ALBANIAN JOURNAL OF MATHEMATICS Volume 4, Number 2, Pages 49–56 ISSN 1930-1235: (2010)

ON REGULAR SEMI GENERALIZED CLOSED SETS

T.NOIRI AND M.KHAN

ABSTRACT. In this paper we introduce the concept of rsg-closed sets and investigate some of its properties in topological spaces. We also define an rsg-regular space and give some of its fundamental properties.

1. INTRODUCTION

In 1970, Levine [12] introduced the notion of generalized closed sets in topological spaces. In 1987, Battacharyya and Lahiri [2] used semi-open sets [11] to define the notion of semi-generalized closed sets. In 1990, Arya and Nour [1] introduced the concept of generalized semi-closed sets. The notion of s*g-closed sets was introduced by Rao and Joseph [16]. In this paper, we investigate many properties of rsg-closed sets which are situated between s*g-closed sets and rg-closed sets. We also show that arbitrary intersection of rsg-closed sets in a locally indiscrete space is rsg-closed. Moreover rsg-regular space is defind and some of its basic properties are investigated.

2. Preliminary

Throughout this paper, (X, τ) (or simply X) will always represent a topological space on which no separation axioms are assumed, unless otherwise mentioned. When A is a subset of X, cl(A) and Int(A) denote the closure and interior of a set A, respectively. A subset A of a space X is said to be semi-open [11] if there exists an open set U such that $U \subset A \subset cl(U)$. The complement of a semi-open set is said to be semi-closed. A subset A of a topological space X is said to be semi-regular [6] if it is both semi-open and semi-closed. In [6], it is pointed out that a set is semi-regular if and only if there exists a regular open set U such that $U \subset A \subset cl(U)$. Cameron [4] called semi-regular sets regular semi-open.

Definition 2.1. A subset A of a space X is said to be

- (1): generalized closed [12] (briefly, g-closed) if $cl(A) \subset U$ whenever $A \subset U$ and U is open in X. The complement of a g-closed set is said to be g-open;
- (2): s^*g -closed [16] if $cl(A) \subset G$ whenever $A \subset G$ and G is semi-open in X. The complement of an s^*g -closed set is said to be s^*g -open;
- (3): regular generalized closed [15] (briefly, rg-closed) if $cl(A) \subset U$ whenever $A \subset U$ and U is regular-open in X. The complement of an rg-closed set is said to be rg-open;
- (4): semi-generalized closed [3] (briefly, sg-closed) if $scl(A) \subset U$ whenever $A \subset U$ and U is semi-open in X.

©2008 Aulona Press (Albanian J. Math.)

T.NOIRI AND M.KHAN

3. RSG-CLOSED SETS

Definition 3.1. A subset A of a space X is said to be

(1): regular semi generalized closed (briefly, rsg-closed) if $cl(A) \subset G$ whenever $G \subset A$ for every semi-regular set G in X;

(2): regular semi generalized open (briefly, rsg-open) if X - A is rsg-closed.

Theorem 3.2. A subset A of a space (X, τ) is rsg-open if and only if $G \subset Int(A)$ whenever $G \subset A$ for every semi-regular set G in X.

Proof. Let A be an rsg- open set and G a semi-regular set such that $G \subset A$. Then X - A is rsg-closed and $X - A \subset X - G$. Since X - G is semi-regular in X, $cl(X - A) \subset X - G$ and hence $X - Int(A) \subset X - G$. Therefore, $G \subset Int(A)$.

Conversely, let $G \subset Int(A)$ whenever $G \subset A$ and G is semi-regular in X. This implies that $X - Int(A) = cl(X - A) \subset X - G$ whenever $X - A \subset X - G$ and X-G is semi-regular in X. This proves that X-A is rsg-closed in X and hence A is rsg-open in X.

Remark 3.3. (1): Every closed set is rsg-closed;

(2): Every open set is rsg-open;

(3): Semi open sets and rsg- open sets are independent of each other.

Example 3.4. Let $X = \{a, b, c, d\}$ and let

- (1): $\tau = \{\phi, \{a\}, \{c\}, \{d\}, \{a, c\}, \{a, d\}, \{c, d\}, \{a, c, d\}, X\}$. Then $\{a, b, c\}$ is semi open but not rsg-open, similarly let
- (2): $\tau = \{\phi, \{a\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}, X\}$. Then $\{b\}$ is rsg-open but not semi open.

Example 3.5. The union of two rsg-open sets is generally not rsg-open. To see this in Example 3.4(1), $\{a\}$ and $\{b\}$ are rsg-open sets in X but $\{a, b\}$ is not rsg-open. Therefore, the intersection of two rsg-closed sets is generally not rsg-closed.

Theorem 3.6. If A and B are rsg-open, then $A \cap B$ is rsg-open.

Proof. If $G \subset A \cap B$ and G is semi-regular, then $G \subset Int(A)$ and $G \subset Int(B)$ and hence $G \subset Int(A) \cap Int(B) = Int(A \cap B)$. By Theorem 3.2, $A \cap B$ is rsg-open.

Theorem 3.7. The union of two rsg-closed sets is rsg-closed. Proof. This is an immediate consequence of Theorem 3.6.

Diagram

closed
$$\longrightarrow$$
 s*g-closed \longrightarrow g-closed
 \searrow \searrow
rsg-closed \longrightarrow rg-closed

Remark 3.8. In Example 3.4(1), $\{a, c, d\}$ is rsg- closed but it is neither gclosed nor sg-closed. $\{c, d\}$ is sg-closed but not rsg-closed. Let $X = \{a, b, c, d\}$ and let $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$, then $\{c\}$ is g-closed but not rsg-closed.

Remark 3.9. By Remark 3.8, we have

(1): rsg-closedness and g-closedness are independent of each other.

(2): rsg-closedness and sg-closedness are also independent of each other.

Theorem 3.10. If a set A is rsg-closed, then cl(A) - A contains no non empty semi-regular set.

Proof. Let F be a semi-regular subset of cl(A) - A. Then $A \subset X - F$ and since A is rsg-closed and X - F is semi-regular, we have $cl(A) \subset X - F$ or $F \subset X - cl(A)$. Thus $F \subset cl(A) \cap (X - cl(A)) = \phi$. Therefore F is empty.

Theorem 3.11. If A is an rsg-closed subset of X, then cl(A) - A is rsg-open. Proof. Let A be an rsg-closed subset of X and G be a semi-regular subset of X such that $G \subset cl(A) - A$. By Theorem 3.10, $G = \phi$ and thus $G \subset Int[cl(A) - A]$. By Theorem 3.2, cl(A) - A is an rsg-open set.

Definition 3.12. A subset A of a space X is said to be preopen [14] if $A \subset Int(cl(A))$.

Lemma 3.13. (Dorsett [8]). Let A be a preopen set in a space (X, τ) , then $SR(A, \tau_A) = SR(X, \tau) \cap A$, where $SR(X, \tau)$ denotes the family of all semi-regular sets of (X, τ) .

Definition 3.14. A subset B of a space X is said to be rsg-closed relative to A if $cl_A(B) \subset G$ whenever $B \subset G$ for every semi-regular set G in A.

Theorem 3.15. Let $B \subset A \subset X$ and X be a space. If B is an rsg-closed set relative to A and A is open and s^*g -closed in X, then B is rsg-closed relative to X.

Proof. Let $B \subset G$ and suppose that G is semi-regular in X. Then $B \subset A \cap G$. Therefore $cl_A(B) \subset A \cap G$ since by Lemma 3.13, $A \cap G$ is semi-regular in A. It follows that $A \cap cl_X(B) \subset A \cap G$ or $A \subset G \cup (X - cl_X(B))$. Since A is s^*g -closed, $cl_X(A) \subset G \cup (X - cl_X(B))$ or $cl_X(B) \subset G$. This proves that B is rsg-closed relative to X.

Corollary 3.16. Let A be an open and s^*g -closed subset of the space X and F be a closed subset of X. Then $A \cap F$ is an rsg-closed set.

Proof. $A \cap F$ is closed in A and hence rsg-closed in A. By Theorem 3.15, $A \cap F$ is rsg-closed relative to X.

Theorem 3.17. Let $B \subset A \subset X$ and suppose that B is rsg-closed in X and A is pre-open in X. Then B is rsg-closed relative to A.

Proof. Let $B \subset A \cap G$ and suppose that G is semi-regular in X then by Lemma 3.13, $A \cap G$ is semi-regular in A. Now $B \subset G$ implies that $cl_A(B) \subset G$. It follows that $A \cap cl_X(B) \subset A \cap G$. This gives $cl_A(B) \subset A \cap G$. This proves that B is rsg-closed relative to A.

Corollary 3.18. Let $B \subset A \subset X$ where A is open and s^*g -closed. Then B is rsg-closed relative to A if and only if B is rsg-closed in X.

Proof. This is an immediate consequence of Theorems 3.15 and 3.17.

Theorem 3.19. If B is a subset of a space X such that $A \subset B \subset cl(A)$ and A is an rsg-closed set in X, then B is also rsg-closed in X.

Proof. Let G be a semi-regular set containing B, then $A \subset G$. Since A is rsgclosed, therefore $cl(A) \subset G$. This gives $cl(B) \subset G$. Hence B is rsg-closed in X.

Corollary 3.20. If B is a subset of a space X such that $Int(A) \subset B \subset A$, where A is an rsg-open set in the space X, then B is also rsg-open in X.

Proof. Let F be any semi-regular set contained in B. Then $F \subset A$. Since A is rsg-open, therefore $F \subset Int(A)$. This gives $F \subset Int(B)$. Hence B is rsg-open.

Definition 3.21. A space X is said to be locally indiscrete [7] if every open set in it is closed.

Theorem 3.22. In a locally indiscrete space X, a subset A is rsg-open in X if and only if G = X whenever G is semi-regular and $Int(A) \cup (X - A) \subset G$.

Proof. Necessity. Suppose that G is semi-regular and that $Int(A) \cup (X-A) \subset G$. Now $(X-G) \subset cl(X-A) \cap A = cl(X-A) - (X-A)$. Since (X-G) is semi-regular and (X-A) is rsg-closed, by Theorem 3.10 it follows that $(X-G) = \phi$ or X = G.

Sufficiency. Suppose that F is a semi-regular set and $F \subset A$. It suffices to show that $F \subset Int(A)$. Now $Int(A) \cup (X - A) \subset Int(A) \cup (X - F)$ and hence $Int(A) \cup (X - F) = X$. It follows that $F \subset Int(A)$.

Theorem 3.23. If $A \subset Y \subset X$ where A is rsg-open relative to Y and Y is open in X, then A is rsg-open relative to X.

Proof. Let F be any semi-regular subset of X contained in A. Since Y is open, therefore by Lemma 3.13, F is semi-regular in Y. Since A is rsg-open relative to Y, therefore $F \subset Int_Y(A)$. Since Y is open in X, $F \subset Int_Y(A) = Int_X(A)$. This proves that A is rsg-open in X.

Theorem 3.24. For each $x \in X$, either $\{x\}$ is semi-regular or $X - \{x\}$ is rsg-closed.

Proof. If $\{x\}$ is not semi-regular, then the only semi-regular superset of $X - \{x\}$ is X itself. Hence the closure of $X - \{x\}$ is contained in each of its semi-regular neighbourhoods and $X - \{x\}$ is rsg-closed.

Theorem 3.25. Let A and B be subsets of spaces X and Y, respectively, then A and B are rsg-closed in X and Y, respectively, if $A \times B$ is rsg-closed in $X \times Y$.

Proof. Let G and H be semi-regular subsets of X and Y, respectively, such that $A \subset G$ and $B \subset H$. This implies $A \times B \subset G \times H$ where $G \times H$ is semi-regular in $X \times Y$. Since $A \times B$ is rsg-closed in $X \times Y$, therefore $cl(A \times B) = cl(A) \times cl(B) \subset G \times H$ or $cl(A) \subset G$ and $cl(B) \subset H$. This proves that A and B are rsg-closed in X and Y, respectively.

Theorem 3.26. Let X and Y be two spaces and A be a subset of a space X,

(1): If $A \times Y$ is rsg-open in $X \times Y$, then A is rsg-open in X;

(2): If $A \times Y$ is rsg-closed in $X \times Y$, then A is rsg-closed in X.

Proof. (1) Let G be a semi-regular set in X such that $G \subset A$. Since $G \times Y$ is a semi-regular set in $X \times Y$, then by definition $G \times Y \subset Int(A \times Y) = Int(A) \times Int(Y) = Int(A) \times Y$. This gives that $G \subset Int(A)$. This proves that A is rsg-open in X.

(2) Let G be a semi-regular set in X such that $A \subset G$. Since $G \times Y$ is semiregular in $X \times Y$ and $A \times Y \subset G \times Y$. By definition $cl(A) \times Y = cl(A) \times cl(Y) = cl(A \times Y) \subset G \times Y$. This gives that $cl(A) \subset G$. This proves that A is rsg-closed in X.

Theorem 3.27. Let A be an open and rsg-closed set, then cl(A) is clopen in X. Proof. Since A is open, $Int(A) = A \subset Int(cl(A))$. Since Int(cl(A)) is semiregular and A is rsg-closed, we obtain $cl(A) \subset Int(cl(A))$. This proves that cl(A)is clopen.

Theorem 3.28. A regular open and rsg-closed set is clopen.

Proof. Let A be regular open then A is semi-regular. This gives that $cl(A) \subset A$. But $A \subset cl(A)$. Therefore A is closed. **Theorem 3.29.** In a locally indiscrete space X, every semi-closed set is rsgclosed.

Proof. Let A be semi-closed. Then $X - A \in SO(X)$. Since X is locally indiscrete, SO(X) = RO(X) ([9], Theorem 3.3). This shows that X - A is regular open in X or A is regular-closed in X. Therefore A is rsg-closed.

Definition 3.30. The intersection of all semi-regular subsets of a space X containing a set A is called the semi-regular kernel of A and is denoted by srker(A).

Lemma 3.31. A subset A of a space X is rsg-closed if and only if $cl(A) \subset srker(A)$.

Proof. Assume that A is an rsg-closed set in X. Then $cl(A) \subset G$ whenever $A \subset G$ and G is semi-regular in X. This implies $cl(A) \subset \cap \{G : A \subset G \text{ and } G \in SR(X)\} = srker(A)$

Conversely. Assume that $cl(A) \subset srker(A)$. This implies $cl(A) \subset \cap \{G : A \subset G and G \in SR(X)\}$. This shows that $cl(A) \subset G$ for any semi-regular set G containing A. This proves that A is rsg-closed.

Lemma 3.32. (Jankovic and Reilly [10]). Let x be a point of a space X. Then $\{x\}$ is either nowhere dense or preopen.

Theorem 3.33. Arbitrary intersection of rsg-closed sets in a locally indiscrete space X is rsg-closed.

Proof. Let $\{A_{\alpha} : \alpha \in I\}$ be an arbitrary collection of rsg-closed sets in a space X and let $A = \bigcap_{\alpha \in I} A_{\alpha}$. Let $x \in cl(A)$. In view of Lemma 3.32, we consider the following two cases.

Case I. Let $\{x\}$ be nowhere dense. If $x \notin A$, then for some $j \in I$, we have $x \notin A_j$. Since nowhere dense subsets are semi-closed and X is locally indiscrete, therefore $X - \{x\}$ is a regular open set containing A_j . Hence $x \notin \operatorname{srker}(A_j)$. On the other hand, by Lemma 3.31, since A_j is rsg-closed, $x \in cl(A) \subset cl(A_j) \subset \operatorname{srker}(A_j)$. By contradiction, $x \in A$ and hence $x \in \operatorname{srker}(A)$.

Case II. Let $\{x\}$ be preopen. Set $F = Int(cl(\{x\}))$. Assume that $x \notin rsker(A)$. Then there exists a semi-regular set C containing x such that $C \cap A = \phi$. Now by ([5], Theorem 1.2) $x \in F = Int(cl(\{x\})) \subset Int(cl(C)) \subset C$. Since F is an open set containing x and $x \in cl(A)$, therefore $F \cap A \neq \phi$. Since $F \subset C$, $C \cap A \neq \phi$. By contradiction $x \in srker(A)$. Thus in both cases $x \in srker(A)$. By Lemma 3.31, A is rsg-closed.

Corollary 3.34. For a locally indiscrete space X, the family of all rsg-open sets of X is a topology for X.

Proof. This is an immediate consequence of Theorems 3.6 and 3.33.

4. RSG-REGULAR SPACES

In this section, we define an rsg-regular space and investigate some of its fundamental properties.

Definition 4.1. A space (X, τ) is said to be s-regular [13] if for each closed set F and any point $x \in X - F$, there exist disjoint semi-open sets U and V in X such that $x \in U$ and $F \subset V$.

Definition 4.2. A space (X, τ) is said to be rsg-regular if for every rsg-closed set F and $x \in X - F$ there exist disjoint open sets U and V in X such that $x \in U$ and $F \subset V$.

Remark 4.3. Every rsg-regular space is regular as well as s-regular but the converse is not true in general.

Example 4.4. Let $X = Y \cup Z$ where $Y \cap Z = \phi$ and Y, Z are infinite sets. Let $\tau = \{\phi, Y, Z, X\}$ then (X, τ) is a regular space. If $\phi \neq A \subset Y$ and $x \in Y - A$, then A is an rsg-closed set but A and x can not be separated by disjoint open sets. Hence (X, τ) fails to be an rsg-regular space.

Theorem 4.5. The following are equivalent for a space (X, τ) :

(1): (X, τ) is rsg-regular.

(2): For every rsg-open set U containing $x \in X$, there exists an open set G in X such that $x \in G \subset cl(G) \subset U$.

Proof. (1) \Rightarrow (2) Let U be any rsg-open set containing $x \in X$. Then $x \notin X - U$, where X - U is rsg-closed in X. Hence there exist disjoint open sets G and H such that $x \in G$ and $X - U \subset H$ or $x \in G \subset cl(G) \subset X - H \subset U$. This proves (2).

 $(2) \Rightarrow (1)$ Let F be an rsg-closed set and $x \in X - F$. By hypothesis, there exists an open set G in X such that $x \in G \subset cl(G) \subset X - F$ or $x \in G$ and $F \subset X - cl(G)$ where $G \cap (X - cl(G)) = \phi$. This proves that X is rsg-regular.

Definition 4.6. A space (X, τ) is said to be rsg-regular at a point $x \in X$ if every rsg-open neighbourhood of x contains a closed neighbourhood of x.

Theorem 4.7. A space (X, τ) is rsg-regular if and only if it is rsg-regular at each of its points.

Proof. Suppose X is rsg-regular and $x \in X$. Let U be any rsg-open neighbourhood of $x \in X$. Then X - U is rsg-closed and $x \notin X - U$. Since X is rsg-regular, there exist disjoint open sets G and H such that $x \in G$ and $X - U \subset H$. Now $G \cap H = \phi$ implies $x \in G \subset X - H \subset U$. This proves that X is rsg-regular at each of its points.

Conversely, let X be rsg-regular at each of its points. Let F be an rsg-closed set and $x \in X - F$, where X - F is an rsg-open neighbourhood of x. By hypothesis there exists an open set V of X such that $x \in V \subset cl(V) \subset X - F$. By Theorem 4.5, X is rsg-regular.

Theorem 4.8. Every open and s^*g -closed subspace of an rsg-regular space is rsg-regular.

Proof. Suppose X is an rsg-regular space and Y is an open and s^*g -closed subspace of X. Let A be an rsg-closed set in Y. By Theorem 3.15, A is an rsg-closed in X. Let $x \in Y - A$, then $x \in X - A$ implies that there exist open sets U and V in X such that $x \in U$, $A \subset V$ and $U \cap V = \phi$; hence $x \in U \cap Y$, $A \subset V \cap Y$, where $U \cap Y$ and $V \cap Y$ are disjoint open sets in Y. This proves that Y is an rsg-regular space.

Lemma 4.9. In an rsg-regular space every rsg-open set is the union of open sets.

Proof. Let U be an rsg-open subset of an rsg-regular space X such that $x \in U$. If A = X - U, then A is an rsg-closed set and $x \in X - A$. By hypothesis there exist disjoint open sets W_x and W of X such that $x \in W_x$ and $A \subset W$. It follows that $x \in W_x \subset U$. This completes the proof.

Corollary 4.10. In an rsg-regular space every rsg-closed set is the intersection of closed sets.

54

Definition 4.11. A space (X, τ) is called a T_r – space if every rsg-closed subset of X is closed.

Lemma 4.12. A space (X, τ) is rsg-regular if and only if (X, τ) is a regular and T_r – space.

Proof. Let X be an rsg-regular space, then X is a regular space. Let A be an rsg-closed subset of X. Let $x \in cl(A)$. If $x \notin A$, then by hypothesis, there exist disjoint open sets U and V containing x and A, respectively. This contradicts that $x \in cl(A)$. Therefore $x \in A$ and hence A is closed.

Conversely, let (X, τ) be a regular and T_r – space. Let A be an rsg-closed subset of X and $x \in X - A$. By definition 4.11, A is closed and by regularity of X, there exist disjoint open sets U and V containing x and A, respectively. This proves that X is an rsg-regular space.

Theorem 4.13. For a space (X, τ) , the following are equivalent:

(1): (X, τ) is a T_r – space.

(2): Every singleton subset of X is either open or semi-regular.

Proof. (1) \Rightarrow (2) Let $x \in X$. Suppose $\{x\}$ is not a semi-regular subset of X. This gives $X - \{x\}$ is not semi-regular and therefore X is the only semi-regular super set of $X - \{x\}$. Trivially $X - \{x\}$ is rsg-closed. By hypothesis, $X - \{x\}$ is closed or $\{x\}$ is open.

 $(2) \Rightarrow (1)$ Let A be an rsg-closed subset of X. Let $x \in cl(A)$. By hypothesis $\{x\}$ is either open or semi-regular. If $\{x\}$ is open, then $\{x\} \cap A \neq \phi$ implies $x \in A$. If $\{x\}$ is semi-regular and $x \notin A$, then $x \in cl(A) - A$. This implies that cl(A) - A contains a nonempty semi-regular set. This contradicts Theorem 3.10. Hence $x \in A$. This proves (1).

Remark 4.14. In T_r – space, closed sets, s*g-closed sets and rsg-closed sets coincide.

References

- S. P. Arya and T. M. Nour, Characterizations of s-normal spaces, *Indian J.Pure Appl. Math.*, 21 (1990), 717 - 719.
- [2] P. Bhattacharyya and B.K. Lahiri, Semi-generalized closed sets in topology, Indian J. Math., 29 (1987), 375 - 382.
- [3] P. Bhattacharya and B. K. Lahiri, Semi-generalized continuous maps in topological spaces, *Portug. Math.*, **52(4)** (1995), 399 - 407.
- [4] D.E. Cameron, Properties of S-closed spaces, Proc. Amer. Math. Soc., 72 (1978), 581 586.
- [5] S. G. Crossley and S. K. Hildebrand, Semi-topological properties, Fund. Math., 74 (1972), 233 - 254.
- [6] G. Di Maio and T. Noiri, On s-closed spaces, Indian J. Pure Appl. Math., 18(3) (1987), 226 233.
- [7] K. Dlaska, N. Ergun and M. Ganster, On the topology generalized by semi regular sets, Indian J. Pure Appl. Math., 25(11) (1995), 1163 - 1170.
- [8] C. Dorsett, Pre-open sets and feeble separation axioms, Ann. Univ. Timisoara Ser. St. Mat., 25 (1987), 39 - 48.
- [9] D. S. Jankovic, On locally irreducible spaces, Ann. Soc. Sci. Bruxelles, 97 (1983), 59 72.
- [10] D. S. Jankovic and I.L. Railly, On semi-separation properties, Indian J. Pure Appl. Math., 16(9) (1985), 957 - 964.
- [11] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1) (1963), 36 - 41.
- [12] N. Levine, Generalized closed sets in topological spaces, Rend. Circ. Mat. Palermo, 19(2) (1970), 89 - 96.

T.NOIRI AND M.KHAN

- [13] S.N. Maheshwari and R. Prasad, On s-regular spaces, *Glasnik Mat.*, **10(30)** (1975), 347 -350.
- [14] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deep, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt., 53 (1982), 47 - 53.
- [15] N. Palaniappan and K.C. Rao, Regular generalized closed sets, Kyungpook Math. J., 33 (1993), 211 - 219.
- [16] K.C. Rao and K. Joseph, Semi star generalized closed sets, Bull. Pure Appl. Sci., 19(E)(2) (2002), 281 - 290.

T.Noiri, 2949-1 Shiokita-cho, Hinagu, Yatsushiro-shi, Kumamoto-ken, 869-5142 JAPAN

M.Khan, Department of Mathematics, COMSATS Institute of Information Technology, Park Road, Islamabad, PAKISTAN

56