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ON THE KEY EXCHANGE WITH NONLINEAR POLYNOMIAL

MAPS OF DEGREE 4
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Abstract. We say that the sequence gn, n ≥ 3, n→∞ of polynomial trans-

formation bijective maps of free module Kn over commutative ring K is a

sequence of stable degree if the order of gn is growing with n and the degree

of each nonidentical polynomial map of kind gnk is an independent constant c.

A transformation b = τgnkτ−1, where τ is affine bijection, n is large and ”k”

is relatively small, can be used as a base of group theoretical Diffie-Hellman

key exchange algorithm for the Cremona group C(Kn) of all regular automor-

phisms of Kn. The specific feature of this method is that the order of the

base may be unknown for the adversary because of the complexity of its com-

putation. The exchange can be implemented by tools of Computer Algebra

(symbolic computations). The adversary can not use the degree of righthand-

side in bx = d to evaluate unknown x in this form for the discrete logarithm

problem.

In the paper we introduce the explicit constructions of sequences of elements

of stable degree for cases c = 4 for each commutative ring K containing at least

3 regular elements and discuss the implementation of related key exchange and

public key algorithms.

1. Introduction

Discrete logarithm problem can be formulated for general finite group G. Find

a positive integer x satisfying condition gx = b where g ∈ G and b ∈ G. The

problem has reputation to be a difficult one. But even the case of cyclic group

Zn there are many open questions. If n = p − 1 or n = φ(pq) where p and q are

sufficiently large prime then the complexity of discrete logarithm problem justify

classical Diffie-Hellman key exchange algorithm and RSA public key encryption,

respectively. In most of other cases complexity of discrete logarithm problem is not
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investigated properly. The problem is very dependent on the choice of the base

g and the way of presentation the data on the group. Group can be defined via

generators and relations, as automorphism group of algebraic variety, as matrix

group, as permutation group etc. In this paper we assume that G is a subgroup of

Spn which is a group of polynomial bijective transformation of vector space Fp
n into

itself. Obviously |Spn | = n!, it is known that each permutation π can be written in

the form x1 → f1(x1, x2, . . . xn), x2 → f2(x1, x2, . . . xn), . . . , xn → fn(x1, x2, . . . xn),

where fi are multivariable polynomials from Fp[x1, x2, . . . , xn]. The presentation of

G as a subgroup of Spn is chosen because the Diffie Hellman algorithm here will be

implemented by the tools of symbolic computations. Other reason is universality,

as it follows from classical Cayley results each finite group G can be embedded in

Spn for appropriate p and n in various ways.

Let Fp, where p is prime, be a finite field. Affine transformations x → Ax + b,

where A is invertible matrix and b ∈ (Fp)
n, form an affine group AGLn(Fp) acting

on Fp
n.

Affine transformations form an affine group AGLn(Fp) of order (pn − 1)(pn −
p) . . . (pn− pn−1) in the symmetric group Spn of order (pn)!. In [15] the maximality

of AGLn(Fp) in Spn was proven. So we can present each permutation π as a com-

position of several ”seed” maps of kind τ1gτ2, where τ1, τ2 ∈ AGLn(Fp) and g is a

fixed map of degree ≥ 2.

We can choose the base of Fp
n and write each permutation g ∈ Spn as a ”public

rule”:

x1 → g1(x1, x2, . . . , xn), x2 → g2(x1, x2, . . . , xn), . . . , xn → gn(x1, x2, . . . , xn).

Let gk ∈ Spn be the new public rule obtained via iteration of g. We consider

Diffie - Hellman algorithm for Spn for the key exchange in the case of group. Cor-

respondents Alice and Bob establish g ∈ Spn via open communication channel,

they choose positive integers nA and nB , respectively. They exchange public rules

hA = gnA and hB = gnB via open channel. Finally, Alice and Bob compute common

transformation T as hB
nA and hA

nB , respectively.

In practice they can establish common vector v = (v1, v2, . . . , vn), vi ∈ Fp via

open channel and use the collision vector T (v) as a password for their private key

encryption algorithm.

This scheme of ”symbolic Diffie - Hellman algorithm” can be secure, if the order

of g is ”sufficiently large” and adversary is not able to compute number nA (or nB)

as functions from degrees for g and hA. Obvious bad example is the following: g

sends xi into xi
t for each i. In this case nA is just a ratio of deghA and degg.

To avoid such trouble one can look at family of subgroups Gn of Spn , n → ∞
such that maximal degree of its elements equal c, where c is small independent

constant (groups of degree c or groups of stable degree). Our paper is devoted to

explicit constructions of such families.

We refer to a sequence of elements gn ∈ Gn such that all its nonidentical powers

are of degree c as element of stable degree. This is equivalent to stability of families

of cyclic groups generated by gn. Of course, cyclic groups are important for the

Diffie- Hellman type protocols.

It is clear that affine groups AGLn(p), n→∞ form a family of subgroups of sta-

ble degree for c = 1 and all nonidentical affine transformations are of stable degree.

Notice that if g is a linear diagonalisable element of AGLn(p), then discrete loga-

rithm problem for base g is equivalent to the classical number theoretical problem.

Obviously, in this case we are loosing the flavor of symbolic computations.
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General problem of construction an infinite families of stable subgroups Gn of

Spn of degree c satisfying some additional conditions (unbounded growth of minimal

order of nonidentical group elements, existence of well defined projective limit, etc)

can be also interesting because of possible applications in cryptography.

Notice that even we conjugate nonlinear C with invertible linear transformation

τ ∈ AGLn(Fp), some of important cryptographical parameters of C and C ′ =

τ−1Cτ can be different. Of course conjugate generators g and g′ have the same

number of fixed points, same cyclic structure as permutations, but counting of

equal coordinates for pairs (x, g(x)) and (x , g′(x)) may bring very different results.

So two conjugate families of stable degree are not quite equivalent because cor-

responding cryptoanalitical problems may have different complexity.

We generalize the above problem for the case of Cremona group of the free

module Kn, where K is arbitrary commutative ring K. For the cryptography case

of finite rings is the most important. Finite field Fpn , n ≥ 1 and cyclic rings Zm
(especially m = 27 ( ASCII codes), m = 28 (binary codes), m = 216 (arithmetic),

m = 232 ( double precision arithmetic)) are especially popular. Case of infinite

rings K of characteristic zero (especially Z or C) is an interesting as well because of

Matijasevich multivariable prime approximation polynomials can be defined there

(see, for instance [24] and further references).

So it is natural to change a vector space Fp
n for free module Kn (Cartesian

power of K) and the family and symmetric group Spn for Cremona group Cn(K)

of all polynomial automorphisms of Kn.

We repeat our definition for more general situation of commutative ring.

Let Gn, n ≥ 3, n→∞ be a sequence of subgroups of Cn(K). We say that Gn is

a family of groups of stable degree (or subgroup of degree c) if the maximal degree

of representative g ∈ Gn is some independent constant c.

The first family of stable subgroups of Cn(Fq), K = Fq with degree 3 was prac-

tically established in [25], where the degrees of polynomial graph based public key

maps were evaluated. But group theoretical language was not used there and the

problem of the key exchange was not considered.

Those results are based on the construction of the family D(n, q) of graphs with

large girth and the descryption of their connected components CD(n, q). The exis-

tence of infinite families of graphs of large girth had been proven by Paul Erdös’ (see

[2]). Together with famous Ramanujan graphs introduced by G. Margulis [14] and

investigated in [13] graphs CD(n, q) is one of the first explicit constructions of such a

families with unbounded degree. Graphs D(n, q) had been used for the construction

of LDPS codes and turbocodes which were used in real satellite communications

(see [5], [6], [7]), for the development of private key encryption algorithms [21],[22],

[17],[9], the option to use them for public key cryptography was considered in [20],

[19] and in [18] , where the related dynamical system had been introduced (see also

surveys [23], [24]).

The computer simulation show that stable subgroups related to D(n, q) contain

elements of very large order but our theoretical linear bounds on the order are

relatively weak. We hope to improve this gap in future and justify the use of D(n, q)

for the key exchange.

First family of stable groups were obtained via studies of simple algebraic graphs

defined over Fq. For new constructions of stable groups over commutative ring K

we use directed graphs with the special colouring. The main result of the paper is

the following statement.
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Theorem 1. For each commutative ring K with at least 3 regular elements there are

families Qn of Cremona group C(Kn) of degrees 4 such that the projective limit Q

of Qn, n→∞ is well defined, the group Q is of infinite order, it contains elements

g of infinite order, such that there exists a sequence gn ∈ Qn n → ∞ of stable

elements such that limgn = g.

The family Qn is obtained via explicit constructions. So we may use in the finite

ring K with at least 3 regular elements the sequence equivalent to gn for the key

exchange. We show that the growth of the order of gn when n is growing can be

bounded from below by some linear function α×n+ β. In case of such a sequences

of groups Gn = Qn or Gn = Tn we can modify a sequence gi of elements of stable

degree by conjugation with hi ∈ Gi. New sequence di = hi
−1gihi can be also a

sequence of elements of stable degree.

Let us discuss the asymmetry of our modified Diffie-Hellman algorithms of the

key exchange in details. Correspondents Alice and Bob are in different shoes. Alice

chooses dimension n, element gn as in theorem above, element h ∈ Qn and affine

transformation τ ∈ AGLn(K). So she obtains the base b = τ−1h−1gnhτ and sends

it in the form of standard polynomial map to Bob.

Our groups Qn are defined by the set of their generators and Alice can compute

words h−1gnh, b and its powers very fast. So Alice chooses rather large number

nA computes cA = bnA and sends it to Bob. At his turn Bob chooses own key nB
computes cB = bnB . He and Alice are getting the collision map c as cA

nB and cB
nA ,

respectively.

Remark Notice that the adversary is in the same shoes with public user Bob. He

(or she) need to solve one of the equations bx = cB or bx = cA. The algorithm is

implemented in the cases of finite fields and rings Zm for family of groups Qn. We

present its time evaluation (generation of b and bnA by Alice and computation of bcB
by Bob) in the last section of paper. We continue studies of orders of gi theoretically

and by computer simulation.

The computer simulation show that the number of monomial expressions of kind

xi1xi2xi3xi4 with nonzero coefficient is rather close to binomial coefficient C3
n. So

the time of computation bnB , cB
nA and cA

nB can be evaluated via the complexity

of computation of the composition of several general cubical polynomial maps in n

variable.

2. Walks on infinite forest D(q) and corresponding groups

2.1. Graphs and incidence system. The missing definitions of graph-theoretical

concepts which appears in this paper can be found in [2]. All graphs we consider

are simple, i.e. undirected without loops and multiple edges. Let V (G) and E(G)

denote the set of vertices and the set of edges of G, respectively. Then |V (G)| is

called the order of G, and |E(G)| is called the size of G. A path in G is called

simple if all its vertices are distinct. When it is convenient, we shall identify G with

the corresponding anti-reflexive binary relation on V (G), i.e. E(G) is a subset of

V (G)× V (G) and write vGu for the adjacent vertices u and v (or neighbors). The

sequence of distinct vertices v0, v1, . . . , vt, such that viGvi+1 for i = 1, . . . , t − 1 is

the pass in the graph. The length of a pass is a number of its edges. The distance

dist(u, v) between two vertices is the length of the shortest pass between them. The

diameter of the graph is the maximal distance between two vertices u and v of the

graph. Let Cm denote the cycle of length m i.e. the sequence of distinct vertices
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v0, . . . , vm such that viGvi+1, i = 1, . . . ,m− 1 and vmGv1. The girth of a graph G,

denoted by g = g(G), is the length of the shortest cycle in G. The degree of vertex

v is the number of its neighbors (see [1] or [2]).

The incidence structure is the set V with partition sets P (points) and L (lines)

and symmetric binary relation I such that the incidence of two elements implies

that one of them is a point and another is a line. We shall identify I with the simple

graph of this incidence relation (bipartite graph). If number of neighbours of each

element is finite and depends only from its type (point or line), then the incidence

structure is a tactical configuration in the sense of Moore (see [15]). The graph is

k-regular if each of its vertex has degree k, where k is a constant. In this section we

reformulate results of [10], [11] where the q-regular tree was described in terms of

equations over finite field Fq.

Let q be a prime power, and let P and L be two countably infinite dimensional

vector spaces over GF (q). Elements of P will be called points and those of L lines. To

distinguish points from lines we use parentheses and brackets: If x ∈ V , then (x) ∈ P
and [x] ∈ L. It will also be advantageous to adopt the notation for coordinates of

points and lines introduced in [14]:

(p) = (p1, p11, p12, p21, p22, p
′
22, p23, . . . , pii, p

′
ii, pi,i+1, pi+1,i, . . .),

[l] = [l1, l11, l12, l21, l22, l
′
22, l23, . . . , lii, l

′
ii, li,i+1, li+1,i, . . .).

We now define an incidence structure (P,L, I) as follows. We say the point (p)

is incident with the line [l], and we write (p)I[l], if the following relations between

their coordinates hold:

l11 − p11 = l1p1

l12 − p12 = l11p1

l21 − p21 = l1p11 (1)

lii − pii = l1pi−1,i

l′ii − p′ii = li,i−1p1

li,i+1 − pi,i+1 = liip1

li+1,i − pi+1,i = l1p
′
ii

(The last four relations are defined for i ≥ 2.) This incidence structure (P,L, I) we

denote as D(q). We speak now of the incidence graph of (P,L, I), which has the

vertex set P ∪ L and edge set consisting of all pairs {(p), [l]} for which (p)I[l].

To facilitate notation in future results, it will be convenient for us to define

p−1,0 = l0,−1 = p1,0 = l0,1 = 0, p0,0 = l0,0 = −1, p′0,0 = l′0,0 = 1, p0,1 = p2, l1,0 = l1,

l′1,1 = l1,1, p′1,1 = p1,1, and to rewrite (1) in the form :

lii − pii = l1pi−1,i

l′ii − p′ii = li,i−1p1

li,i+1 − pi,i+1 = liip1

li+1,i − pi+1,i = l1p
′
ii

for i = 0, 1, 2, . . .

Notice that for i = 0, the four conditions (1) are satisfied by every point and

line, and, for i = 1, the first two equations coincide and give l1,1 − p1,1 = l1p1.
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For each positive integer k ≥ 2 we obtain an incidence structure (Pk, Lk, Ik)

as follows. First, Pk and Lk are obtained from P and L, respectively, by simply

projecting each vector onto its k initial coordinates. The incidence Ik is then defined

by imposing the first k−1 incidence relations and ignoring all others. For fixed q, the

incidence graph corresponding to the structure (Pk, Lk, Ik) is denoted by D(k, q). It

is convenient to define D(1, q) to be equal to D(2, q). The properties of the graphs

D(k, q) that we are concerned with described in the following proposition.

Theorem 2 (11). Let q be a prime power, and k ≥ 2. Then

(i) D(k, q) is a q-regular edge-transitive bipartite graph of order 2qk ;

(ii) for odd k, g(D(k, q)) ≥ k + 5, for even k, g(D(k, q)) ≥ k + 4.

We have a natural one to one correspondence between the coordinates 2, 3, . . . , n, . . .

of tuples (points or lines) and equations. It is convenient for us to rename by i+ 2

the coordinate which corresponds to the equation with the number i and write

[l] = [l1, l3, . . . , ln, . . .] and (p) = (p1, p3, . . . , pn, . . .) (line and point in ”natural

coordinates”).

Let ηi be the map ”deleting all coordinates with numbers > i” from D(q) to

D(i, q), and ηi,j be map ”deleting all coordinates with numbers > i ” from D(j, q),

j > i into D(i, q).

The following statement follows directly from the definitions:

Proposition 1. ( [11]) The projective limit of D(i, q), ηi,j, i→∞ is an an infinite

forest D(q).

Let us consider the description of connected components of the graphs.

Let k ≥ 6, t = [(k + 2)/4], and let u = (ui, u11, · · · , utt, u′tt, ut,t+1, ut+1,t, · · · ) be

a vertex of D(k, q). (It does not matter whether u is a point or a line). For every r,

2 ≤ r ≤ t, let

ar = ar(u) =
∑
i=0,m

(uiiu
′
r−i,r−i − ui,i+1ur−i,r−i−1),

and a = a(u) = (a2, a3, · · · , at). (Here we define

p0,−1 = l0,−1 = p1,0 = l0,1 = 0, p00 = l00 = −1, p0,1 = p1, l1,0 = l1, l′11 = l11,

p′1,1 = p1,1).

In [10] the following statement was proved.

Proposition 2. . Let u and v be vertices from the same component of D(k, q). Then

a(u) = a(v). Moreover, for any t−1 field elements xi ∈ GF (q), 2 ≤ it ≥ [(k+2)/4],

there exists a vertex v of D(k, q) for which

a(v) = (x2, . . . , xt) = (x).

Let us consider the following equivalence relation τ : uτv iff a(u) = a(v) on the

set P ∪ L of vertices of D(k, q) (D(q)). The equivalence class of τ containing the

vertex v satisfying a(v) = (x) can be considered as the set of vertices for the induced

subgraph EQ(x)(k, q) (EQ(x)(q)) of the graph D(k, q) (respectively, D(q)). When

(x) = (0, . . . , 0), we will omit the index v and write simply EQ(k, q).

Let CD(q) be the connected component of D(q) which contains (0, 0, . . .). Let τ ′

be an equivalence relation on V (D(k,K)) (D(q)) such that the equivalences classes

are the totality of connected components of this graph. Obviously uτv implies uτ ′v.

If char GF (q) is an odd number, the converse of the last proposition is true (see

[24] and further references).
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Proposition 3. Let q be an odd number. Vertices u and v of D(q) (D(k, q)) belong

to the same connected component iff a(u) = a(v), i.e., τ = τ ′ and EQ(q) = CD(q)

(EQ(k, q) = CD(k, q)).

The condition charGF (q) 6= 2 in the last proposition is essential. For instance,

the graph EQ(k, 4)), k > 3, contains 2 isomorphic connected components. Clearly

EQ(k, 2) is a union of cycles CD(k, 2). Thus neither EQ(k, 2) nor CD(k, 2) is an

interesting family of graphs of high girth. But the case of graphs EQ(k, q), q is a

power of 2, q > 2 is very important for coding theory.

Corollary 1. Let us consider a general vertex

x = (xj , x1,1, x2,1, x1,2 . . . , xi,i, x
′

i,i, xi+1,i, xi,i+1, . . .),

j = 1 or 2, i = 2, 3, . . . of the connected component CD(k, F ), which contains a

chosen vertex v. Then coordinates xi,i, xi,i+1, xi+1,i can be chosen independently

as “free parameters” from F and x′i,i could be computed consequently as the unique

solutions of the equations ai(x) = ai(v), i = 1, . . ..

3. On the regular directed graph with special colouring

Directed graph - an irreflexive binary relation φ ⊂ V × V , where V is the set of

vertices.

Let introduce two sets

id(v) = {x ∈ V |(a, x) ∈ φ},

od(v) = {x ∈ V |(x, a) ∈ φ}
as sets of inputs and outputs of vertex v. Regularity means the cardinality of these

two sets (input or output degree) are the same for each vertex.

Let Γ be regular directed graph, E(Γ) be the set of arrows of graph Γ. Let us

assume that additionally we have a colouring function i.e. the map π : E →M onto

set of colours M such that for each vertex v ∈ V and α ∈ M there exist unique

neighbor u ∈ V with property π((v, u)) = α and the operator Na(v) := N(a, v) of

taking the neighbor u of a vertex v within the arrow v → u of colour α i a bijection.

In this case we refer to Γ as rainbow like graph.

For each string of colours (α1, α2, . . . , αm), αi ∈ M we can generate a per-

mutation π which is a composition Nα1
× Nα2

× · · · × Nαm
of bijective maps

Nαi : V (Γ) → V (Γ). Let us assume that the map u → Nα(u) is a bijection. For

given vertex v ∈ V (Γ) the computation π corresponds to the chain in the graph:

v → v1 = N(α1, v)→ v2 = N(α2, v1)→ · · · → vn = N(αm, vm−1) = v′.

Let Gπ be the group generated by permutations π as above.

Let us consider the following graph (triple graph defined in terms of D(n,K)

(or D(K)). Let F1 be the totality of all walks of length 3 in D(n,K) of kind

u = (p1)I[l]I(p2). We consider similar variety F2 of triples [l1](p)[l2] Now we define

the relation between vertices of the new graph:

〈(p1), [l], (p2)〉R{[l′1], (p′), [l′
2
]} ⇔

⇔ [l] = [l′
1
] & (p2) = (p′) & l′

2
0,1 − p21,0 ∈ RegK

{[l1], (p), [l2]}R〈(p′1), [l′], (p′
2
)〉 ⇔

⇔ (p) = (p′
1
) & [l2] = [l′] & p′

2
1,0 − l20,1 ∈ RegK
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The colour of the arrow between u = (p1)I[l]I(p2) and u′ = [l]I(p2)I[l′] is l′0,1 −
p21,0. Similarly the colour of the arrow between u′ = [l]I(p)I[l′] and u = (p)I[l′](p′)

is p′1,0 − l′0,1. We define rainbow like colouring π.

Let us consider the permutation group TF ′n(K) ( TF ′(K)) acting on F1 = Kn+2

(K∞, respectively) corresponding to the triple graph with the colouring π. Let

TFn(K) ( TF (K)) be the subgroup of products of even number of generators.

Theorem 3. Sequence of subgroups TFn(K) of Cremona group Cn(K) form a

family of subgroups of degree 4.

Proof. To find a family of subgroups of degree 4 we give a construction of triple

directed graph. To this eend we would like to connect three vertices of the graph

defined in section 2 to get two sets of vertices of new graph:

F =
{
〈(p1), [l], (p2)〉 | (p1)I[l]I(p2)

}
F

′
=
{
{[l1], (p), [l2]} | [l1]I(p)I[l2]

}
.

Now we have the following relation between vertices of the new graph:

〈(p1), [l], (p2)〉R{[l′1], (p′), [l′
2
]} ⇔

⇔ [l] = [l′
1
] & (p2) = (p′) & l′

2
0,1 − p21,0 ∈ RegK

{[l1], (p), [l2]}R〈(p′1), [l′], (p′
2
)〉 ⇔

⇔ (p) = (p′
1
) & [l2] = [l′] & p′

2
1,0 − l20,1 ∈ RegK

Using induction we can see that in steps (2k) and (2k+1) we get vertices with

corresponding degrees:

〈(p2k−2), [l2k−1], (p2k)〉 =

= (p1,0+α1+. . .+α(2k−3), p1,1, . . . , pi,j , l
2
0,1+α2+. . .+α(2k−2), p1,0+α1+. . .+α(2k−1)),

{[l2k−1], (p2k), [l2k+1]} =

= (l20,1+α2+. . .+α(2k−2), l1,1, . . . , li,j , p1,0+α1+. . .+α(2k−1), l
2
0,1+α2+. . .+α(2k))

where

deg p
(2k)
i,j (l1, l2, . . . , lk, p1, l12) =

{
3, (i, j) = (i, i)

′
or (i, j) = (i, i+ 1),

4, (i, j) = (i, i) or (i, j) = (i+ 1, i)

and

deg l
(2k+1)
i,j (l1, l2, . . . , lk, p1, l12) =

{
4, (i, j) = (i, i)

′
or (i, j) = (i, i+ 1),

3, (i, j) = (i, i) or (i, j) = (i+ 1, i)

Finally using the affine transformation in the same way as in [25], independently

from the length of the password we get the polynomials of degree 4. �

Canonical graph homomorphisms D(n,K) → D(n − 1,K) can be naturally ex-

panded to group homomorphism TFn+2(K) onto TFn+1(K). It means that group

TF (K) is a projective limit of TFn(K). Let δn be a canonical homomorphism of

TF (K) onto TFn(K).

Proposition 4. The order of a product g of generators sα,β of TF (K), such that

α and β are elements of Reg(K) is infinity. Let g ∈ CD(K) be an element of length

l(g) = k, then the order of gn = δn(g), where [n + 5]/2 ≥ k, is bounded below by

[n+ 5]/2k. The sequence gn forms a family of stable elements.
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That statement follows from the fact that the orbit of g containing triple (0)[0](0)

is an infinite set.

So element h = τ−1h−1gnhτ , where τ ∈ AGLn(K), h ∈ TFn(k) is an element for

which h−1gnh is a cubical map, can be used as the base for Diffie-Hellman algorithm

as above.

4. Remarks on the complexity of public rules

The combination T1NT2 of graph transformation N with two affine transfor-

mations T1 and T2 can be used as polynomial public rules. Public user getting a

formula:

y = (F1(x1, . . . , xn), . . . , Fn(x1, . . . , xn)),

where Fi(x1, . . . , xn) are polynomials of n variables of degree 4.

Hence the process of straightforward encryption can be done in polynomial time

O(n5). But the cryptanalyst Catherine, having a only a formula for y, has very hard

task to solve the system of n equations in n variables of degree 4. We know that

the variety of solution has the dimension 0. So general algorithm for finding the

solution of system of polynomials cubic equations has exponential time 4O(n).
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