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THREE-STEP PROJECTION METHODS FOR NONCONVEX

VARIATIONAL INEQUALITIES

MUHAMMAD ASLAM NOOR

Abstract. It is well-known that the nonconvex variational inequalities are
equivalent to the fixed point problems. We use this equivalent formulation

to suggest and analyze some three-step iterative methods for solving the non-
convex variational inequalities. We prove the convergence of the three-step

iterative methods under suitable weaker conditions. Several special cases are

also discussed. Our method of proof is very simple.

1. Introduction

Variational inequalities theory, which was introduced by Stampacchia [1], pro-
vides us with a simple, general and unified framework to study a wide class of
problems arising in pure and applied sciences. For the applications, physical for-
mulation, numerical methods and other aspects of variational inequalities, see [1-15]
and the references therein. It is worth mentioning that all the research work car-
ried our in this direction assumed that the underlying set is a convex set. In many
practical problems, a choice set may not be a convex so that the existing results
may not be applicable. In this direction, Noor [8] has introduced and considered a
new class of variational inequalities, called nonconvex variational inequalities on the
uniformly prox-regular sets. It is well-known that the uniformly prox-regular sets
are nonconvex and include the convex sets as a special case, see [3,12]. Using the
projection operator, Noor [8] has established the equivalence between the noncon-
vex variational inequalities and the fixed point problem. This equivalent formation
has been used to consider the existence theory as well as to develop some numer-
ical methods for nonconvex variational inequalities. We would like to point that
the convergence analysis for the Mann and Ishkawa iterative methods requires that
the operator must be strongly monotone and Lipschitz continuous. These condi-
tions are very strict and rule out many applications. To overcome these drawbacks,
several modifications of the projection iterative methods have been analyzed in re-
cent years, see [6,9,13,15] and the references therein. Inspired and motivated by
the research going on in this interesting and fascinating field, we suggest and ana-
lyze three-step iterative methods for solving the nonconvex variational inequalities.
Using the technique of Noor [6,13,15], we also consider the convergence criteria of
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three-step iterative method for the partially relaxed strongly monotone operator. It
is well known that the partially relaxed strongly monotonicity implies monotonic-
ity, but the converse is not true. This shows that the partially relaxed strongly
monotonicity is a weaker condition than monotonicity. We remark that our proof
of the convergence analysis is independent of the projection. Consequently, our
results represent a refinement of the previously known results. Several special cases
are also considered.

2. Basic Concepts

Let H be a real Hilbert space whose inner product and norm are denoted by
〈·, ·〉 and ‖.‖ respectively. Let K be a nonempty closed convex set in H. The basic
concepts and definitions used in this paper are exactly the same as in Noor [8].

Definition 2.1. The proximal normal cone of K at u ∈ H is given by

NP
K(u) := {ξ ∈ H : u ∈ PK [u+ ξ]}.

where

PK [u] = {u∗ ∈ K : dK(u) = ‖u− u∗‖ = inf
v∈K
‖v − u‖}.

The proximal normal cone NP
K(u) has the following characterization.

Lemma 2.1. Let K be a nonempty, closed and convex subset in H. Then
ζ ∈ NP

K(u) if and only if there exists a constant α > 0 such that

〈ζ, v − u〉 ≤ α‖v − u‖2, ∀v ∈ K.

Poliquin et al. [14] and Clarke et al [3] have introduced and studied a new
class of nonconvex sets, which are called uniformly prox-regular sets. This class
of uniformly prox-regular sets has played an important part in many nonconvex
applications such as optimization, dynamic systems and differential inclusions.

Definition 2.2. For a given r ∈ (0,∞], a subset Kr is said to be normalized
uniformly r-prox-regular if and only if every nonzero proximal normal to Kr can
be realized by an r-ball, that is,∀u ∈ Kr and 0 6= ξ ∈ NP

Kr
(u), one has

〈(ξ)/‖ξ‖, v − u〉 ≤ (1/2r)‖v − u‖2, ∀v ∈ Kr.

It is clear that the class of normalized uniformly prox-regular sets is sufficiently
large to include the class of convex sets, p-convex sets, C1,1submanifolds (possibly
with boundary) of H, the images under a C1,1 diffeomorphism of convex sets and
many other nonconvex sets; see [2,3,12]. Obviously, for r = ∞, the uniformly
prox-regularity of Kr is equivalent to the convexity of K. This class of uniformly
prox-regular sets have played an important part in many nonconvex applications
such as optimization, dynamic systems and differential inclusions. It is known that
if Kr is a uniformly prox-regular set, then the proximal normal cone NP

Kr
(u) is

closed as a set-valued mapping.

We now recall the well known proposition which summarizes some important
properties of the uniformly prox-regular sets Kr.
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Lemma 2.2. Let K be a nonempty closed subset of H, r ∈ (0,∞] and set
Kr = {u ∈ H : dK(u) < r}. If Kr is uniformly prox-regular, then
(i) ∀u ∈ Kr, PKr (u) 6= ∅.
(ii) ∀r′ ∈ (0, r), PKr

is Lipschitz continuous with constant r
r−r′ on Kr′ .

For a given nonlinear operator T, we consider the problem of finding u ∈ Kr

such that

〈Tu, v − u〉 ≥ 0, ∀v ∈ Kr,(1)

which is called the nonconvex variational inequality, introduced and studied by
Noor [8].

We now give some examples of prox-regular sets to give an idea and applications
of the nonconvex variational inequalities (1). These examples are mainly due to
Noor [10].

Example 2.1. Let u = (x, y) and v = (t, z) belong to the real Euclidean plane and
consider Tu = (2x, 2(y − 1)). Let K = {t2 + (z − 2)2 ≥ 4, −2 ≤ t ≤ 2, z ≥ −2}
be a subset of the Euclidean plane. Then one can easily show that the set K is
a prox-regular set Kr. It is clear that nonconvex variational inequality (1) has no
solution.

Example 2.2. Let u = (x, y) ∈ R2, v = (t, z) ∈ R2 and let Tu = (−x, 1 −
y). Let the set K be the union of 2 disjoint squares, say A and B having re-
spectively, the vertices in the points (0, 1), (2, 1), (2, 3), (0, 3) and in the points
(4, 1), (5, 2), (4, 3), (3, 2).
The fact that K can be written in the form:{

(t, z) ∈ R2 : max{|t− 1|, |z − 2|} ≤ 1} ∪ {|t− 4|+ |z − 2| ≤ 1}
}

shows that it is a prox-regular set in R2 and the nonconvex variational inequality
(1) has a solution on the square B. We note that the operator T is the gradient of
a strictly concave function. This shows that the square A is redundant.

We note that, if Kr ≡ K, the convex set in H, then problem (1) is equivalent to
finding u ∈ K such that

(2) 〈Tu, v − u〉 ≥ 0, ∀v ∈ K.

Inequality of type (2) is called the variational inequality, which was introduced and
studied by Stampacchia [1] in 1964. It turned out that a number of unrelated ob-
stacle, free, moving, unilateral and equilibrium problems arising in various branches
of pure and applied sciences can be studied via variational inequalities, see [1-13]
and the references therein.

If Kr is a nonconvex (uniformly prox-regular) set, then problem (1) is equivalent
to finding u ∈ Kr such that

0 ∈ Tu+NP
Kr

(u)(3)

whereNP
Kr

(u) denotes the normal cone ofKr at u in the sense of nonconvex analysis.
Problem (3) is called the nonconvex variational inclusion problem associated with
nonconvex variational inequality (1). This equivalent formulation plays a crucial
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and basic part in this paper. We would like to point out this equivalent formula-
tion allows us to use the projection operator technique for solving the nonconvex
variational inequalities of the type (1).

Definition 2.3. An operator T : H → H is said to be partially relaxed strongly
monotone, iff, there exists a constant α > 0 such that

〈Tu− Tv, z − v〉 ≥ −α‖u− z‖2, ∀u, v, z ∈ H.

Note that for z = u, partially relaxed strongly monotonicity reduces to mono-
toncity. It is well known that the cocoercivity implies partially relaxed strongly
monotonicity, but, the converse is not true, see Noor [6,13].

3. Main Results

It is known [8] that the nonconvex variational inequalities (1) are equivalent to
the fixed point problem. We recall this result.

Lemma 3.1[8]. u ∈ Kr is a solution of the nonconvex variational inequality (1)
if and only if u ∈ Kr satisfies the relation

(4) u = PKr
[u− ρTu],

where ρ > 0 is a constant and PKr is the projection of H onto the uniformly
prox-regular set Kr.

Lemma 2.1 implies that (1) is equivalent to the fixed point problem (4). This
alternative equivalent formulation is very useful from the numerical and theoreti-
cal points of view. Noor [7,8] has used this equivalent formulation to discuss the
existence of a solution of the nonconvex variational inequality (1). Using the fixed
point formulation (4), we suggest and analyze some iterative methods for solving
the nonconvex variational inequality (1).

Algorithm 3.1. For a given u0 ∈ H, find the approximate solution un+1 by the
iterative schemes

un+1 = PKr
[un − ρTun], n = 0, 1, . . . ,

where ρ > 0 is a constant. For the convergence analysis of Algorithm 3.1, see Noor
[8].

On can also suggest the following implicit method for solving the nonconvex
variational inequality (1) as:

Algorithm 3.2. For a given u0 ∈ H, find the approximate solution un+1 by the
iterative schemes

un+1 = PKr
[un − ρTun+1], n = 0, 1, . . . ,

Noor[7] has studied the convergence analysis of Algorithm 3.2 for the pseudomono-
tone operator. We remark that Algorithm 3.2 is equivalent to the following iterative
method
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Algorithm 3.3. For a given u0 ∈ H, find the approximate solution un+1 by the
iterative schemes

un+1 = PKr [un − ρTwn]

wn = PKr [un − ρTun], n = 0, 1, . . . ,

which is known as the extragradient method, see Noor [10].

We now use the technique of updating the solution to rewrite the fixed-point
formulation as:

w = PKr [u− ρTu]

y = PKr [w − ρTw]

u = PKr [y − ρTy],

where ρ > 0 is a constant.

This is another different fixed point formulation of the nonconvex variational
inequality (1). This alternative fixed-point formulation enables us to suggest the
following iterative methods for solving the nonconvex variational inequality (1).

Algorithm 3.4. For a given u0 ∈ H, find the approximate solution un+1 by the
iterative schemes

wn = PKr [un − ρTun]

yn = PKr [wn − ρTwn]

un+1 = PKr [yn − ρTyn], n = 0, 1, 2, ...,

Algorithm 3.4 is called the three-step iterative method and can also be considered
as an predictor-corrector methods for solving (1). We rewrite Algorithm 3.4 in the
following equivalent form which plays a key role in the analysis of the convergence
of Algorithm 3.4.

Algorithm 3.5 For a given u0 ∈ H, find the approximate solution un+1 by the
iterative schemes

〈ρTun + wn − un, v − wn〉 ≥ 0, ∀v ∈ Kr(5)

〈ρTwn + yn − wn, v − yn〉 ≥ 0, ∀v ∈ Kr(6)

〈ρTyn + un+1 − yn, v − un+1〉 ≥ 0, ∀v ∈ Kr(7)

We now consider the convergence analysis of Algorithm 3.4 and this is the main
motivation of our next result.

Theorem 3.1. Let u ∈ Kr be a solution of (1) and let un+1 be the approximate
solution obtained from Algorithm 3.4. If the operator T is partially relaxed strongly
monotone with constant α > 0, then

‖un+1 − u‖2 ≤ ‖yn − u‖2 − (1− 2αρ)‖un+1 − yn‖2(8)

‖yn − u‖2 ≤ ‖wn − u‖2 − (1− 2αρ)‖wn − yn‖2(9)

‖wn − u‖2 ≤ ‖un − u‖2 − (1− 2αρ)‖wn − un‖2.(10)

Proof. Let u ∈ Kr be solution of (1). Then

〈Tu, v − u〉 ≥ 0, ∀v ∈ Kr.(11)
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Take v = wn in (11), we have

〈Tu,wn − u〉 ≥ 0.(12)

Taking v = u in (5) and using (12), we have

〈wn − un, u− wn〉 ≥ ρ〈Tun − Tu,wn − u〉 ≥ −αρ‖un − wn‖2,(13)

since T is partially relaxed strongly monotone with constant α > 0.

From (13), we have

‖wn − u‖2 ≤ ‖un − u‖2 − (1− 2αρ)‖wn − un‖2,
the required result (10).

Now taking v = un+1 in (11), we have

〈Tu, un+1 − u〉 ≥ 0.(14)

Taking v = u in (7), we have

〈ρTyn + un+1 − yn, u− un+1〉 ≥ 0.(15)

From (15), (14) and using the partially relaxed strongly monotonicity T with con-
stant α > 0, we have

‖un+1 − u‖2 ≤ ‖yn − u‖2 − (1− 2αρ)‖un+1 − yn‖2,
the required result (8).

Taking v = yn in (11), we have

〈Tu, yn − u〉 ≥ 0.(16)

Setting v = u in (6), we have

〈ρTwn + yn − wn, u− yn〉 ≥ 0.(17)

From (17), (16) and using the partially relaxed strongly monotonicity of T, we have

‖yn − u‖2 ≤ ‖wn − u‖2 − (1− αρ)‖yn − wn‖2,
which is the required (9). �

Theorem 3.2. Let u ∈ Kr be a solution of (1) and let un+1 be the approximate
solution obtained from Algorithm 3.4. If H is a finite dimensional space and 0 <
ρ < 1

2α , then limn→∞ un = u.

Proof. Let ū ∈ Kr be a solution of (1). Then, the sequences {‖un − ū‖} is
nonincreasing and bounded and

∞∑
n=0

(1− 2αρ)‖un+1 − wn‖2 ≤ ‖y0 − u‖2

∞∑
n=0

(1− 2αρ)‖wn − yn‖2 ≤ ‖w0 − u‖2

∞∑
n=0

(1− 2αρ)‖wn − un‖2 ≤ ‖u0 − u‖2,

which implies

lim
n→∞

‖un+1 − wn‖ = 0 lim
n→∞

‖wn − yn‖ = 0. lim
n→∞

‖yn − un‖ = 0.
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Thus

(18) lim
n→∞

‖un+1−un‖ = | lim
n→∞

‖un+1−wn‖+ lim
n→∞

‖wn−yn‖+ lim
n→∞

‖yn−un‖ = 0.

Let û be a cluster point of {un}; there exists a subsequence {uni} such that {uni}
converges to û. Replacing un+1 by uni

in (7), wn by uni
in (6), yn by yni

in (5)
and taking the limits and using (18), we have

〈T û, v − û〉 ≥ 0, ∀v ∈ Kr.

This shows that û ∈ Kr solves the nonconvex variational inequality (1) and

‖un+1 − û)‖2 ≤ ‖un − û‖2,

which implies that the sequence {un} has a unique cluster point and limn→∞ un =
û, is a solution of (1), the required result. �.
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