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ON τ-⊕-SUPPLEMENTED MODULES

Y. TALEBI, T. AMOOZEGAR, AND A. R. MONIRI HAMZEKOLAEI

Abstract. Let τ be any preradical and M any module. In [2], Al-Takhman,
Lomp and Wisbauer de�ned τ -supplemented module. In this paper we intro-
duce the (completely) τ -⊕-supplemented modules. It is shown that (1) Any �-
nite direct sum of τ -⊕-supplemented modules is τ -⊕-supplemented. (2) IfM is
τ -⊕-supplemented module and (D3) then M is completely τ -⊕-supplemented.

1. Introduction

Throughout this paper R will denote an arbitrary associative ring with identity
and all modules will be unitary right R-modules. A functor τ from the category
of the right R-modules to itself is called a preradical if it satis�es the following
properties:

(1) τ(M) is a submodule of an R-module M,
(2) If f :M ′ →M is an R-module homomorphism, then f(τ(M ′)) ⊆ τ(M) and

τ(f) is the restriction of f to τ(M ′).
A preradical τ is called a right exact preradical if for any submodule K of M ,

τ(K) = τ(M) ∩ K. But it is well known if K is a direct summand of M, then
τ(K) = τ(M) ∩K for a preradical.

Let M be an R-module and τ denote a preradical. Like in [2], a submodule
K ≤ M is called τ -supplement (weak τ -supplement) provided there exists some
U ≤M such that M = U +K and U ∩K ⊆ τ(K) (U ∩K ⊆ τ(M)).
M is called τ -supplemented (weakly τ -supplemented) if each of its submodules

has a τ -supplement (weak τ -supplement) in M . M is called amply τ -supplemented,
if for all submodules K and L ofM with K+L =M , K contains a τ -supplement of
L in M . Kosan and Harmanci [9] studied supplemented modules relative to torsion
theories. Motivated by their work, we study ⊕-supplemented modules with respesct
to a preradical. Also another work has been done on C1 modules (see [12]).

A module M is called τ -lifting if for every submodule K of M , there is a decom-
position K = A⊕B, such that A is a direct summand of M and B ⊆ τ(M).

In this paper we introduce the (completely) τ -⊕-supplemented modules and in-
vestigate some properties of them.

Our paper is organized as follows.
In Section 2, we de�ne the concept of τ -⊕-supplemented module. We call a

module M τ -⊕-supplemented if every submodule of M has a τ -supplement that is
a direct summand of M . Then we show any �nite direct sum of τ -⊕-supplemented
modules is τ -⊕-supplemented. We also investigate when a direct summand of a
τ -⊕-supplemented module is τ -⊕-supplemented.
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In Section 3, we call a module M completely τ -⊕-supplemented if every direct
summand of M is τ -⊕-supplemented and prove if M is τ -⊕-supplemented module
and (D3), then M is completely τ -⊕-supplemented.

The notation N ≤d M denotes that N is a direct summand of M .

De�nition 1.1. For any preradical τ , we call a module M , τ -⊕-supplemented if
every submodule of M has a τ -supplement that is a direct summand of M .

Theorem 1.2. For any preradical τ , any �nite direct sum of τ -⊕-supplemented
modules is τ -⊕-supplemented.

Proof. Let M = M1 ⊕M2 where M1 and M2 are two τ -⊕-supplemented modules.
Let P be any submodule of M . We have P + M2 = M2 ⊕ [(P + M2) ∩ M1]
and (P +M2) ∩M1 is a submodule of M1. Since M1 is τ -⊕-supplemented, there
exists a direct summand K1 of M1 such that [(P +M2) ∩M1] + K1 = M1 and
(P +M2) ∩K1 ⊆ τ(K1). We have (P +K1) ∩M2 is a submodule of M2, so there
exists a direct summand K2 of M2 such that [(P + K1) ∩M2] + K2 = M2 and
(P +K1)∩K2 ⊆ τ(K2). Let K = K1⊕K2, K is a direct summand ofM . Moreover
M1 ≤ P +M2 +K1 and M2 ≤ P +K1 +K2. Hence M = P +K1 +K2 = P +K.
Since P ∩(K1+K2) ≤ [(P+K1)∩K2]+[(P+K2)∩K1], thus P ∩(K1+K2) ≤ [(P+
K1)∩K2]+[(P+N2)∩K1]. As (P+M2)∩K1 ⊆ τ(K1) and (P+K1)∩K2 ⊆ τ(K2),
we have (P ∩K) ⊆ τ(K). Thus M is τ -⊕-supplemented. �

A nonzero module M is called completely torsion if for every proper submodule
K of M , K ⊆ τ(M).

Corollary 1.3. For any preradical τ , any �nite direct sum of completely torsion
modules is τ -⊕-supplemented.

Theorem 1.4. Let Mi (1 ≤ i ≤ n) be any �nite collection of relatively projective
modules. Then for any preradical τ , the moduleM =

⊕n
i=1Mi is τ -⊕-supplemented

if and only if Mi is τ -⊕-supplemented for each 1 ≤ i ≤ n.

Proof. The su�ciency is proved in Theorem 1.2. Conversely, we only proveM1 to be
τ -⊕-supplemented. Let A ≤M1. Then there exists B ≤M such that M = A+B,
B is a direct summand ofM and A∩B ⊆ τ(B). SinceM = A+B =M1+B, by [10,
Lemma 4.47], there existsB1 ≤ B such thatM =M1⊕B1. ThusB = B1⊕(M1∩B).
Note that M1 = A+ (M1 ∩B) and M1 ∩B is a direct summand of M1. Therefore
A ∩ B = A ∩ (M1 ∩ B) ⊆ τ(B) ∩ (M1 ∩ B) = τ(M1 ∩ B). Hence M1 is τ -⊕-
supplemented. �

A factor module of a τ -⊕-supplemented module need not be τ -⊕-supplemented
for τ = Rad (see [6, Examples 2.2 and 2.3]).

Theorem 1.5. Let M be a τ -⊕-supplemented module for any preradical τ and
X ≤ M . If for every direct summand K of M , (X +K)/X is a direct summand
of M/X, then M/X is τ -⊕-supplemented.

Proof. Let N/X ≤ M/X. Since M is τ -⊕-supplemented, there exists a direct
summand K of M such that N +K =M and N ∩K ⊆ τ(K). Then N/X + (K +
X)/X = M/X. By assumption, (K + X)/X is a direct summand of M/X. It is
easy to check that (N/X) ∩ ((K +X)/X) ⊆ τ((K +X)/X). �
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Let M be a module. Then M is called distributive if its lattice of submodules is
a distributive lattice, equivalently for submodules K,L,N of M , N + (K ∩ L) =
(N +K) ∩ (N + L) or N ∩ (K + L) = (N ∩K) + (N ∩ L).
Let M be a module. A submodule X of M is called fully invariant, if for every
f ∈ End(M), f(X) ⊆ X. The module M is called duo module, if every submodule
of M is fully invariant. The submodule A of M is called projection invariant in
M if f(A) ⊆ A, for any idempotent f ∈ End(M).

Corollary 1.6. Let M be a τ -⊕-supplemented module for any preradical τ .
(1) Let N ≤ M such that for each decomposition M = M1 ⊕M2 we have N =
(N ∩M1)⊕ (N ∩M2). Then M/N is τ -⊕-supplemented. (In particular, this is true
for any distributive module). If moreover N ≤d M , then N is τ -⊕-supplemented.
(2) Let X be a projection invariant submodule ofM . ThenM/X is τ -⊕-supplemented.
In particular, for every fully invariant submodule A ofM ,M/A is τ -⊕-supplemented.

Proof. (1) Let L/N ≤ M/N . Since M is τ -⊕-supplemented, there exists a direct
summand D of M such that M = L + D and L ∩ D ⊆ τ(D). Then M/N =
L/N + (D +N)/N and L/N ∩ (D +N)/N = (L ∩ (D +N))/N ⊆ τ((D +N)/N).
Let M = D⊕D′. By assumption, N = (N ∩D)⊕ (N ∩D′) = (D+N)∩ (D′+N).
So, (D+N)/N ⊕ (D′+N)/N =M/N . It follows that M/N is τ -⊕-supplemented.

Now let N ≤d M and V ≤ N . Then there exist submodules K and K ′ of such
thatM = K⊕K ′ = V +K and V ∩K ⊆ τ(K). ThusN = V +N∩K. By assumption
N ∩K ≤d N . Moreover, V ∩ (N ∩K) ⊆ τ(K). Then V ∩ (N ∩K) ⊆ τ(N ∩K).
Therefore, N is τ -⊕-supplemented.
(2) Clear by (1). �

Let M be an R-module. By Pτ (M) we denote the sum of all submodules N of
M with τ(N) = N . Since Pτ (M) is a sum of some submodules of M , itself is a
submodule of M .

Corollary 1.7. Let M be a τ -⊕-supplemented module for any preradical τ . Then
M/Pτ (M) is τ -⊕-supplemented. If moreover Pτ (M) ≤d M , then Pτ (M) is τ -⊕-
supplemented.

Proof. By Corollary 1.6(1), it su�ces to prove that Pτ (M) is a fully invariant
submodule of M . Let N ≤ M such that N = τ(N) and f ∈ End(M) and g its
restriction to N . But τ(N) = N and f(N) = g(N), hence f(N) ⊆ τ(f(N)). Thus,
τ(f(N)) = f(N). This implies that f(N) ⊆ Pτ (M). This completes the proof. �

We recall that a module M is called semi-Artinian if every nonzero quotient
module of M has nonzero socle. For a module M , we de�ne Sa(M) =

∑
{U ≤M |

Usemi−Artinian}.

Corollary 1.8. Let M be a τ -⊕-supplemented module for any preradical τ . Then
M/Sa(M) is τ -⊕-supplemented. If, moreover, Sa(M) is a direct summand of M,
then Sa(M) is also τ -⊕-supplemented.

Proof. Let f ∈ End(M) and U a semi-Artinian submodule. Let g be restriction of
f to U . Thus U/Ker(g) ∼= g(U). Hence f(U) ∼= U/Ker(g). But it is easy to check
that U/Ker(g) is a semi-Artinian module. Therefore, f(U) is semi-Artinian. This
implies that f(Sa(M)) ⊆ Sa(M). Thus Sa(M) is a fully invariant submodule of
M . The result follows from Corollary 1.6(1). �
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Remark 1.9. IfM is a τ -⊕-supplemented module for any preradical τ , thenM/τ(M)
is semisimple and hence τ -⊕-supplemented.

Example 1.10. Let M be the Z-module Z/2Z ⊕Z/8Z. By [8, Example 10], M is
not lifting and it is not τ -lifting. By [5, Theorem 1.4], M is ⊕-supplemented and
hence τ -⊕-supplemented for τ = Rad.

A τ -lifting module is τ -⊕-supplemented. But the converse does not hold. The
following proposition shows that under some assumption it can be true.

Proposition 1.11. Assume M is τ -⊕-supplemented for any preradical τ such that
whenever M = M1 ⊕M2 then M1 and M2 are relatively projective. Then M is
τ -lifting.

Proof. Let N ≤ M . Since M is τ -⊕-supplemented, there exists a decomposition
M = M1 ⊕M2 such that M = N +M2 and N ∩M2 ⊆ τ(M2) for submodules
M1,M2 ofM . By hypothesis,M1 isM2-projective. By [10, Lemma 4.47], we obtain
M = A⊕M2 for some submodule A ofM such that A ≤ N . ThenN = A⊕(M2∩N).
So M is τ -lifting by [2, 2.8]. �

Corollary 1.12. Let M be a τ -⊕-supplemented module for any prerardical τ . If
M is projective then M is τ -lifting.

Now we give a characterization of τ -⊕-supplemented rings.

Theorem 1.13. Let τ be any preradical. Then the following are equivalent:
(1) R is τ -⊕-supplemented;
(2) Every �nitely generated free R-module is τ -⊕-supplemented;
(3) If F is a �nitely generated free R-module and N a fully invariant submodule,
then F/N is τ -⊕-supplemented.

Proof. (1)⇒ (2) LetM be a �nitely generated free R-module. ThenM ∼=
⊕n

i=1R.
Since any �nite direct sum of τ -⊕-supplemented modules is τ -⊕-supplemented, the
result follows.

(2) ⇒ (3) By (2), F is τ -⊕-supplemented. The result follows from Corollary
1.6(2).

(3) ⇒ (1) is clear. �

Lemma 1.14. Let M = M1 ⊕ M2. Then for any preradical τ , M2 is τ -⊕-
supplemented if and only if for every submodule N/M1 of M/M1, there exists a
direct summand K of M such that K ≤M2, M = K +N and N ∩K ⊆ τ(M).

Proof. Suppose that M2 is τ -⊕-supplemented. Let N/M1 ≤ M/M1. As M2 is
τ -⊕-supplemented, there exists a decomposition M2 = K ⊕ K ′ such that M2 =
(N ∩M2) + K and N ∩ K ⊆ τ(K). Note that M = (N ∩M2) + K +M1 gives
M = N +K.

Conversely, suppose that M/M1 has the stated property. Let H be a submodule
of M2. Consider the submodule (H ⊕M1)/M1 ≤ M/M1. By hypothesis, there
exists a direct summand L of M such that L ≤ M2, M = (L + H) + M1 and
L ∩ (H +M1) ⊆ τ(M). By modularity, M2 = L+H. Then L ∩H ⊆ τ(L). Thus,
L is a τ -supplement of H in M2 and it is a direct summand of M2. Therefore, M2

is τ -⊕-supplemented. �
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Theorem 1.15. Let τ be any preradical and M2 a direct summand of a τ -⊕-
supplemented module M such that for every direct summand K of M with M =
K +M2, K ∩M2 is a direct summand of M . Then M2 is τ -⊕-supplemented.

Proof. Suppose thatM =M1⊕M2 and let N/M1 ≤M/M1. Consider the submod-
ule N∩M2 ofM . SinceM is τ -⊕-supplemented, there exists a direct summandK of
M such thatM = (N ∩M2)+K and N ∩M2∩K ⊆ τ(K). Note thatM = N+M2.
By [7, Lemma 1.2], M = (K ∩M2) +N . Since M = K +M2, K ∩M2 is a direct
summand of M by hypothesis. By Lemma 1.14, M2 is τ -⊕-supplemented. �

Corollary 1.16. Let M be a τ -⊕-supplemented module for any preradical τ and
K a direct summand of M such that M/K is K-projective. Then K is τ -⊕-
supplemented.

Proof. Let L be a direct summand of M with M = L + K. Since K is a direct
summand of M , M = K ⊕ K0 for some submodule K0 of M . Therefore, K0 is
K-projective. Then by [16, 41.14], there exists a submodule L0 of L such that
M = L0 ⊕K. Now L = L′ ⊕ (L ∩K) implies that L ∩K is a direct summand of
M . By Theorem 1.15, K is τ -⊕-supplemented. �

Corollary 1.17. Let M be a τ -⊕-supplemented module for any preradical τ and
N ≤d M such that M/N is projective. Then N is τ -⊕-supplemented.

A submoduleN ofM is called small inM (notationN �M) if ∀L �M,L+N 6=
M . A module M is called hollow if every proper submodule of M is small in M .

Let M be a module and S denote the class of all small modules. Talebi and
Vanaja [13] de�ned Z(M) as follows:
Z(M) =

⋂
{kerg | g ∈ Hom(M,L), L ∈ S}. The module M is called cosingular

(non-cosingular) if Z(M) = 0 (Z(M) = M). Clearly every non-cosingular module
is Z-⊕-supplemented. Also if R is a non-cosingular ring, then every R-module is
Z-⊕-supplemented by [13, Proposition 2.4].

In [11] for any preradical τ , the authors call a module M , τ -semiperfect if it is
satis�es one of the following conditions (see [11, Proposition 2.1]):

(1) For every submodule K of M there exists a decomposition K = A⊕B such
that A is a projective direct summand of M and B ⊆ τ(M);

(2) For every submodule K of N , there exists a decomposition M = A⊕B such
that A is a projective direct summand of M , A ≤ K and K ∩B ⊆ τ(M).

By this de�nition every τ -semiperfect module is τ -lifting and hence τ -⊕-supplemented.
Also if M is projective we have the following:
τ -semiperfect ⇔ τ -lifting ⇔ τ -⊕-supplemented.
A τ -⊕-supplemented module need not be ⊕-supplemented and the converse also

hold.

Example 1.18. Let K be a �eld and let R =
∏
n≥1Kn with Kn = K. By

[14, Example 4.1(1)] R is not semiperfect. Since R is projective, R is not ⊕-
supplemented by [5, Lemma 1.2]. Again by [14, Example 4.1(1)], the module R is
Z-semiperfect and so it is Z-⊕-supplemented.

If R is a DV R (Discrete Valuation Ring) , then by [14, Example 4.1(1)] the
R-module RR is semiperfect and hence ⊕-supplemented but it is not Z-semiperfect
and so it is not Z-⊕-supplemented.

Now we give an equivalent condition for a module to be Z-⊕-supplemented under
some assumptions.
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Proposition 1.19. Let R be a commutative ring and P a projective module with
Rad(P )� P and P has �nite hollow dimension. Then the following are equivalent:

(1) P is Z-⊕-supplemented;
(2) P = P1 ⊕ P2 ⊕ P3 with P1 is ⊕-supplemented and Rad(P1) = Z(P1), P2 is

semisimple and Z(P3) = P3.

Proof. (1) ⇒ (2) By the proof of [14, Corollary 4.3] and since every semiperfect is
⊕-supplemented .

(2) ⇒ (1) By [14, Corollary 4.3] all P1, P2 and P3 are Z-semiperfect and hence
Z-⊕-supplemented. Since any �nite direct sum of Z-⊕-supplemented modules is
Z-⊕-supplemented, P is Z-⊕-supplemented. �

Let e = e2 ∈ R. Then e is called a left (right) semicentral idempotent if xe = exe
(ex = exe), for all x ∈ R. The set of all left (right) semicentral idempotents
is denoted by Sl(R) (Sr(R)). A ring R is called Abelian if every idempotent is
central.

Let M be a module. We consider the following condition.
(D3) IfM1 andM2 are direct summands ofM withM =M1+M2, thenM1∩M2

is also a direct summand of M .
By [10, Lemma 4.6 and Proposition 4.38], every quasi-projective module is (D3).

Proposition 1.20. Let M be an R-module such that End(M) is Abelian and X ≤
M implies X =

∑
i∈I hi(M) where hi ∈ End(M). Then for any preradical τ , M is

τ -⊕-supplemented if and only if M is τ -lifting and has (D3)-condition.

Proof. The su�ciency is obvious. Conversely, let X ≤ M , X =
∑
i∈I hi(M) with

hi(M) ∈ End(M). Since M is τ -⊕-supplemented, there exists a direct summand
eM such that X + eM = M and (X ∩ eM) ⊆ τ(eM) for some e2 = e ∈ End(M).
Since End(M) is Abelian, (1−e)X = (1−e)M = (1−e)

∑
i∈I hi(M) =

∑
i∈I hi(1−

e)(M) ⊆ X. Therefore X = (1 − e)M ⊕ (X ∩ eM). Hence M is τ -lifting. If
eM + fM = M for e2 = e, f2 = f ∈ End(M), then eM ∩ fM = efM with
(ef)2 = ef . So M has (D3)-condition.

�

Recall that an R-module M is said to be a multiplication module if for each
X ≤M there exists AR ≤ RR such that X =MA.

Corollary 1.21. If M satis�es one of the following conditions, then M is τ -lifting
if and only if M is τ -⊕-supplemented for any preradical τ .
(1) M is cyclic and R is commutative.
(2) M is a multiplication module and R is commutative.

Proof. (1) Assume that M is cyclic and R is commutative. There exists BR ≤ RR
such that M ∼= R/B. Let Y/B ≤ R/B, Y/B =

∑
i∈I(yiR + B) = (

∑
i∈I yi + B)R

where each yi ∈ Y . De�ne hi : R/B → R/B by hi(r + B) = yir + B, i ∈ I. Then
it is easy to check that hi ∈ EndR(R/B). Hence Y/B =

∑
i∈I hi(R/B). Since

R is commutative, EndR(R/B) is also commutative. By Proposition 1.20, M is
τ -lifting.
(2) Assume M is a multiplication module. Let X ≤ M . Then X = MA for
some AR ≤ RR. For each a ∈ A, de�ne hα : M → M by hα(m) = ma for all
m ∈ M . Then hα is an R-homomorphism and X = MA =

∑
α∈A hα(M). Since

every multiplication module is a duo module, thus if e2 = e ∈ S = End(M), then e,
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1− e ∈ Sl(S). Therefore e is central. So End(M) is Abelian. Again by Proposition
1.20, M is τ -lifting.

�

2. Completely τ-⊕-Supplemented Modules

De�nition 2.1. For any preradical τ , we call a moduleM completely τ -⊕-supplemented
for any preradical τ if every direct summand of M is a τ -⊕-supplemented.

Theorem 2.2. Let M be a module with (D3) and τ a preradical. Then M is
τ -⊕-supplemented if and only if M is completely τ -⊕-supplemented.

Proof. Su�ciency is clear. Conversely, assume that M is τ -⊕-supplemented and K
a direct summand of M and A a submodule of K. We show A has a τ -supplement
in K that is a direct summand of K. Since M is τ -⊕-supplemented, there exists
a direct summand B of M such that M = A + B and A ∩ B ⊆ τ(B). Then
K = A+ (K ∩B). Furthermore K ∩B is a direct summand of M because M has
(D3). Then A ∩ (K ∩B) = (A ∩B) ∩ (K ∩B) ⊆ τ(B) ∩ (K ∩B) = τ(K ∩B). �

A submodule K of M is called essential in M (notation K ≤e M) if K ∩A 6= 0
for any nonzero submodule A of M .

Proposition 2.3. Let M be a τ -supplemented module for any preradical τ . Then
M = M1 ⊕M2, where M1 is semisimple module and M2 is a module with τ(M2)
essential in M2.

Proof. See [2, 2.2]. �

Recall that a module M has the Summand Sum Property (SSP) if the sum of
any two direct summand of M is again a direct summand.

Theorem 2.4. (1) Every τ -lifting module is completely τ -⊕-supplemented for any
preradical τ .

(2) Let M be a τ -⊕-supplemented module for any preradical τ . If M has the
(SSP), then M is completely τ -⊕-supplemented.

Proof. (1) By [2, 2.10] every direct summand of a τ -lifting module is τ -lifting. The
rest is clear.

(2) Assume thatM is τ -⊕-supplemented andM has the (SSP). Let N be a direct
summand of M . We will show that N is τ -⊕-supplemented. Let M = N ⊕N ′ for
some submodule N ′ of M . Suppose that A is a direct summand of M . Since M
has the (SSP), A+N ′ is a direct summand of M . Let M = (A+N ′)⊕B for some
B ≤M . ThenM/N ′ = (A+N ′)/N ′⊕ (B+N ′)/N ′. Hence by Theorem 1.5, M/N ′

is τ -⊕-supplemented and so N is τ -⊕-supplemented. �

We give a decomposition of any τ -⊕-supplemented (D3)-module by the second
singular submodule Z2(M) ofM . We will show that ifM is τ -⊕-supplemented and
N ≤M with M/N projective, then N is τ -⊕-supplemented.

Recall that the singular submodule Z(M) of a module M is de�ned by Z(M) =
{m ∈M | mE = 0, E ≤e R}.

The Goldie torsion submodule (or second singular submodule) Z2(M) of M is a
submodule of M containing Z(M) such that Z2(M)/Z(M) is the singular submod-
ule of M/Z(M).
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Proposition 2.5. Let M be a module with (D3). Suppose that Z2(M) is τ -coclosed
in M . Then for any preradical τ , M is τ -⊕-supplemented if and only if M =
Z2(M)⊕K for some submodule K of M and, Z2(M) and K are τ -⊕-supplemented.

Proof. Su�ciency is clear by Theorem 1.2. Conversely, assume that M is τ -⊕-
supplemented. There exist submodules K and K ′ of M such that M = K ⊕K ′ =
Z2(M) + K and Z2(M) ∩ K ⊆ τ(K). Now Z2(M) = Z2(K) ⊕ Z2(K

′). Thus,
M = K⊕Z2(K

′) and hence Z2(K
′) = K ′. Note that Z2(M)∩K = Z2(K) ⊆ τ(K).

So, we can obtain that Z2(M)/K ′ ⊆ τ(M/K ′). Therefore, Z2(M) = K ′ because
Z2(M) is τ -coclosed in M . So, M = K ⊕ Z2(M). Clearly K and Z2(M) are
τ -⊕-supplemented. �

Proposition 2.6. Let M be a τ -supplemented module for any preradical τ . Then
M = M1 ⊕M2, where M1 is semisimple module and M2 is a module with τ(M2)
essential in M2.

Proof. See [2, 2.2]. �

Corollary 2.7. Let M be a τ -⊕-supplemented module for any preradical τ . Then
M = M1 ⊕M2 where M1 is a semisimple module and M2 is a module with τ(M2)
essential in M2.

Proof. Since each τ -⊕-supplemented module is τ -supplemented the result follows
from Proposition 2.6. �

Proposition 2.8. Let M be a τ -⊕-supplemented module for a left exact preradical
τ . Then M =M1 ⊕M2 such that τ(M2) =M2.

Proof. Suppose that M is a τ -⊕-supplemented module. There exists a direct sum-
mand M1 of M such that M = M1 + τ(M) and M1 ∩ τ(M) = τ(M1) since τ is
a left exact preradical and M = M1 ⊕M2 for some submodule M2 of M . Then
M = τ(M2)⊕M1. Thus M2 = τ(M2). �

Theorem 2.9. For module M with (D3) and a left exact preradical τ the following
statements are equivalent:

(1) M is completely τ -⊕-supplemented;
(2) M is τ -⊕-supplemented;
(3)M =M1⊕M2, whereM1 is semisimple module andM2 is a τ -⊕-supplemented

module with τ(M2) essential in M2;
(4) M = M1 ⊕M2 such that M1 is a τ -⊕-supplemented module and M2 is a

τ -⊕-supplemented module with τ(M2) =M2.

Proof. (1)⇒ (2) Clear from de�nition.
(2)⇒ (1) It follows from Theorem 2.2.
(1) ⇒ (3) By Proposition 2.6, M = M1 ⊕M2, where M1 is semisimple module

and M2 is module with τ(M2) essential in M2. By (1), M2 is τ -⊕-supplemented.
(1)⇒ (4) By Proposition 2.8,M =M1⊕M2 such that τ(M2) =M2 andM1,M2

are τ -⊕-supplemented by (1).
(3)⇒ (2), (4)⇒ (2) follows by Theorem 1.2. �

Lemma 2.10. Let M be an indecomposable module. Then for any preradical τ , M
is completely torsion if and only if M is completely τ -⊕-supplemented.

Proof. Clear. �
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Proposition 2.11. Let M =M1 ⊕M2 such that M1 and M2 have local endomor-
phism rings. Then for any preradical τ , M is completely τ -⊕-supplemented if and
only if M1 and M2 are completely torsion modules.

Proof. The necessity is clear from Lemma 2.10. Conversely, let K be a direct
summand ofM . If K =M then by Corollary 1.3, K is τ -⊕-supplemented. Assume
K 6=M . Then either K ∼=M1 or K ∼=M2 by [3, Corollary 12.7]. In either case K
is τ -⊕-supplemented. Thus M is completely τ -⊕-supplemented. �
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