ALBANIAN JOURNAL

OF MATHEMATICS

Volume 4, Number 4, Pages 123-133
ISSN 1930-1235: (2010)

VERIFICATION METHODS AND SYMBOLIC COMPUTATIONS

WALTER KRAMER

ABSTRACT. Our intpakX package extends the computer algebra system Maple.
It allows, e.g., verified numerical calculations (computer-assisted proofs) built
on arbitrary precision interval operations. Up to now, only the basic oper-
ations are supported in a guaranteed way. Concerning higher mathematical
functions supported in Maple, there are no data about their accuracies avail-
able/published. Thus, it is not possible or at least very hard to build arbi-
trary precision interval functions using Maple’s intrinsic mathematical func-
tions (nevertheless, intpakX offers such function implementations using some
guard digits in an experimental way, which - of course - is not really a reliable
mathematical approach).

On the other hand there are software packages supporting reliable multiple
precision interval functions like C-XSC, the MPFR and the MPFT libraries,
and others. In the talk we discuss the features of some of these libraries in
detail. We emphasize the different approaches (arbitrary precision arithmetic,
staggered correction arithmetic, functions only for real arguments, functions
for complex arguments, ...) and the most important resulting properties of the
corresponding implementations. We also compare their performance and we
comment on the actual integration of several of these libraries in C-XSC. The
missing step is to bring together C-XSC and computer algebra packages like
Maple and Mathematica. Combining fast verification methods and symbolic
computations deeply extends the range of applications of rigorous mathemat-
ical methods.

Key words: Computer-assisted proofs, self-verifying methods, arbitrary
precision, interval functions, intpakX, C-XSC.

1. INTRODUCTION AND GENERAL REMARKS ON COMPUTER-ASSISTED PROOFS

It is well known that symbolic computations often suffer from exponential growth
of formula strings (memory) and computing time consumption [9]. In many cases
it is of great advantage to be able to circumvent this behaviour by applying self-
validating numerical methods. The result of such methods are proved to be rigorous
in the mathematical sense. These methods are based on the validity of mathemati-
cal theorems. Using e.g. interval computations, sufficient conditions for the validity
of the mathematical theorems may be verified by the computer itself.

Let us give an example. Brouwer’s fixed point theorem may be stated as follows:
if a nonempty, convex, compact set X in IR" is mapped by a continuous function
[+ IR" — IR™ into itself, this function has at least one fixed point z* € X.

Typically, machine intervals are boxes in IR” with sides parallel to the axes
[2, 12, 4, 8]. Such boxes are easily representable (e.g. using an infimum-supremum
representation) and they are by their definition convex and compact. Now let F' be

kraemer@math.uni-wuppertal.de.

(©2010 Aulona Press (Albanian J. Math.)

124 WALTER KRAMER

an interval enclosure for the function f representable on the computer (e.g. replace
all real operations and elementary function calls by the corresponding machine in-
terval operations/functions). Such an enclosure allows the machine computation
of sets containing the range of f over set-valued arguments, typically over ma-
chine intervals. Let X be a box (a convex and compact machine interval vector)
and let F'(X), the result of the machine interval computation, be a subset of X.
Then it holds f(z)|lz € X C F(X) C X. That means, we have proved by some
interval machine computations that the continuos function f maps the (convex and
compact) interval vector X into itself. The result of the computation assures that
Brouwer’s fixed point theorem is applicable in the concrete situation and it follows
that there exists at least one fixed point z* of f in X. We see, F(X) C X can be
verified by machine computations and the validity of this relation is sufficient for
{f(z)]r € X} C X. Possible conversion errors and rounding errors are captured
by machine interval operations (worst case outward rounding). Possible overesti-
mations due e.g. to some kind of wrapping effects or data dependencies do not
invalidate the final result (of course, overestimations should be avoided as far as
possible to allow F(X) C X (if the overestimation in the computation of F(X) is
too large, this relation does not hold).

2. NEWTON METHOD TO FIND THE ZERO OF A FUNCTION

Let us consider the simplest case of Newton’s method to compute a zero of a
continuosly differentiable function g in one real variable. To find the nth root {/a
of a € IR, we proceed as follows:

Let
(1) g(z)=z" —a
with ¢’(x) = na" L. Defining
g(x)
2 N(zx)=x— ,
) @=r- 52
the classical Newton iteration computes the iterates
(3) Trr1 = N(xg), k=0,1,2,...

starting from a given initial value xg.

2.1. Symbolic computations and rational arithmetic. We start the Newton
iteration (3) for the function (1) with fixed values n = 5, a = 32 and with the
rational starting value zo = 1 Then, obviously, all iterates xj, are rational numbers,
i.e. they can be computed error-free using Maple’s [11] rational arithmetic. In our
case even the answer, i.e. the zero {/a of g, is a rational number. What follows is
the actual Maple code:

> restart;
g := proc (x) options operator, arrow; x~5-32 end proc;
dg := unapply(diff(g(x), x), x);

x > x - 32

VERIFICATION METHODS AND SYMBOLIC COMPUTATIONS 125

x > 5 x
> N := proc (x) options operator, arrow; x - g(x)/dg(x) end proc;
g(x)
X —> X - ————-
dg(x)
> N := unapply(simplify(N(x)), x);
/5 \
4 \x + 8/
X => —oommmo—-
4
5 x
> xk = 1;

printf("x0: "); print(xk, 1.0%xk);
printf ("%c", "\n");
for k to 8 do
xk := N(xk);
nodd := ceil(logl0(op(1l, xk)))+ceil(logl0(op(2, xk)));
printf ("Number of decimal digits to represent x%d: %d %c", k, nodd, "\n");
if nodd < 100 then print(xk, 1.0*xk) else print(1.0*xk) end if
end do;

x0:
1, 1.0

Number of decimal digits to represent x1: 3
36
--, 7.200000000
5
Number of decimal digits to represent x2: 14
7561397
——————— , 5.762381497
1312200

Number of decimal digits to represent x3: 69
24748945784387888557877390133166757
——————————————————————————————————— , 4.615709793
5361893813970227432939420867060250

Number of decimal digits to represent x4: 345
3.706668058

Number of decimal digits to represent x5: 1722
2.999237997

126 WALTER KRAMER

Number of decimal digits to represent x6: 8607
2.478483071

Number of decimal digits to represent x7: 43032
2.152390479

Number of decimal digits to represent x8: 215154
2.020104202

To represent xg exactly as a rational number, already 215154 figures are necessary.
However, as an approximation to the value v/32 = 2, xg = 2.0201 ... is only accurate
to two decimals! The length of the numerator expands by a factor of about 5 at
each Newton step. Due to computing time and memory restrictions, the method is
obviously not appropriate to compute more than the first few iterates.

2.2. Interval Newton method using (arbritary precision) interval oper-
ations. To compute the nth root of the value a € IRy using an interval Newton
method [4] we first introduce the so called Interval-Newton-operator

N(X) = N(X,y) =y - G(y)/G'(X).

Here X denotes a closed real interval and y any point in X, e.g. the midpoint
of X. If there is a root of g in X then this root is also contained in N(X,y) (if
N(X,y) is computable at all). This may be shown by the Mean-Value theorem.
The Interval-Newton-operator does not lose a zero of g contained in X. The capital
letters G and G’ emphasize that we need interval enclosures [4] of the corresponding
real valued functions g and ¢, respectively. We start the interval iteration with
starting interval Xg := [1/a,a] (this interval, and thus all iterates X}, contain the
nth root of a. Also the initial value zg = 1 of the rational iteration is contained in
this starting interval.). The interval Newton method computes the nested sequence
of intervals

X1 = N(Xk,midpoint(Xk)) N Xg, k=0,1,2,...

Let us again set a = 32 and n = 5. The following Maple code using our Maple
Power Tool intpakX ([7, 3, 10] allows e.g. arbitrary precision interval computations)
is slightly modified by hand to make it more compact.

Please note, that we use Maple’s symbolic manipulation capabilities to automat-
ically generate the first derivative dg() of the function g. The inapply command
is part of the intpakX package. It transforms a Maple function/expression into
an interval function (this means basically that real quantities and real operations
are replaced by corresponding interval enclosures and interval operations). This
allows to compute verified range enclosures of the original real-valued Maple func-
tion/expression over intervals. mid indicates the midpoint and &intersect denotes
an operator computing the intersection of its two interval operands.

> restart;

libname := "/home/kraemer/projekte/braun/master", libname;
with(intpakX) ;

>n :=5: a :=32.0:
g := proc (x) options operator, arrow; x"n-a end proc:

dg := unapply(diff(g(x), x), x):

>

>

>

VERIFICATION METHODS AND SYMBOLIC COMPUTATIONS

X ,X"

inapply(mid(x) - g(mid(x))/dg(x), x): #Newton operator

N :=
Digits := 40:
xk := construct(l/a, a); #contains the root of g()

printf("x0:"); print(xk);
for k to 11 do #perform some interval Newton steps
xk := ‘&intersect‘(N(xk), xk);

printf ("x¥d: Y%c

end do;

x0:

", k, "\n"); print(xk);

[0.03125000000000000000000000000000000000000,
32.00000000000000000000000000000000000000]

x1:

[0.03125000000000000000000000000000000000000,
15.81465263180343736593158610048703849317]

x2:

[0.03125000000000000000000000000000000000000,

7.

x3:

823231622893632549273354435370367809400]

[0.03125000000000000000000000000000000000000,

3.

x4:

(1.
3.

x5:

[1.
2.

x6:

X7:

x8:

x9:

x1

x1

[1.
.000000003740941910738774185453415335888]

0:

[1.
.000000000000000000934728169601007961380]

1:

[1.

879069797905080184045481815927219264884]

958189629694801499712260701420155717296,
879069797905080184045481815927219264884]

958189629694801499712260701420155717296,
759821544709750658290262536064053492103]

.958189629694801499712260701420155717296,
.217470870974655844998487492795344826269]

.983483873581623112376918265014760651179,
.024375423351402189923784960702237493604]

.999851475773569004667291861327884059748,
.000171135238750288302281506548692080610]

999999996513240144452564236299207708070,

999999999999999999097576080686540639748,

999999999999999999999999999999999999969 ,

128 WALTER KRAMER

2.000000000000000000000000000000000000031]

The value of the exact zero v/32 of ¢ is the integer value 2. Thus, looking at the
number of nines behind the leading 1 of the lower bound or at the number of zeros
behind the leading 2 of the upper bound allows to see the quadratic convergence
property of the Newton iteration. The number of correct digits is typically doubled
in each additional step. Using arbitrary precision interval operations (manipulat-
ing the Digits variable) allow the efficient computation of enclosures of arbitrary
accuracy. With this respect, arbitrary precision interval operations may be much
more useful than rational operations (see the end of Subsection 2.1).

3. ADDITIONAL REMARKS ON THE INTERVAL NEWTON METHOD AND
COMPUTER-ASSISTED PROOFS

In Section 2.2 we started the interval Newton iteration with an interval containing
the correct answer (this was not checked by the computations but has been verified a
priori analytically). But the interval Newton method also allows to check a sufficient
criterion with the help of the computer: It is easy to show that if N(X) C X, then
the interval X contains exactly one zero of f. The proof is based on Brouwer’s fixed
point theorem and the fact that F’(X) does not contain 0 (otherwise a division by
zero occurs, i.e. N(X) is not defined for the argument X). Thus, the set of
derivatives does not contain zero which means that the function g is monotone on
X guaranteeing the uniqueness of the zero. The validity of N(X) C X checked by
the computer is a computer-assisted proof that the function f has exactly one zero
in the interval X.

A computer-assisted proof for the fact that g has no zero in X results from
N(X)N X = 0. An empty intersection as a result of the corresponding machine
interval operation is, again, sufficient for the assertion on g. And again overes-
timation in the computation of N(X) by (machine) interval operations does not
invalidate the sufficiency of the criterion result.

Maple and other computer algebra packages like Mathematica [23], MuPad etc.
provide very well designed mathematical function implementations. But to the
authors knowledge, the results are not guaranteed to be accurate to the last bit.
Even worse, there are now guaranteed error bounds for the function implementation
available/published. The function implementations also do not allow interval or
complex interval arguments. intpakX guarantees interval computations based on
the basic arithmetical operations. Computing mathematical functions on intervals
is possible, but the realization of these interval functions is based on Maples point
functions (accuracy not specified) just using some guard digits. This approach often
gives correct results, but of course, it is not really reliable in a mathematical sense.
To overcome this unpleasant situation we suggest to combine computer algebra
packages with appropriate interval libraries/environments. In the following section
we have a look on interval packages supplying their users with different kinds of
interval mathematical functions.

4. SOME MULTIPLE-PRECISION AND ARBITRARY-PRECISION INTERVAL PACKAGES

There are only a few interval packages supporting multiple-precision interval
mathematical functions available [19, 20, 18, 13, 8]. One C++ library with a rather
complete set of elementary mathematical functions (trigonometric functions and
their inverses, hyperbolic functions and their inverses, exponentials, logarithms,

VERIFICATION METHODS AND SYMBOLIC COMPUTATIONS 129

power functions, as well as some other functions) for real and complex machine
intervals is C-XSC [8, 5, 6]. C-XSC offers the intrinsic interval data types interval,
cinterval for real and complex intervals with IEEE double numbers as bounds and
1_interval and 1_cinterval for staggered precision real and complex intervals.
There is also a C-XSC interface to the MPFR and MPFI libraries available. In
this case the arbitrary precision data types are called MPFRClass and MPFIClass,
respectively. However, the MPFR and MPFT libraries do not support complex
intervals. An additional package to C-XSC is also available delivering staggered
precision real and complex intervals with extremely wide exponent range. The data
types are called 1x_interval and 1lx_cinterval, respectively. These staggered
data types [16] are based on unevaluated sums of IEEE double numbers. They
typically allow precisions up to a several hundred decimal digits.

We first use a variable of the basic complex interval data type cinterval to
compute an enclosure of the set In(sin(z))|z € Z with Z = [0,1] +¢[2,3] C C. Here
Z denotes the rectangle with sides parallel to the axes and with lower left corner
(0,2) and upper right corner (1,3). We want to compute a corresponding rectangle,
again with sides parallel to the axes, containing the range of the sine function on
X. Note, that the shape of the set {In(sin(z))|z € Z} itself is more complex.

The C-XSC source code is as follows:

#include <iostream>

using namespace std;

#include <cinterval.hpp> //complex interval operations
using namespace CXsc;

int main() {
cinterval z(interval(0,1),interval(2,3)); //complex interval data type
//complex interval [0,1] + ix[2,3]

cout << "z: " << endl << z << endl;

cout << "Enclosure of 1n(sin(z)): " << endl << 1ln(sin(z)) << endl;

}
Running the program results in the following output:

z:
([0.000000, 1.000000],[2.000000, 3.000000])
Enclosure of 1n(sin(z)):

([0.672740, 2.574116],[0.227314, 1.570797]1)

The computed result [0.672740, 2.574116] + i*[0.227314, 1.570797] isguar-
anteed to be an enclosure of the range of values {In(sin(z))|z € Z}.

Let us compute In(sin(1 + 3i)) to about 45 good decimals using the staggered
precision data type 1_cinterval.

//...as in the listing above
#include <l_cinterval.hpp> //staggered precision complex intervals

int main() {
//the global C-XSC variable stagprec allows to control
//the precision of staggerd-precision quantities:

130 WALTER KRAMER
stagprec= 3; //about three-fold double precision
cout << SetDotPrecision(50,45); //output format

//create a complex interval in staggered-precision format
1_cinterval z(interval(l,1),interval(3,3));
//z is the complex (point) interval [1,1] + ix[3,3]

cout << "z: " << endl << z << endl;

cout << "Enclosure of 1n(sin(z)): " << endl << 1n(sin(z)) << endl; }
The output is
z:
([1.000,
1.000],
[3.000,
3.000 1)
Enclosure of 1n(sin(z)):
([2.307886347506494601829631969957200324910727432,
2.307886347506494601829631969957200324910727433 1,
[0.568544730205705952476918985512935541942302411,
0.568544730205705952476918985512935541942302412 1)

The second displayed complex interval is guaranteed to contain the value in(sin(1+
3i)). We see that the enclosure is accurate up to the last digits displayed.

The staggered-precision data is a special kind of a multiple-precision data type
lohner93,blom09. The operations are performed on floating-point vectors represent-
ing exact sums of floating point values. To this end the so called long accumulator
(C-XSC dotprecision data type, [8, 24]) is used. It allows the exact computation of
dot products of vectors with floating-point components. Because staggered preci-
sion numbers are stored as vectors with floating-point components, the precision of
staggered numbers is limited by the exponent range of the underlying floating-point
screen.

In the next example we perform some time measurements for arbitrary precision
real and interval arithmetics based on the libraries MPFR [17, 22] and MPFT [22].
The MPFR library guarantees the best possible accuracy (exactly rounded results
for all rounding modes) with respect to the precision used. The interval functions
realized by the MPFI library are based on this feature. They give best possible
interval enclosures (if the exact function value is representable, this value is return
value of the MPFT function call). The set of interval functions realized in the MPFI
library is very limited. Complex interval functions are not at all available.

Representable results are reproduced by the MPFI functions. Let x denote the
interval [2,4]. Then log2(z) = [1,2] and log2(1/z) = log2([1/2,1]) = [-2, —1].
#include <iostream>
#include <interval.hpp> //C-XSC intervals
#include "mpficlass.hpp" //C-XSC interface to MPFI library
using namespace std;
using namespace MPFI;
using namespace CXSC;

VERIFICATION METHODS AND SYMBOLIC COMPUTATIONS

int main() {
long int prec= 10;

131

MpfiClass::SetDefaultPrecision(prec); //use prec bit for mantissa

MpfiClass: :SetBase(2); //base for input/output
MpfiClass x(interval(2.0,4.0)); //interval [2,4]

cout << "log2(x): " << log2(x) << endl;

MpfiClass r;

r= 1/x;

cout << "log2(1/x)=log2(r): " << log2(r) << endl;
cout << "loglO(x): " << loglO(x) << endl;

}

Running the program produces the following output:
log2(x): [1.00000, 1.00000e1 1
log2(1/x)=log2(r): [-1.00000e1, -1.00000]
logl0(x): [1.00110e-2, 1.00111e-1]

Note that the interval bounds are printed as binary numbers. The results are as

predicted.

The following program is used to do some time measurements for the arbitrary
precision MPFT interval functions. We compute enclosures for the sine function at
the point interval [7,7] with 1000 bit starting precision and doubling the precision

within a loop until 2° x 1000 = 512000 bit are reached.

#include <interval.hpp>
#include "mpficlass.hpp"
#include "timer.hpp"
using namespace std;
using namespace MPFI;
using namespace CXSC;

int main() {
double start;
long int precision=1000; //number of mantissa bits

for (int i= 0; i<= 9; i++) {
MpfiClass x(interval(7), precision); //point interval [7,7]
cout << precision << " bits, ";
start= GetTime();
sin(x); //function call
cout << "time used: " << GetTime()-start << " sec" << endl;
precision+= precision; //precision doubling

}

}

Running the program produces the following output:

1000 bits, time used: 0.000250101 sec
2000 bits, time used: 0.000307083 sec
4000 bits, time used: 0.000962019 sec

132 WALTER KRAMER

.00355291 sec
.0135369 sec
.0501981 sec

8000 bits, time used:
16000 bits, time used:
32000 bits, time used:

W NO OO OO

64000 bits, time used: 0.191191 sec
128000 bits, time used: 0.698907 sec
256000 bits, time used: 2.63609 sec
512000 bits, time used: 8.5943 sec

The time needed to compute the sine function using Maple at the point 7.0 to
100000 decimal places (about 332200 binary digits) measured by

restart: Digits:=100000; st:= time(): sin(7.0): time()-st;

is: 11.605 seconds.

The C-XSC as well as the Maple results have been computed on the same ma-
chine.

Maple’s sine function implementation seems to be not as efficient as the interval
sine function for MpfiClass interval variables in C-XSC. There is no guarantee of
good digits in the Maple result whereas the MPFI/C-XSC enclosure is the best
possible result (guaranteed by the MPFR and MPFT libraries) with respect to the
actual precision setting.

5. CONCLUDING REMARKS

We urgently need software tools combining symbolic computations and verifi-
cation methods. There are several promisingly first approaches (see e.g. [14]).
However, a lot of further work (theoretical research as well as highly demanding
software development) has to be done to get really powerful hybrid methods. The
author is confident that it’s worth the effort. The outcome will allow the user to do
more and more automatized rigorous mathematics on the computer, not only based
on symbolic manipulations but also based on very fast floating-point (interval) com-
putations. Also highly sophisticated but often unsafe approximate methods may
be complemented by mathematically rigorous supplementations.

REFERENCES

[1] Weblink to C-XSC
http://www.math.uni-wuppertal.de/wrswt/xsc/cxsc_new.html

[2] Alefeld, G., HerzbergerJ.: Introduction to Interval Computations. Academic Press, New York,
1983.

[3] Markus Grimmer.: Interval Arithmetic in Maple with intpakX. PAMM - Proceedings in Ap-
plied Mathematics and Mechanics, Vol. 2, Nr. 1, p. 442-443, Wiley-InterScience, 2003.

[4] Hammer, R., Hocks, M., Kulisch, U., Ratz, D.: Numerical Toolbox for Verified Computing I:
Basic Numerical Problems. Springer Verlag, 1993.

[5] Hofschuster, W., Kramer, W.: C-XSC 2.0: A C++ Library for Extended Scientific Comput-
ing. Numerical Software with Result Verification, Lecture Notes in Computer Science, Volume
2991/2004, Springer-Verlag, Heidelberg, pp. 15 - 35, 2004.

[6] Hofschuster, W., Kramer, W., Neher, M.: C-XSC and Closely Related Software Packages.
Preprint 2008/3, Universitdt Wuppertal, 2008; published in: Dagstuhl Seminar Proceedings
08021 - Numerical Validation in Current Hardware Architectures, LNCS 5492, Springer-Verlag,
pp 68-102, 2008.

[7] intpakX link at the University of Wuppertal:
http://www.math.uni-wuppertal.de/ xsc/software/intpakX/

[8] Klatte, R., Kulisch, U., Wiethoff, A., Lawo, Chr., Rauch, M.: C-XSC - A C++ Class Library
for Extended Scientific Computing. Springer-Verlag, Heidelberg, 1993.

VERIFICATION METHODS AND SYMBOLIC COMPUTATIONS 133

[9] Kramer, W.: Accurate Computation of Chaotic Dynamical Systems. In: A. Aggarwal (ed):
Proceedings to Mathematics and Computers in Biology and Chemistry (MCBC 07), Vancouver,
Canada, pp. 74-79, 2007.

[10] Kramer, W.: intpakX - An Interval Arithmetic Package for Maple. Proceedings of the 12th
GAMM-IMACS Symposium on Scientific Computing, Computer Arithmetic and Validated Nu-
merics, SCAN 2006, IEEE Computer Society, ISBN 0-7695-2821-X, 2007.

[11] Maplesoft: http://www.maplesoft.com/applications/
app-center_browse.aspx?CID=13&SCID=155

[12] Neumaier, A.: Interval Methods for Systems of Equations. Encyclopedia of Mathematics and
its Applications 37, Cambridge University Press, Cambridge, UK, 1990.

[13] Aberth, O.: Introduction to Precise Numerical Methods. Academic Press, New York, 2007.

[14] Popova, E., Kramer, W., Russev, M.: Integration of C-XSC Automatic Dif-
ferentiation in Mathematica. Preprint 3/2010, IMI-BAS, Sofia, March, 2010. See
http://www.math.bas.bg/ epopova/papers/10-preprintAD.pdf

[15] Adams, E., Kulisch, U.: Scientific Computing With Automatic Result Verification. Academic
Press, Inc., 1993.

[16] Blomquist, F., Hofschuster, W., Kramer, W.: A Modified Staggered Correction Arithmetic
with Enhanced Accuracy and Very Wide Exponent Range. Lecture Notes in Computer Science
LNCS 5492, pp. 41-67, Springer, 2009.

[17] Fousse, L., Hanrot, G., Lefevre, V., Pelissier, P., Zimmermann, P.. MPFR: A Multiple-
Precision Binary Floating-Point Library With Correct Rounding. ACM Transactions on Mathe-
matical Software, Vol.33, No.2, Article 13, 2007.

[18] Grimmer, M., Petras, K., Revol, N.: Multiple Precision Interval Packages: Comparing Dif-
ferent Approaches. In Lecture Notes in Computer Science, Vol. 2991, pp. 64-90, Springer, 2004.

[19] Kramer, W.: Multiple Precision Computations With Result Verification. In [1], pp. 325-356,
1993.

[20] Kramer, W., Kulisch, U., Lohner, R.: Numerical Toolbox for Verified Computing II — Ad-
vanced Numerical Problems (draft). Chapter 7, Multiple-Precision Arithmetic Using Integer
Operations, pp. 210-251, 1998.

Online availabe, see http://www.math.uni-wuppertal.de/wrswt/literatur/tb2.ps.gz
[21] Lohner, R.: Interval Arithmetic in Staggered Correction Format. In [1], pp. 301-342, 1993.
[22] Revol, N. and Rouillier, F.: Motivations for an Arbitrary Precision Interval Arithmetic and

the MPFI Library. Reliable Computing, Vol. 11, pp. 275-290, 2005.

[23] Wolfram Research Inc.: Mathematica, Version 5.2, Champaign, IL, 2005.

[24] Zimmer, M., Kramer, W., Bohlender, G., Hofschuster, W.: Extension of the C-XSC Library
With Scalar Products With Selectable Accuracy. Preprint BUW-WRSWT 2009/4, University of
Wuppertal, 2009; in press, Serdica Journal of Computing, 2010.

WALTER KRAMER, SCIENTIFIC COMPUTING/SOFTWARE ENGINEERING, FACULTY OF MATHEMAT-
ICS AND NATURAL SCIENCES, UNIVERSITY OF WUPPERTAL, 42119 WUPPERTAL, GERMANY.

