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AN UPPER BOUND FOR THE X-RANKS OF POINTS OF Pn IN

POSITIVE CHARACTERISTIC

E. BALLICO

Abstract. Let X ⊂ Pn be an integral and non-degenerate m-dimensional

variety. For any P ∈ Pn the X-rank rX(P ) is the minimal cardinality of S ⊂ X
such that P ∈ 〈S〉. Here we study the pairs (X,P ) such that rX(P ) ≥ n+2−m,

i.e. rX(P ) = n+ 2−m. These pairs exist only in positive characteristic, with

X strange and P a strange point of X.

1. Introduction

Fix an integral and non-degenerate variety X ⊆ Pn defined over an algebraically
closed field K. For any P ∈ Pn the X-rank rX(P ) of P is the minimal cardinality
of a finite set S ⊂ X such that P ∈ 〈S〉, where 〈 〉 denote the linear span.
Hence rX(P ) = 1 if and only if P ∈ X. Since X is non-degenerate, the X-
ranks are defined and rX(P ) ≤ n + 1 for all P ∈ Pn. For any integer r > 0 let
σ0
r(X) ⊆ Pn denote the the union all (r − 1)-dimensional linear spaces spanned

by r points of X. Let σr(X) denote the closure of σ0
r(X) in Pn (sometimes called

the (r − 1)-secant variety of X). The border X-rank of a point P ∈ Pn is the
minimal integer r such that P ∈ σr(X). Each σr(X) is irreducible. An easy
estimate gives that either σr(X) = Pn or dim(σr+1(X)) > dim(σr(X)) ([1], 1.2).
Hence σx(X) = Pn, where x := n − dim(X). Moreover, either σr+1(X) = Pn or
dim(σr+1(X)) ≥ 2 + dim(σr(X)) ([1], Corollary 1.4). Even if σx(X) = Pn there
may be points with X-rank > x. The main concern of this paper is to extend the
basic estimate rX(P ) ≤ n−dim(X) made in [15], Proposition 5.1, in characteristic
zero to the case p := char(K) > 0, listing some exceptional pairs (X,P ) for which
rX(P ) = n − dim(X) + 1 (e.g. take (n,m, p) = (2, 1, 1), as X a smooth conic and
as P its strange point ([10], Example IV.3.8.2); in this example every line through
P intersects X in a unique point and hence we need 3 points of X to span a linear
space containing P ).

It is believed that the concept of X-rank may be useful for “real world appli-
cations”. In the applications when X is a Veronese embedding of Pm the X-rank
is also called the “structured rank” (this is related to the virtual array concept
encountered in sensor array processing ([2], [8])). On this topic there was the 2008
AIM workshop Geometry and representation theory of tensors for computer science,
statistics and other areas. In [15] a book in preparation is quoted ([14]). Up to
now the applied part was toward engineering. All theory was done in characteristic
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zero. Our dream is to use these ideas together with specialists of computer algebra
for real applications in coding theory. A preliminary step to fulfil this dream is to
check the theory at least over an algebraically closed field with positive character-
istic. Up to now the only general result on the X-rank (i.e. a result which does
not use specific properties of very particular varieties X) is [15], Proposition 5.1.
Hence its extension to positive characteristic seemed to be the first step needed to
fulfil our dream. The aim of this paper is to prove that [15], Proposition 5.1, is not
true in positive characteristic, but that it is “almost always true” and when it is
not true it is “almost true” (it fails by +1). We also give a reasonable description
of the projective varieties for which it is not true. The embedded variety X ⊆ Pn

is said to be strange if there is O ∈ Pn such that O ∈ TQX (the embedded tangent
space in Pn) for all Q ∈ Xreg (or, equivalently, for a general Q ∈ X) ([4]). If X
is strange, a point as above is called a strange point of X. The set of all strange
points of X is either empty or a linear subspace of dimension at most dim(X)− 1
(unless X = Pn). If char(K) = 0, then X is strange if and only if it is a cone and
in this case the set of all strange points is its vertex (with the convention that a
linear space is a cone with itself as its vertex). If X is strange with O as one of its
strange points, but not a cone with vertex containing O, then p := char(K) > 0. If
p is a large prime, then also deg(X) must be large (e.g. deg(X) ≥ p(n −m)) (see
Proposition 3). We first prove the following result.

Theorem 1. Let X ⊂ Pn be an integral and non-degenerate m-dimensional variety.
Fix P ∈ Pn.

(a) If P is not a strange point of X, then rX(P ) ≤ n+ 1−m.
(b) If P is a strange point of X, then rX(P ) ≤ n+ 2−m.

See Remark 4 for an example of an integral, non-degenerate and m-dimensional
(m ≥ 2) variety X ⊂ Pn with as strange points an (m−1)-dimensional linear space
V and rX(P ) = n −m + 2 for all P ∈ V \N , where N is a hyperplane of V and
N ⊂ X.

The proof of Theorem 1 is very elementary. To prove Theorem 1 we just follow
the proof of [15], Proposition 5.1 (the case char(K) = 0 of Theorem 1), analysing
the only missing piece in positive characteristic (a use of Bertini’s theorem). In the
one-dimensional case we are able to improve Theorem 1. A non-degenerate curve
X ⊂ Pn is said to be very strange if its general hyperplane section is not in linearly
general position ([18]). A very strange curve is strange ([18], Lemma 1.1).

Definition 1. Let X ⊂ Pn, n ≥ 2, be a non-degenerate strange curve and let O
be its strange point. Let `O : Pn\{O} → Pn−1 be the linear projection from O and
T ⊂ Pn−1 the closure of `O(Y \{O}). Thus T is non-degenerate and

(1) deg(X) = pes · deg(T ) + µ,

where µ is the multiplicity of X at O, while s and pe are the separable and the
inseparable degree of `O|X, respectively ([4], Theorem 2.3). Now assume n ≥ 3,
µ = 0 (i.e. O /∈ X) and s = 1. We say that X is flat or flat with respect to its
strange point O or a flat strange curve if for any S ⊂ X such that ](S) ≤ n we have
dim(〈S〉) = dim(〈`O(S)〉).

The proofs that e > 0 in the set-up of Definition 1 and that (1) holds are given in
[4], §2 (see [4], eq. (2.1.1) and Theorem 2.3); the integer pe is shown to be equal to
the intersection multiplicity of TQX with X at Q, where Q is a general point of X
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(the so-called Generic Order of Contact Theorem proved in [9], 3.5, for embedded
varieties with arbitrary dimension). See [12] for a very useful survey. For related
details, see the proof of Proposition 3.

Notice that if µ = 0, then (1) gives deg(X) ≡ 0 mod p.

Remark 1. Take the set-up of Definition 1.
(a) Since a strange curve (not a line) has a unique strange point, the point

O is uniquely determined by X. Hence we do not need to specify it to check if a
strange curve is flat or not.

(b) The assumption (µ, s) = (0, 1) implies that `O|X is generically injective.
Flatness implies that `O|X is injective, but it is far stronger. We have rX(O) ≥ 2 if
and only if O /∈ X. We have rX(O) ≥ 3 if and only if O /∈ X and `O|X injective. If
µ = 0, then the flatness of a strange curve is equivalent to rX(O) = n+ 1 (use that
rX(P ) ≤ n+ 1 for any P ∈ Pn and any non-degenerate reduced subset X ⊂ Pn and
that for any finite S ⊂ X we have dim(〈`O(S)〉) < dim(〈S〉) if and only if O ∈ 〈S〉).

(c) Part (b) shows that the “if” part of the following theorem is just the
definition of flatness of a strange curve. It also gives the “only if” part if we first
prove that X is a strange point of X with invariants (µ, s) = (0, 1).

Theorem 2. Let X ⊂ Pn be an integral and non-degenerate curve and P ∈ Pn.
We have rX(P ) ≥ n + 1 (i.e. rX(P ) = n + 1) if and only if X is a flat strange
curve and P is the strange point of X.

V. Bayer and A. Hefez gave explicit equations for all plane strange curves in terms
of the invariants µ, s and pe introduced in Definition 1 ([4]). Later we extended the
construction to strange varieties with a fixed strange point O, fix integers µ, s, pe

and a fixed image T ⊂ Pn−1 with respect to the linear projection from O ([3]).
All strange curves X such that O /∈ X, s = 1 and `O(X) is a rational normal
curve (where O is the strange point of X) are flat (Proposition 2). These curves
are explicitely described by one equation in a Hirzebruch surface Fn−1 ([3]). The
other flat strange curves are very strange (Proposition 1) and we know only one
example of these flat curves (see Example 1, i.e. [18], Example 1.2). See Remark
2 for another reason to say that the flat curves X with `O(X) a rational normal
curve are “almost maximally linearly independent from the set-theoretic point of
view”.

The topic considered in [15] is very active (see also [7], [6], [5] and references
therein). We stress that [15] and the other quoted papers are over C: none of their
statements and proofs is affected by the examples given here.

2. Proofs and related results

Proof of Theorem 1. If P ∈ X, then rX(P ) = 1. Hence to prove parts (a)
and (b) we may assume P /∈ X. First assume m = 1. Assume rX(P ) ≥ n + 1.
Hence for a general hyperplane H containing P the set (X ∩H)red does not span
H. Since X is connected, the cohomology exact sequence of the exact sequence

0→ IX → IX(1)→ IX∩H(1)→ 0

gives that the scheme X ∩H spans H. Thus X ∩H is not reduced. Since P /∈ X
and H is general among the hyperplanes containing P , H ∩ Sing(X) = ∅. Hence
the non-reducedness of X ∩H and the generality of H implies that X is a strange
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curve with P as its strange point. In the case m = 1 we have rX(P ) ≤ n+ 1 for all
P , because X spans Pn proving parts (a) and (b) in the case m = 1.

Now assume m ≥ 2 and that Theorem 1 is true for varieties of dimension m− 1.
Assume the existence of P ∈ Pn such that rX(P ) ≥ n+2−m, but P is not a strange
point of X. Fix a general hyperplane H containing P . Let `P : Pn\{P} → Pn−1

be the linear projection from P . Since P /∈ X, `P |X is a finite morphism. Bertini’s
theorem gives that X ∩H is geometrically integral ([11], part 4) of Th. I.6.3). Fix
a general Q ∈ (X ∩H)reg. For general H we may take as Q a general point of X.
Hence P /∈ TQX. Hence P /∈ (TQX) ∩H = TQ(X ∩H). Thus P is not a strange
point of X∩H. The inductive assumption gives rX∩H(P ) ≤ (n−1)− (m−1)+1 =
n−m+ 1. Since rX(P ) ≤ rX∩H(P ), we proved part (a) for all m,X,P .

Now assume that P is a strange point of X. Since we proved part (b) in the case
m = 1, we may assume m ≥ 2. Fix an integer k ≥ 3 and a general Q ∈ Xreg. Let Y
be the intersection of X with a general degree k hypersurface W such that Q ∈W .
The scheme Y \{Q} is geometrically integral by the characteristic free version of
Bertini’s theorem for very ample linear systems on non-complete varieties ([11], part
4) of Th. I.6.3). Since k ≥ 3, it is easy to find W such that Y = X ∩W is smooth
at Q. Hence Y is geometrically integral and Q ∈ Yreg. Since k ≥ 3, we may find W
as above such that P /∈ TQW . Hence P /∈ TQW ∩ TQX = TQY . Hence P is not a
strange point of Y . Part (a) applied to Y gives rX(P ) ≤ rY (P ) ≤ n−(m−1)+1. �

Proof of Theorem 2. By part (c) of Remark 1 it is sufficient to prove the
“only if” part. Fix X,P such that rX(P ) ≥ n + 1. The case m = 1 of Theorem 1
implies rX(P ) = n + 1 and that P is a strange point of X. Call µ, s and pe the
invariants of X with respect to the linear projection `P from P . Since rX(P ) ≥ 2,
P /∈ X, i.e. µ = 0. Notice that s = 1 if and only if `P |X has separablle degree
1, i.e. it is generically injective. Since rX(P ) ≥ 3, we have ]((X ∩D)red) ≤ 1 for
every line D such that P ∈ D. Thus `P |X in injective. Thus s = 1. As observed
in part (c) of Remark 1 if (µ, s) = (0, 1) and P is the strange point of X, then the
definition of flatness is equivalent to rX(P ) ≥ n+ 1. �

Proposition 1. Let X ⊂ Pn, n ≥ 3, be a non-degenerate and flat strange curve
with O as its strange point. Then either X is very strange or `O(X) is a rational
normal curve.

Proof. Let O be the strange point of X. Set d := deg(`O(X)). If d = n − 1, then
`O(X) is a rational normal curve. Now assume d ≥ n. By assumption µ = 0 and
s = 1. Fix a general S ⊂ X such that ](S) = n − 1. Hence ](`O(S)) = n − 1 and
`O(S) spans a hyperplane of Pn−1. Since d ≥ n, there is U ∈ `O(X)\`O(S) such
that U ∈ 〈`O(S)〉. Fix V ∈ X such that `O(V ) = U . Hence ](S ∪ {V }) = n. Since
X is flat, V ∈ 〈S〉. Since this is true for a general S ⊂ X such that ](S) = n − 1,
X satisfies the definition of a very strange curve. �

Proposition 2. Let X ⊂ Pn, n ≥ 2, be a non-degenerate and strange curve with
O as its strange point and invariants µ = 0 and s = 1, i.e. assume O /∈ X and that
`O|X is generically injective. If either n = 2 or `O(X) is a rational normal curve
of Pn−1 (i.e. if deg(X) = (n − 1)pe, where pe is the inseparable degree of `O|X),
then X is flat.

Proof. Fix S ⊂ X such that ](S) ≤ n. Let u : C → X be the normalization map.
By assumption `O(X) ∼= P1 (even if n = 2). Since `O|X : X → T ∼= P1 is purely
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inseparable, C ∼= P1. Since s = 1, the morphism `O|X ◦ u : P1 → P1 is purely
inseparable. Hence it is injective. Thus the morphism `O|X is injective, not just
generically injective. Hence ](`O(S)) = ](S) ≤ n. Since any n points of a rational
normal curve of Pn−1 are linearly independent, we get dim(〈`O(S)〉) = ](S)−1. �

Remark 2. Take X as in Proposition 2. The proof of Proposition 2 gives that
every S ⊂ X such that ](S) ≤ n is linearly independent, i.e. X has no codimension
2 multisecant linear subspace from the set-theoretical point of view (but of course
every tangent line of X at one of its smooth points contains a length pe subscheme of
X). We stress again that all curves X as in Proposition 2 are explicitely constructed
in [3]. The rational normal curves of Pn are the only integral curves for which no
hyperplane contains n+ 1 points of the curve, i.e. for which the reduction of every
codimension 1 linear section is linearly independent.

Example 1. Here we check that the example of a very strange curve given in [18],
Example 1.2, is a flat strange curve. Fix an integer n ≥ 3, a prime p and a p-power
q. Here q = pe is the inseparable degree of the linear projection from the strange
point. Fix homogeneous coordinates x0, . . . , xn of Pn and homogeneous coordinates
x1, . . . , xn of Pn−1. Set A := (0; . . . ; 0; 1; 0) and O := (1; 0; . . . ; 0; 0). We recall that
every point of the vertex of a cone T is a strange point of T . An integral hypersurface
{f(x0, . . . , xn) = 0} hasO as one of its strange points if and only if in each monomial
of f with a non-zero coefficient the variable x0 appears with exponent divisible by p.
Let X be the scheme with equations xq0−x1xq−1n , xq1−x2xq−1n , . . . , xqn−2−xn−1xq−1n .
The point O is a strange points of the n−1 hypersurfaces with these equations (the
latter n−2 hypersurfaces are cones with vertex containing O). Set X ′ := X∩{xn 6=
0}. We have (X ∩ {xn = 0})red = {A}. Since X is given by n− 1 equations, each
irreducible component of Xred has dimension at least 1. Hence A is in the closure
of X ′. Set t := x0/xn. The scheme (X ′)red has a rational parametrization

(2) t 7→ (t, tq, tq
2

, . . . , tq
n−1

),

because in X ′ we have xi/xn = (xi−1/xn)q for every i ∈ {1, . . . , n − 1}. Hence
(X ′)red is integral, smooth, rational and its closure Xred in Pn has O as its strange
point. Since deg(Xred) = qn−1 and Xred is set-theoretically the intersection of
n− 1 hypersurfaces of degree q, the algebraic set Xred is the complete intersection
of these hypersurfaces, outside finitely many points. Hence the scheme X is a
complete intersection and it is reduced outside finitely many points. Since X is a
complete intersection, each local ring OX,Q, Q ∈ Xred, is Cohen-Macaulay. Hence
X has no embedded component and it is generically reduced. Thus it is reduced.
We have O /∈ X. Set Y := `O(X) ⊂ Pn−1, Y ′ := Y ∩ {xn 6= 0} and A′ :=

(0; . . . ; 1; 0) = `O(A) ∈ Y . Since `O((t; tq; . . . ; tq
n−1

; 1)) = (tq; . . . ; tq
n−1

; 1) for all
t ∈ K, the curve Y ′ has a parametrization

(3) z 7→ (z, zq, . . . , zq
n−2

),

where z = tq. Hence `O|X ′ : X ′ → Y ′ is injective and purely inseparable with insep-
arable degree q. Thus X has parameters (µ, s, pe) = (0, 1, q). The parametrization
(3) shows that Y ′ is smooth, that Y is strange with O′′ := (1; 0; . . . ; 0; 0) as its
strange point and that Y \Y ′ = {A′}. Fix linearly independent P1, . . . , Pn ∈ X ′

and set S := {P1, . . . , Pn} and M := 〈S〉. The parametrization (2) shows that
(M ∩ X ′)red = {P1 + a1(P2 − P1) + · · · + an−1(Pn − P1)}, where each ai is
an arbitrary element of Fq. Since ]((M ∩ X ′)red) = qn−1 = deg(X), we get
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that this is a scheme-theoretic intersection and that M ∩ (X\X ′) = ∅. Since
M ∩ X = (M ∩ X ′)red scheme-theoretically and O ∈ TPiX, we have O /∈ M , i.e.
dim(`O(M)) = n− 1. Recall that X\X ′ = {A}. Fix S1 ⊂ X such that ](S1) = n,
A ∈ S1 and S1 is linearly independent. Let M1 be the hyperplane spanned by
S1. Set S2 := S1\{A} and write S2 := {P1, . . . , Pn−1}. Set Qi := `O(Pi),
1 ≤ i ≤ n − 1. We proved that ](`O(S2)) = n − 1, `O(S2) ⊂ Y ′ and that `O(S2)
is linearly independent. Set M2 := 〈`O(S2)〉. Since A′ = `O(A), to conclude the
proof of the flatness of X it is sufficient to prove A′ /∈ M2. Let E ⊂ Pn−1 the set
{Q1 +a1(Q2−Q1)+ · · ·+an−2(Qn−1−Q1)}, where each ai is an arbitrary element
of Fq. Since P1 + a1(P2−P1) + · · ·+ an−2(Pn−1−P1) ∈ X ′ for all ai ∈ Fq, we have
E ⊆ M2 ∩ `O(X ′). Since `O|X ′ is injective, we have ](E) = qn−2 = deg(Y ). Thus
E = M2 ∩ Y and (Y \`O(X ′)) ∩M2 = ∅. Since {A′} = Y \`O(X ′), we get A′ /∈M2.
Thus X is flat.

Remark 3. A theorem of Luiss’ says that there is a unique smooth strange curve
(if we exclude the lines): a smooth plane conic in characteristic 2 ([13], Proposition
3, or [10], Theorem IV.3.9). If p = 2 a smooth plane conic is obviously flat.
This example shows that if n = 2 and p = 2 the ranks of the rational normal
curves of Pn are not as in characteristic zero (see [7], [15], 4.1, or [5], 3.1). This
phenomenon does not occur when n = 3. Let C ⊂ P3 be a rational normal curve.
Let TC := ∪Q∈CTQC ⊂ P3 denote the tangent developable of C. If P ∈ C, then
rC(P ) = 1. If P /∈ TC, then rC(P ) = 2, because P3 is the secant variety of C ([1],
Remark 1.6). Fix P ∈ TC\C, say P ∈ TQC\{Q} with Q ∈ C. Assume rC(P ) = 2
and take P1, P2 ∈ C such that P1 6= P2 and P ∈ 〈{P1, P2}〉. Since any length 3
scheme Z ⊂ C spans a plane, Q /∈ 〈{P1, P2}〉. Since P ∈ TQC ∩ 〈{P1, P2}〉, the
linear space M := 〈TQC ∪ {P1, P2}〉 is a plane and length(M ∩ C) ≥ 4. Since
deg(C) ≥ 3, we get a contradiction. Hence rC(P ) ≥ 3. Since C is not strange,
Theorem 1 gives rC(P ) = 3. Hence the stratification by ranks of C is the same as
in characteristic zero.

Fix an integer m ≥ 2. Here we construct m-dimensional examples of pairs (X,P )
such that rX(P ) = n+ 2−m, i.e. such that the inequality in part (b) of Theorem
1 is an equality. Just taking cones we get an m-dimensional example from any one-
dimensional example with the same codimension in an ambient projective space.
This is the only example we know of pairs (X,P ) with m ≥ 2 and rX(P ) = n+2−m,
i.e. a pair for which part (b) of Theorem 1 is sharp. Are there other examples?

Remark 4. Fix integers n > m ≥ 2, an (n−m+1)-dimensional linear subspace M
of Pn and an (m−2)-dimensional linear subspaceN of Pn such thatM∩N = ∅, i.e. a
complementary subspace. For any variety Y ⊂M let C(N,Y ) ⊂ Pn denote the cone
with vertex N and Y as its basis. Hence for each O ∈M the scheme C(N,O) is an
(m− 1)-dimensional linear subspace of Pn. We claim that rC(N,Y )(P ) = rY (O) for
every P ∈ C(N,O)\N . Fix P ∈ C(N,O)\N . Take an (n−m+1)-dimensional linear
subspace M ′ of Pn such that P ∈M ′ and N∩M ′ = ∅. The linear projection from N
induces an isomorphism of pairs (C(N,Y )∩M ′, P ) ∼= (Y,O) as pairs of subvarieties,
respectively of M ′ and of M . Thus rC(N,Y )(P ) ≤ rC(N,Y )∩M ′(P ) = rY (O). To
prove the reverse inequality we fix P ∈ C(N,O) and S ⊂ C(N,Y ) computing
rC(N,Y )(P ). The image S′ ⊂ M of the linear projection of S from N is a set
such that ](S′) ≤ ](S) = rC(N,Y )(P ). Since O ∈ 〈S′〉, we get rY (O) ≤ ](S′) ≤
rC(N,Y )(P ). Taking as Y a flat curve with strange point O, X = C(N,Y ) and
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V = C(N,O) we get the existence (for all n > m ≥ 2) of an integral, non-degenerate
and m-dimensional variety X ⊂ Pn with as set of its strange points an (m − 1)-
dimensional linear space V and rX(P ) = n −m + 2 for all P ∈ V \N , where N is
an (m− 2)-dimensional linear space and N ⊂ X.

Proposition 3. Let X ⊂ Pn be an integral and non-degenerate m-dimensional
variety. Fix O ∈ Pn and assume that O is a strange point of X, but that X is not
a cone with vertex containing O. Then deg(X) ≥ p · (n−m).

Proof. Fix A ∈ Pn\{O} and take any integral quasi-projective variety E ⊆ Pn\{O}
such that A ∈ Ereg. Set x := dim(E). The inclusion j : E ⊆ Pn induces an inclusion
between the abstract tangent spaces ΘE,A of E at A and the abstract tangent space
ΘPn,A of Pn at A. As usual in projective geometry we “complete” these vector
spaces ΘE,A and ΘPn,A to projective spaces, respectively of dimension x and n, and
call them TAE and TAPn = Pn. Since A 6= 0, the submersion `O : Pn\{O} → Pn−1

induces a linear surjective map of K-vector spaces ρO(A) : ΘPn,A → ΘPn−1,`O(A).
Since ρO(A) is surjective, its kernel is one-dimensional. If we identify ΘAPn with
an affine n-dimensional open subset of TAPn = Pn, then the closure of this kernel
is the line 〈{O,A}〉 (in the case x = 1, see [13], lines 3–4 of p. 215). Thus the
differential of `O|E at A is injective if and only if O /∈ TAE. Thus the differential
of `O|E at a general point of E is injective if and only if the closure E ⊆ Pn of E
is not strange with O as one of its strange points.

Let T ⊂ Pn−1 denote the closure of `O(X\{O}). Since X is not a cone with ver-
tex containing O, `O|X\{O} is a generically finite morphism. Hence dim(T ) = m.
Since T spans Pn−1, we have deg(T ) ≥ n−m. Since `O|X\{O} is generically finite,
the function field K(X) of X is a finite extension of the function field K(T ). Since
O is a strange point of X, this extension of fields is not separable (use the geometric
interpretation of ρO(A) just given and the differential criterion of separability, i.e.
[17], Theorem 26.6, or [16], Th. 59 at p. 191, quoted in [10], Theorem II.8.6 ).
Call pe, e ≥ 1, the inseparable degree of this extension of fields. A general fiber of
`O|X\{O} is a disjoint union of finitely many connected zero-dimensional schemes,
each of them with degree pe. Hence deg(X) ≥ pe · deg(T ) ≥ p(n−m). �

In the set-up of Proposition 3 if O ∈ X, then deg(X) > p · (n−m). Proposition
3 is very weak, but we are unable to make a substantial improvement of it. In the
case of a strange curve X the formula (1) relates deg(X) to other data. Nothing
more can be said in the one-dimensional case. Indeed, the construction of [3] shows
that we may take an arbitrary T spanning Pn−1 and then find a solution X with
arbitrary e ≥ 1 and µ ≥ 0. Formula (1) is very useful to check if a curve X is
strange. We observed after Definition 1 that if deg(X)/p /∈ Z, then either X is not
strange or its strange point belongs to X. If X is strange, we also see that the
image curve T has much lower degree and hence it should be easier.

It seems to be very difficult to construct very strange curves. We know only
the examples given in [18]. We expect that if they exist, then they have very large
degree, at least pn−1 in Pn.
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