
of the frame of subspaces ({Gn, vn}, S).

The following results are referred in this paper and are listed in the form of
lemmas:

Lemma 2.4 ([12]). If E is a Banach space and {fn} ⊂ E∗ is total over E, then E
is linearly isometric to the associated Banach space Ed = {{fn(x)} : x ∈ E}, where
the norm is given by ‖{fn(x)}‖Ed

= ‖x‖E, x ∈ E.

Lemma 2.5 ([9]). Let {Gn} be a sequence of non-trival subspaces of E and {vn} be
a sequence of non-zero linear projections with vn(E) = Gn, n ∈ N. If {vn} is total
over E, then A = {{vn(x)} : x ∈ E} is a Banach space with norm ‖{vn(x)}‖A =
‖x‖E, x ∈ E.

3. Main Results

We begin with the following definition of T -atomic decomposition

Definition 3.1. Let E be a Banach space, Ed be an associated Banach space of
scalar-valued sequences, indexed by N and T = (tnm) be a matrix of scalars such
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that
∞∑
j=1

|tnj | ≤M <∞, n = 1, 2, 3, . . .(3.1)

lim
n→∞

tnj = 0, j = 1, 2, 3, . . .(3.2)

lim
n→∞

∞∑
j=1

tnj = 1.(3.3)

Let {xn} be a sequence in E and {fn} be a sequence in E∗. Then, (T, {fn}, {xn})
is called a T -atomic decomposition for E with respect to Ed, if

(i) {fn(x)} ∈ Ed, x ∈ E
(ii) there exist constants A and B with 0 < A ≤ B <∞ such that

A‖x‖E ≤ ‖{fn(x)}‖Ed
≤ B‖x‖E , x ∈ E

(iii) lim
n→∞

∞∑
j=1

tnj

(
j∑

i=1

fi(x)xi

)
= x, x ∈ E.

In case, T is a triangular matrix, then (T, {fn}, {xn}) is said to be a triangular
atomic decomposition for E with respect to Ed.

Regarding the existence of T -atomic decomposition, let E be a Banach space,
({fn}, {xn})({fn} ⊂ E∗, {xn} ⊂ E) be an atomic decomposition for E with respect
to an associated Banach space Ed and T = (tnm) be a matrix such that tnn = 1,
n ∈ N and tnm = 0, m 6= n. Then (T, {fn}, {xn}) is a T -atomic decomposition for
E with respect to Ed.

Also, one may observe that if E is a Banach space and (T, {fn}, {xn})
(T = (tnm), {fn} ⊂ E∗, {xn} ⊂ E) is a T -atomic decomposition for E with re-
spect to Ed, then {xn} is complete in E and for each n ∈ N, σn : E → E defined
by

σn(x) =

∞∑
j=1

tnj

( j∑
i=1

fi(x)xi

)
, x ∈ E

is well defined bounded linear operator such that sup
1≤n<∞

‖σn‖ <∞.

Conversely, we have the following example

Example 3.2. Let E = c0, the space of all sequences convergent to 0 in K. Let
T = (tnm) be a matrix such that tnn = 1, n ∈ N and tnm = 0, n 6= m. Let {en} be
the sequence of unit vectors in E and {fn} be a sequence in E∗ defined by

fn = (0, 0, . . . , (−1)n

↑
nth position

, 0, 0, . . .), n ∈ N.

Then, {en} is complete in E and for each n ∈ N, σn : E → E defined by

σn(x) =

∞∑
j=1

tnj

( j∑
i=1

fi(x)ei

)
, x ∈ E

is well defined bounded linear operator such that sup
1≤n<∞

‖σn‖ <∞. But lim
n→∞

σn(x) 6=

x, for some x ∈ E. Infact, if we take x = (1, 0, 0, . . .) ∈ E then lim
n→∞

σn(x) 6= x.

Hence, (T, {fn}, {en}) is not a T -atomic decomposition for E with respect to any
associated Banach space Ed.

In the next result, we prove that for any matrix T = (tnm) satisfying (3.1)-(3.3),
every atomic decomposition for E is also a T -atomic decomposition for E.
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Theorem 3.3. Let ({fn}, {xn}) be an atomic decomposition for a Banach space
E with respect to Ed. Then, for any matrix T = (tnm) satisfying (3.1)-(3.3),
(T, {fn}, {xn}) is a T -atomic decomposition for E with respect to Ed.

Proof. Let cE be the Banach space of all convergent sequences of elements of E
with the norm ‖{zk}‖cE = sup

1≤k<∞
‖zk‖E . For each n∈N, define un : cE → E by

un({zk}) =

∞∑
j=1

tnjzj , {zk} ∈ cE .

Then, each un is well defined on cE and

‖un‖ = sup
{zk}∈cE

‖un({zk})‖

=

∞∑
j=1

|tnj | ≤M, n ∈ N.

Now, for any {x1, x2, . . . , xm, 0, 0, . . .} ∈ cE , we have

lim
n→∞

un({x1, x2, . . . xm, 0, 0, . . .}) = 0

and, for any {x, x, x, . . .} ∈ cE , we have

lim
n→∞

un(x, x, x, . . .) = x, x ∈ E.

Since, the set of all the elements of the form {x1, x2, . . . , xm, 0, 0, . . .} and {x, x, x, . . .},
where x1, x2, . . . , xm ∈ E, 1 ≤ m <∞ and x ∈ E is complete in cE , we have

lim
n→∞

∞∑
j=1

tnjzj = lim
n→∞

un({zk}) = lim
k→∞

zk.

Define, Sn(x) =
n∑

i=1

fi(x)xi, n ∈ N and x ∈ E. Then lim
n→∞

Sn(x) = x, x ∈ E.

Therefore, lim
n→∞

∞∑
j=1

tnjsj(x) = x, x ∈ E.

Hence, (T, {fn}, {xn}) is a T -atomic decomposition for E with respect to Ed. �

The converse of Theorem 3.3 may not be true as shown by the following example

Example 3.4. Let E = `2. Define {xn} ⊂ E and {fn} ⊂ E∗ by

xn = en − en+1

fn(x) = 〈e1 + e2 + . . .+ en, x〉, x ∈ E, n = 1, 2, . . . .

Then, ({fn}, {xn}) is not an atomic decomposition for E with respect to any associ-
ated Banach space Ed. But, by Lemma 2.4, there exist an associated Banach space
Ed0

= {{fn(x)} : x ∈ E} with the norm ‖{fn(x)}‖Ed0
= ‖x‖E , x ∈ E and a matrix

T = (tnm) given by tnm = 1
n , m = 1, 2, . . . , n, tnm = 0 for m > n (n = 1, 2, . . .)

such that (T, {fn}, {xn}) is a T -atomic decomposition for E with respect to Ed0
.
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Indeed,

σn(x) =

n∑
i=1

n− i+ 1

n
fi(x)xi

=

n∑
i=1

n− i+ 1

n

〈 i∑
j=1

ej , x

〉
(ei − ei+1)

= 〈e1, x〉e1 +

n∑
i=2

[
n− i+ 1

n

〈 i∑
j=1

ej , x

〉
ei −

n− i+ 2

n

〈 i−1∑
j=1

ej , x

〉
ei

]

− 1

n

〈 n∑
j=1

ej , x

〉
en+1

=

n∑
i=1

n− i+ 1

n
〈ei, x〉ei −

1

n

n+1∑
i=2

〈 i−1∑
j=1

ej , x

〉
ei, x ∈ E,n = 1, 2, 3, . . . .

Since, lim
n→∞

n∑
i=1

〈ei, x〉ei = x, x ∈ E, we have

lim
n→∞

n∑
i=1

n− i+ 1

n
〈ei, x〉ei = x, x ∈ E.

For each n ∈ N, define vn : E → E by

vn(x) =
1

n

n∑
i=1

〈 i∑
j=1

ej , x

〉
ei+1, x ∈ E,n = 1, 2, . . . .

Then, each vn is well defined bounded linear operator on E. Also, for each n, k =
1, 2, 3 . . ., we have

‖vn(ek)‖2 =
1

n2

n∑
i=1

∣∣∣∣〈 i∑
j=1

ej , ek

〉∣∣∣∣2 =
n− k + 1

n2
.

Therefore, lim
n→∞

‖vn(ek)‖2 = 0. Hence, lim
n→∞

vn(x) = 0, x ∈ span{xi}∞i=1. Also,

since

‖vn(x)‖2 =
1

n2

n∑
i=1

∣∣∣∣〈 i∑
j=1

ej , x

〉∣∣∣∣2

≤ 1

n2

n∑
i=1

∥∥∥∥ i∑
j=1

ej

∥∥∥∥2‖x‖2
=

n(n+ 1)

2n2
‖x‖2

≤ ‖x‖2, x ∈ E, n = 1, 2, 3, . . . ,

we have, sup
1≤n<∞

‖vn‖ <∞. Hence, lim
n→∞

σn(x) = x, x ∈ E.

Next, we give a necessary condition for a T -atomic decomposition in a Banach
space.



26 S.K. KAUSHIK AND S.K. SHARMA

Theorem 3.5. Let E be a Banach space and T = (tnm) be a matrix satisfying
(3.1)-(3.3). If (T, {fn}, {xn})({fn} ⊂ E∗, {xn} ⊂ E) is a T -atomic decomposition
for E with respect to Ed. Then for each n,m ∈ N, there exists a linear operator
vnm ∈ L(E) such that

lim
n→∞

lim
m→∞

vnm(x) = x, x ∈ E.

Proof. For each n,m = 1, 2, 3 . . ., define

vnm(x) =

m∑
j=1

tnj

( j∑
i=1

fi(x)xi

)
, x ∈ E.

Then, vnm ∈ L(E). Also

lim
m→∞

vnm(x) =

∞∑
j=1

tnj

( j∑
i=1

fi(x)xi

)
, x ∈ E.

Since, (T, {fn}, {xn}) is a T -atomic decomposition for E, therefore

lim
n→∞

∞∑
j=1

tnj

( j∑
i=1

fi(x)xi

)
= x, x ∈ E. �

Let E be a Banach space and T = (tnm) be a triangular matrix satisfying (3.1)-
(3.3). Let {xn} be any sequence in E and {fn} be any sequence in E∗. For each
n ∈ N, define

σn(x) =

n∑
j=1

tnj

j∑
i=1

fi(x)xi, x ∈ E, n = 1, 2, 3, . . . ,

E
(T )
0 = {x ∈ E : lim

n→∞
σn(x) = x} and

E
(T )
1 = {x ∈ E : lim

n→∞
σn(x) exists} .

The following result characterizes triangular atomic decompositions in terms of

{σn} and E
(T )
0

Theorem 3.6. Let E be a Banach space and T = (tnm) be a triangular matrix
satisfying (3.1)-(3.3). Let {fn} ⊂ E∗ and {xn} ⊂ E. Then there exists an associated
Banach space Ed0 such that (T, {fn}, {xn}) is a triangular atomic decomposition for

E with respect to Ed0
if and only if {σn} is total on E and E

(T )
0 = E.

Proof. Assume that E
(T )
0 = E and {σn} is total on E. Let x ∈ E such that

fn(x) = 0 for all n ∈ N. Then σn(x) = 0, n ∈ N. So totality of {σn} yields x = 0.
Therefore, by Lemma 2.4, there exists an associated Banach space Ed0

= {{fn(x)} :
x ∈ E} with the norm ‖{fn(x)}‖Ed0

= ‖x‖E , x ∈ E. Also, by hypothesis, we have

lim
n→∞

∞∑
j=1

tnj

( j∑
i=1

fi(x)xi

)
= x, x ∈ E. Hence, (T, {fn}, {xn}) is a triangular atomic

decomposition for E with respect to Ed0
.

The converse part is straight forward. �

We conclude this section with the following characterization of Banach frames in

terms of E
(T )
0 and E

(T )
1

Theorem 3.7. Let E be a Banach space and T = (tnm) be a triangular matrix
satisfying (3.1)-(3.3). Let {xn} ⊂ E and {fn} ⊂ E∗ such that fi(xj) = δij, i, j ∈ N.
Then there exist an associated Banach space Ed and a bounded linear operator
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S : Ed → E such that ({fn}, S) is Banach frame for E with respect to Ed if and

only if E
(T )
0 = E

(T )
1 .

Proof. Let ({fn}, S) be a Banach frame for E. Then

fm(σn(x)) = fm

( ∞∑
j=1

tnj

( j∑
i=1

fi(x)xi

))

=

( ∞∑
j=m

tnj

)
fm(x) , n,m = 1, 2, 3 . . . and x ∈ E.

Let x ∈ E(T )
1 . Then

fm(x− lim
n→∞

σn(x)) = fm(x)− lim
n→∞

( ∞∑
j=m

tnj

)
fm(x)

= fm(x)

[
1− lim

n→∞

∞∑
j=1

tnj + lim
n→∞

m−1∑
j=1

tnj

]
= 0

Therefore, by the frame inequality for the Banach frame ({fn}, S), we have x ∈
E

(T )
0 .
Conversely, let x ∈ E be such that fn(x) = 0, n = 1, 2, 3 . . .. Then σn(x) = 0

for all n ∈ N. Since, E
(T )
0 = E

(T )
1 , we have x = 0. Therefore, by Lemma 2.4,

there exist associated Banach space Ed0 = {{fn(x)} : x ∈ E} with the norm
‖{fn(x)}‖Ed0

= ‖x‖E , x ∈ E and a bounded linear operator S : Ed0
→ E defined

by S({fn(x)}) = x, x ∈ E such that ({fn}, S) is a Banach frame for E with respect
to Ed0

. �

4. Applications

In this section, we give some applications of triangular atomic decompositions.
First, we give the definition of approximative atomic decomposition introduced in
[11].

Let E be a Banach space and let Ed be an associated Banach space of scalar-
valued sequences, indexed by N. Let {xn} ⊂ E and {hn,i} i=1,2,...,mn

n∈N
⊂ E∗, where

{mn} is an increasing sequence of positive integers. Then, ({hn,i} i=1,2,...,mn
n∈N

, {xn})
is called an approximative atomic decomposition for E with respect to Ed, if

(i) {hn,i(x)} i=1,2,...,mn
n∈N

∈ Ed, x ∈ E
(ii) there exist constants A and B with 0 < A ≤ B <∞ such that

A‖x‖E ≤ ‖{hn,i(x)} i=1,2,...,mn
n∈N

‖Ed
≤ B‖x‖E , x ∈ E

(iii) x = lim
n→∞

mn∑
i=1

hn,i(x)xi, x ∈ E.

In the following result, we prove that if a Banach space has a triangular atomic
decomposition, then it also has an approximative atomic decomposition

Theorem 4.1. If a Banach space has a triangular atomic decomposition then it
also has an approximative atomic decomposition.

Proof. Let E be a Banach space having a triangular atomic decomposition (T, {fn}, {xn})(T =
(tnm), {fn} ⊂ E∗, {xn} ⊂ E) with respect to Ed. Since, T is a triangular matrix,
for each n,m ∈ N, m ≥ n,

m∑
j=1

tnj

( j∑
i=1

fi(x)xi

)
=

n∑
j=1

tnj

( j∑
i=1

fi(x)xi

)
, x ∈ E.
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For each n ∈ N, define σn : E → E by

σn(x) =

n∑
j=1

tnj

( j∑
i=1

fi(x)xi

)
, x ∈ E.

Then, each σn is well defined finite rank linear operator on E. Since, for each
n ∈ N, σn(E) is finite dimensional. So, there exist a sequence {yn,i}mn

i=mn−1+1 in E

and a total sequence {gn,i}mn
i=mn−1+1 in E∗ such that

σn(x) =

mn∑
i=mn−1+1

gn,i(x)yn,i, x ∈ E, n ∈ N,

where {mn} is an increasing sequence of positive integers with m0 = 0. Define,
{zn} ⊂ E and {hn,i} i=1,2,...mn

n∈N
⊂ E∗ by

zi = yn,i, i = mn−1 + 1, . . . , mn,

hn,i =

{
0, if i = 1, 2, . . . ,mn−1

gn,i, if i = mn−1 + 1, . . .mn, n ∈ N .

Then, for each x ∈ E,

lim
n→∞

mn∑
i=1

hn,i(x)zi = lim
n→∞

σn(x) = x .

Let x ∈ E be such that hn,i(x) = 0, for all i = 1, 2, . . . ,mn, n ∈ N. Then
x = 0. Therefore, by Lemma 2.4, there exists an associated Banach space Ed0 =
{{hn,i(x)} i=1,2,...,mn

n∈N
: x ∈ E} with the norm given by ‖{hn,i(x)} i=1,2,...,mn

n∈N
‖Ed0

=

‖x‖E , x ∈ E such that, ({hn,i} i=1,2,...,mn
n∈N

, {zn}) is an approximative atomic decom-

position for E with respect to Ed0
. �

Corollary 4.2. If a Banach space E has a triangular atomic decomposition, then
it also has an atomic decomposition.

Proof. Follows in view of Theorem 4.1. �

Finally, we prove that, if for a suitably chosen triangular matrix T satisfying
(3.1)-(3.3), E has a triangular atomic decomposition, then it also has a fusion
Banach frame.

Theorem 4.3. Let E be a Banach space and T = (tnm) be a triangular matrix
such that tnm 6= 0, n ≥ m. If (T, {fn}, {xn})({fn} ⊂ E∗, {xn} ⊂ E) is a triangular
atomic decomposition for E, then E has a fusion Banach frame.

Proof. By Theorem 4.1, E has approximative atomic decomposition. Let {xn} ⊂ E
and {hn,i} i=1,2,...,mn

n∈N
⊂ E∗ be sequences such that ({hn,i} i=1,2,...,mn

n∈N
, {xn}) is an

approximative atomic decomposition for E with respect to Ed, where {mn} is an
increasing sequence of positive integers. For each n ∈ N, define un : E → E by

un(x) =

mn∑
i=1

hn,i(x)xi, x ∈ E.

Then, each un is a well defined continuous linear operator on E with dimun(E) <∞
and lim

n→∞
un(x) = x, x ∈ E. Define Gn = un(E), n ∈ N. Then, each Gn is finite
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dimensional. Therefore, there exist a sequence {yn,i}mn
i=1 in E and a total sequence

{gn,i}mn
i=1 in E∗ such that

un(x) =

mn∑
i=1

gn,i(x)yn,i, x ∈ E and n ∈ N .

Now, for each n ∈ N, define vn : E → E by

vn(x) =

mn∑
i=1

gn,i(x)yn,i, x ∈ E.

Then, each vn is a projection on Gn such that {x ∈ E : vn(x) = 0, n ∈ N}={0}.
Therefore, by Lemma 2.5, there exist an associated Banach space
A = {vn(x) : x ∈ E} with the norm given by ‖{vn(x)}‖A = ‖x‖E , x ∈ E and
a bounded linear operator S : A → E given by S({vn(x)}) = x, x ∈ E such that
({Gn, vn}, S) is a fusion Banach frame for E with respect to A. �

Acknowledgement

The research of first author is supported by the UGC vide letter No.F. No. 8-
1(5)/2010(MRP/NRCB) dated 23.03.2010.

References

[1] O. Christensen, An introduction to Frames and Riesz Bases, Birkhäuser, 2003.
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