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COMMON FIXED POINT THEOREMS OF GENERALIZED

CONTRACTION,

ZAMFIRESCU PAIR OF MAPS IN CONE METRIC SPACES

G.V.R. BABU∗, G.N. ALEMAYEHU†, AND K.N.V.V. VARA PRASAD‡

Abstract. We prove the existence of common fixed points of a generalized
contraction / Zamfirescu pair of maps in a complete cone metric space. Our

results generalize the results of Huang anf Zhang [L-G. Huang, X. Zhang:

Cone metric spaces and fixed point theorems of contractive mappings, J. Math.
Anal. Appl. 332 (2007) 1468–1476] and extend the results of Rezapour and

Hamlbarani [Sh. Rezapour, R. Hamlbarani: Some notes on the paper “Cone

metric spaces and fixed point theorems of contractive mappings”, J. Math.
Anal. Appl. 345 (2008) 719–724].

1. Introduction

In 2007, Huang and Zhang [2] generalized the concept of a metric space, replacing
the set of real numbers by an ordered Banach space by defining the concept of a
cone metric space which is more general than that of a metric space, and obtained
fixed point theorems for mappings on complete cone metric spaces having normal
cone. Later in 2008, Rezapour and Hamlbarani [4] generalized the results of Huang
and Zhang [2] by relaxing the normality property of the cones.

Recently, Jungck, Radenović, Radojević and Rakočević [3] have studied common
fixed point results for weakly compatible pairs of mappings in cone metric spaces by
omitting the assumptions of normality of the cone in their results, which generalize
and extend some earlier results ([2], [4], [1],[5]).

Thoughout this paper we use the following notation: R denotes the set of all
reals; and N denotes the set of all natural numbers.

Let E be a real Banach space and P be a subset of E. P is called a cone if the
following three conditions hold:

(1) P is closed, nonempty, and P 6= {0},
(2) a, b ∈ R, a, b ≥ 0, x, y ∈ P ⇒ ax+ by ∈ P , and
(3) x ∈ P and −x ∈ P ⇒ x = 0.

Given a cone P ⊂ E, we define a partial order ≤ with respect to P by x ≤ y if
and only if y−x ∈ P . In this case we call P an order cone. We write x < y if x ≤ y
and x 6= y; we write x� y if y − x ∈ int P , where int P denotes the interior of P .
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An order cone P is called normal if there is a number K > 0 such that for all
x, y ∈ E,

0 ≤ x ≤ y implies ‖ x ‖≤ K ‖ y ‖ .
The least positive number satisfying the above inequality is called the normal
constant of P .

Rezapour and Hamlbarani [4] observed that there is no normal cone with normal
constant K < 1. There exists an ordered Banach space E with cone P which is not
normal but intP 6= ∅.

Definition 1.1. Let X be a nonempty set. If the mapping d : X×X → E satisfies

(1) 0 ≤ d(x, y) for all x, y ∈ X and d(x, y) = 0 if and only if x = y,
(2) d(x, y) = d(y, x), for all x, y ∈ X, and
(3) d(x, y) ≤ d(x, z) + d(z, y), for all x, y, z ∈ X,

then d is called a cone metric on X, and (X, d) is called a cone metric space.

Definition 1.2. Let (X, d) be a cone metric space and let {xn} be a sequence in
X. We say that {xn} is

(1) a Cauchy sequence in X if for each c in E with 0 � c, there is an N such
that for all m,n > N , d(xm, xn)� c;

(2) a convergent sequence in X if for each c in E with 0 � c, there is an N
such that for all n > N , d(xn, x)� c for some x in X. In this case, we say
that {xn} converges to x in X and we denote it by lim

n→∞
xn = x or xn → x

as n→∞.

A cone metric space is said to be complete if every Cauchy sequence in X is
convergent in X.

Remark 1.3. [3] Let E be an ordered Banach (normed) space with a cone P .

(1) c is an interior point of the cone P if and only if [−c, c] is a neighborhood
of 0.

(2) If a ≤ b and b� c, then a� c.
(3) If a� b and b� c, then a� c.
(4) If 0 ≤ u� c for each c ∈ intP , then u = 0.
(5) If c ∈ intP , 0 ≤ an and an → 0, then there exists n0 such that for all

n > n0 we have an � c.
(6) Let 0� c. If 0 ≤ d(xn, x) ≤ bn and bn → 0, then eventually d(xn, x)� c,

where {xn} is a sequence in X and x is a given point in X.
(7) If an ≤ bn and an → a, bn → b, then a ≤ b for each cone P .
(8) If E is a real Banach space with cone P and a ≤ λa where a ∈ P and

0 < λ < 1, then a = 0.

From Remark 1.3 (4) and (5), we observe that if a sequence {xn} is convergent
in a cone metric space with a cone P having nonempty interior, then the limit of
{xn} is unique.

Definition 1.4. [3] Let (X, d) be a cone metric space and P a cone with nonempty
interior. Suppose that the mappings f, g : X → X are such that f(X) ⊂ g(X), and
f(X) or g(X) is a complete subspace of X. Then the pair (f, g) is called Abbas
and Jungck’s pair, or shortly AJ ’s pair.
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Definition 1.5. [3]. Let f and g be selfmaps of a set X. If w = fx = gx for some
x in X, then x is called a coincidence point of f and g, and w is called a point of
coincidence of f and g. f and g are said to be weakly compatible if they commute
at their coincidence point; that is, if fx = gx for some x in X, then fgx = gfx.

Recently, Jungck et. al. [3] proved the following theorems.

Theorem 1.6. (Jungck et. al. [3], Theorem 2.1). Suppose that (f, g) is AJ ’s pair,
and that for some constant k ∈ (0, 1) and for every x, y ∈ X, there exists

p(x, y) ∈ {d(gx, gy), d(fx, gx), d(fy, gy),
d(fx, gy) + d(fy, gx)

2
}, (1.6.1)

such that

d(fx, fy) ≤ k p(x, y). (1.6.2)

Then f and g have a unique point of coincidence in X. Moreover, if f and g are
weakly compatible, then f and g have a unique common fixed point in X.

Theorem 1.7. (Jungck et. al. [3], Theorem 2.2). Suppose that (f, g) is AJ ’s pair,
and that for some constant k ∈ (0, 1) and for every x, y ∈ X, there exists

p(x, y) ∈ {d(gx, gy),
d(fx, gx) + d(fy, gy)

2
,
d(fx, gy) + d(fy, gx)

2
}, (1.7.1)

such that

d(fx, fy) ≤ k p(x, y). (1.7.2)

Then f and g have a unique point of coincidence in X. Moreover, if f and g are
weakly compatible, then f and g have a unique common fixed point in X.

We now introduce a generalized contraction pair of mappings.

Definition 1.8. Let (X, d) be a cone metric space and P a cone with nonempty
interior. Let f, g : X → X be selfmaps. Suppose that there exists a constant
k ∈ (0, 1) and there exists

p(x, y) ∈ {d(x, y), d(x, fx), d(y, gy),
d(x, gy) + d(y, fx)

2
}, (1.8.1)

such that

d(fx, gy) ≤ k p(x, y) for all x, y in X. (1.8.2)

Then the pair (f, g) is called a generalized contraction pair on X.

The following examples, Example 1.9 and Example 1.10, show that a pair of maps
that satisfies inequality (1.6.2) and a generalized contraction pair are independent.

Example 1.9. Let X = [0, 1], E = C1
R[0, 1] and P = {ϕ ∈ E : ϕ ≥ 0}. Then P is

a cone with nonempty interior. We observe that P is not normal [4].
We define d : X ×X → E by d(x, y) = |x− y|ϕ, where ϕ : [0, 1]→ R by ϕ(t) = et.
Then d is a cone metric on X. We define mappings f, g : X → X by

f(x) =

{
1
3
x if 0 ≤ x < 5

6
1
3

if 5
6
≤ x ≤ 1

and g(x) =

{
0 if 0 ≤ x < 5

6
1
3
x if 5

6
≤ x ≤ 1.
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We observe that the pair (f, g) is a generalized contraction pair with k = 4
5 .

We also observe that neither f(X) ⊂ g(X) nor g(X) ⊂ f(X). Hence the pair
(f, g) is not AJ ’s pair. Also, f and g do not satisfy the inequality (1.6.2). For we
choose x = 0 and y = 1. Then for all k ∈ (0, 1) we have

1

3
ϕ = d(f0, f1) > k p(0, 1),

where

p(0, 1) ∈ {d(g0, g1), d(f0, g0), d(f1, g1),
d(f0, g1) + d(f1, g0)

2
} = {0, 1

3
ϕ};

and
1

3
ϕ = d(g0, g1) > k p(0, 1),

where

p(0, 1) ∈ {d(f0, f1), d(g0, f0), d(g1, f1),
d(g0, f1) + d(g1, f0)

2
} = {0, 1

3
ϕ}.

Example 1.10. Let X = R, E = C1
R[0, 1] and P = {ϕ ∈ E : ϕ ≥ 0}.

We define d : X ×X → E by d(x, y) = |x− y|ϕ, where ϕ : [0, 1]→ R by ϕ(t) = et.
Then d is a cone metric on X. We define mappings f, g : X → X by

f(x) =

{
1
3
x− 1 if x 6= 0
0 if x = 0

and g(x) =

{
x− 2 if x 6= 0
0 if x = 0.

Then f and g satisfy the inequality (1.6.2) with k = 1
2 . However, the pair (f, g)

is not a generalized contraction pair. For, we choose x = 2 and y = −1. Then, for
all k ∈ (0, 1), we have

3ϕ = d(f2, g(−1)) > k p(2,−1),

where

p(2,−1) ∈ {d(2,−1), d(2, f2), d(−1, g(−1)),
d(2, g(−1)) + d(−1, f2)

2
} = {2ϕ, 3ϕ}.

We now introduce a Zamfirescu pair in a cone metric space.

Definition 1.11. Let (X, d) be a cone metric space and P a cone with nonempty
interior. Let f, g : X → X be selfmaps. Suppose that there exists a constant
k ∈ (0, 1) and there exists

p(x, y) ∈ {d(x, y),
d(x, fx) + d(y, gy)

2
,
d(x, gy) + d(y, fx)

2
}, (1.11.1)

such that
d(fx, gy) ≤ k p(x, y) for all x, y in X. (1.11.2)

Then the pair (f, g) is called a Zamfirescu pair on X.

The following examples, Example 1.12 and Example 1.13, show that a pair of
maps that satisfies inequality (1.7.2) and a Zamfirescu pair are independent.

Example 1.12. Let X, E, P , d and ϕ be as in Example 1.9.
We define mappings f, g : X → X by

f(x) =

{
1
4
x if x 6= 1
1
5

if x = 1
and g(x) =

{
1
5
x if x 6= 1
1
4

if x = 1.
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We observe that the pair (f, g) is a Zamfirescu pair with k = 2
3 .

We also observe that neither f(X) ⊂ g(X) nor g(X) ⊂ f(X). Hence the pair
(f, g) is not AJ ’s pair. Also, f and g do not satisfy the inequality (1.7.2). For, by
choosing x = 0 and y = 1

2 , and for all k ∈ (0, 1) we obtain

1

8
ϕ = d(f0, f

1

2
) > k p(0,

1

2
),

where

p(0,
1

2
) ∈ {d(g0, g

1

2
),
d(f0, g0) + d(f 1

2 , g
1
2 )

2
,
d(f0, g 1

2 ) + d(f 1
2 , g0)

2
} = { 1

10
ϕ,

1

80
ϕ,

9

80
ϕ},

Now, by taking x = 0 and y = 1, for all k ∈ (0, 1) we obtain

1

4
ϕ = d(g0, g1) > k p(0, 1),

where

p(0, 1) ∈ {d(f0, f1),
d(g0, f0) + d(g1, f1)

2
,
d(g0, f1) + d(g1, f0)

2
} = {1

5
ϕ,

1

40
ϕ,

9

40
ϕ}.

Example 1.13. Let X, E, P , d, ϕ, f and g be as in Example 1.10.
Then f and g satisfy the inequality (1.7.2) with k = 1

2 . However, the pair (f, g) is
not a Zamfirescu pair. For, we choose x = 2 and y = −1. Then, for all k ∈ (0, 1),
we have

3ϕ = d(f2, g(−1)) > k p(2,−1),

where

p(2,−1) ∈ {d(2,−1),
d(2, f2) + d(−1, g(−1))

2
,
d(2, g(−1)) + d(−1, f2)

2
}

= {2ϕ, 5

2
ϕ, 3ϕ}.

The aim of this paper is to prove the existence of common fixed points of a
generalized contraction pair in a complete cone metric space. The same is also
established for Zamfirescu pair in Section 3. Our results generalize the results of
Huang and Zhang [2] and extend the results of Rezapour and Hamlbarani [4].

2. Common fixed point theorems of a generalized contraction pair

Theorem 2.1. Let (X, d) be a complete cone metric space. Suppose that (f, g) is
a generalized contraction pair on X. Then f and g have a unique common fixed
point in X.

Proof. Let x0 ∈ X. Since f(X) ⊂ X, there exists x1 ∈ X such that x1 = fx0.
Since g(X) ⊂ X, there exists x2 ∈ X such that x2 = gx1. By continuing this
process, having defined xn ∈ X, we define xn+1 ∈ X such that

xn+1 =

{
fxn if n = 0, 2, 4, · · ·
gxn if n = 1, 3, 5, · · · .

We first show that

d(xn+1, xn) ≤ k d(xn, xn−1), for n = 1, 2, 3, · · · . (2.1.1)

We consider two cases.
Case (i): n is even. Then,

d(xn+1, xn) = d(fxn, gxn−1) ≤ k p(xn, xn−1),
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where

p(xn, xn−1) ∈ {d(xn, xn−1), d(xn, fxn), d(xn−1, gxn−1),
d(xn, gxn−1) + d(xn−1, fxn)

2
}

= {d(xn, xn−1), d(xn+1, xn),
1

2
d(xn+1, xn−1)}.

Now if p(xn, xn−1) = d(xn, xn−1), then clearly (2.1.1) holds;
if p(xn, xn−1) = d(xn+1, xn), then from Remark 1.3 (8), we have d(xn+1, xn) = 0,
and hence (2.1.1) holds;
if p(xn, xn−1) = 1

2d(xn+1, xn−1), then we have

d(xn+1, xn) ≤ 1

2
d(xn+1, xn) +

k

2
d(xn, xn−1),

and hence (2.1.1) holds.
Case (ii): n is odd. Then,

d(xn+1, xn) = d(gxn, fxn−1) = d(fxn−1, gxn) ≤ k p(xn−1, xn),

where

p(xn−1, xn) ∈ {d(xn−1, xn), d(xn−1, fxn−1), d(xn, gxn),
d(xn−1, gxn) + d(xn, fxn−1)

2
}

= {d(xn, xn−1), d(xn+1, xn),
1

2
d(xn+1, xn−1)}.

Now if p(xn−1, xn) = d(xn, xn−1), then clearly (2.1.1) holds;
if p(xn−1, xn) = d(xn+1, xn), then from Remark 1.3 (8), we have d(xn+1, xn) = 0,
and hence (2.1.1) holds;
if p(xn−1, xn) = 1

2d(xn+1, xn−1), then we have

d(xn+1, xn) ≤ 1

2
d(xn+1, xn) +

k

2
d(xn, xn−1),

and hence (2.1.1) holds.
Hence, in both cases the inequality (2.1.1) holds.
By repeated application of (2.1.1), we get

d(xn+1, xn) ≤ kn d(x1, x0), n = 1, 2, · · · . (2.1.2)

We show that {xn} is a Cauchy sequence in X. For n > m, we have

d(xn, xm) ≤ d(xn, xn−1) + d(xn−1, xn−2) + · · ·+ d(xm+1, xm)

≤ (kn−1 + kn−2 + · · ·+ km)d(x1, x0)

≤ km

1− k
d(x1, x0)→ 0 as m→∞. (2.1.3)

Let 0 � c. From (2.1.3) and Remark 1.3 (5), there exists an integer N such
that km(1− k)−1d(x1, x0)� c for all m > N . By Remark 1.3 (2), d(xn, xm)� c.
Hence, by Definition 1.2 (1), {xn} is a Cauchy sequence in X. By the completeness
of X, there exists z in X such that xn → z as n→∞.

We claim that fz = z.
Let 0� c. Without loss of generality we assume that n is odd. Then,

d(fz, z) ≤ d(fz, gxn) + d(gxn, z)

≤ k p(z, xn) + d(xn+1, z), (2.1.4)
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where

p(z, xn) ∈ {d(z, xn), d(z, fz), d(xn, gxn),
d(z, gxn) + d(xn, fz)

2
}

= {d(z, xn), d(z, fz), d(xn, xn+1),
d(z, xn+1) + d(xn, fz)

2
}.

Clearly one of the following cases hold for infinitely many n.
If p(z, xn) = d(z, xn), then from (2.1.4) we have

d(fz, z) ≤ k d(z, xn) + d(xn+1, z)� k
c

2k
+
c

2
= c;

if p(z, xn) = d(z, fz), then from (2.1.4) we get

d(fz, z) ≤ 1

1− k
d(z, xn+1)� 1

1− k
c
1

1−k
= c;

if p(z, xn) = d(xn, xn+1), then from (2.1.4) we get

d(fz, z) ≤ k d(xn, z) + (1 + k) d(xn+1, z)� k
c

2k
+ (1 + k)

c

2(1 + k)
= c;

if p(z, xn) = d(z,xn+1)+d(xn,fz)
2 , then from (2.1.4) we get

d(fz, z) ≤ k d(z, xn+1) + d(xn, fz)

2
+ d(xn+1, z)

≤ (1 +
k

2
) d(z, xn+1) +

k

2
d(xn, z) +

1

2
d(z, fz)

so that

d(fz, z) ≤ (2 + k) d(z, xn+1) + k d(xn, z)� (2 + k)
c

2(2 + k)
+ k

c

2k
= c.

In all cases, we obtain d(fz, z)� c for each c ∈ int P . Using Remark 1.3 (4), it
follows that d(fz, z) = 0, or fz = z.

Next we prove that gz = z.
Consider

d(z, gz) = d(fz, gz) ≤ k p(z, z), (2.1.5)

where

p(z, z) ∈ {d(z, z), d(z, fz), d(z, gz),
d(z, fz) + d(z, gz)

2
}

= {0, d(z, gz),
d(z, gz)

2
}.

Now, if p(z, z) = 0, from (2.1.5) trivially we get gz = z. If either p(z, z) = d(z,gz)
2

or p(z, z) = d(z, gz), then from (2.1.5) and Remark 1.3 (8), we have d(z, gz) = 0;
i.e., z = gz.

Hence, fz = gz = z.
The uniqueness of z follows from the inequality (1.8.2). Hence the theorem

follows. �

The following is an example in support of Theorem 2.1.
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Example 2.2. Let X, E, P , d, ϕ, f and g be as in Example 1.9.
The pair (f, g) is a generalized contraction pair with k = 4

5 ; and the maps f and
g satisfy all the conditions of Theorem 2.1 and 0 is the unique common fixed point
of f and g.

3. Common fixed point theorems of Zamfirescu pair

In the following theorem, we prove a common fixed point theorem in cone metric
spaces which is an analog of the well-known Zamfirescu result in metric spaces [6].

Theorem 3.1. Let (X, d) be a complete cone metric space. Suppose that (f, g) is
a Zamfirescu pair on X. Then f and g have a unique common fixed point in X.

Proof. Let x0 ∈ X. Since f(X) ⊂ X, there exists x1 ∈ X such that x1 = fx0.
Since g(X) ⊂ X, there exists x2 ∈ X such that x2 = gx1. By continuing this
process, having defined xn ∈ X, we can define xn+1 ∈ X such that

xn+1 =

{
fxn if n = 0, 2, 4, · · ·
gxn if n = 1, 3, 5, · · · .

We first show that

d(xn+1, xn) ≤ k d(xn, xn−1), for n = 1, 2, 3, · · · . (3.1.1)

We consider two cases.
Case (i): n is even. Then,

d(xn+1, xn) = d(fxn, gxn−1) ≤ k p(xn, xn−1),

where

p(xn, xn−1) ∈ {d(xn, xn−1),
d(xn, fxn) + d(xn−1, gxn−1)

2
,
d(xn, gxn−1) + d(xn−1, fxn)

2
}

= {d(xn, xn−1),
d(xn+1, xn) + d(xn, xn−1)

2
,

1

2
d(xn+1, xn−1)}.

Now if p(xn, xn−1) = d(xn, xn−1), then clearly (3.1.1) holds;

if p(xn, xn−1) = d(xn+1,xn)+d(xn,xn−1)
2 , then we have

d(xn+1, xn) ≤ k d(xn+1, xn) + d(xn, xn−1)

2

≤ 1

2
d(xn+1, xn) +

k

2
d(xn, xn−1),

and hence (3.1.1) holds;
if p(xn, xn−1) = 1

2d(xn+1, xn−1), then we have

d(xn+1, xn) ≤ 1

2
d(xn+1, xn) +

k

2
d(xn, xn−1),

and hence (3.1.1) holds.
Case (ii): n is odd. Then,

d(xn+1, xn) = d(gxn, fxn−1) = d(fxn−1, gxn) ≤ k p(xn−1, xn),

where

p(xn−1, xn) ∈ {d(xn−1, xn),
d(xn−1, fxn−1) + d(xn, gxn)

2
,
d(xn−1, gxn) + d(xn, fxn−1)

2
}
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= {d(xn, xn−1),
d(xn+1, xn) + d(xn, xn−1)

2
,

1

2
d(xn+1, xn−1)}.

Now if p(xn−1, xn) = d(xn, xn−1), then clearly (3.1.1) holds;

if p(xn−1, xn) = d(xn+1,xn)+d(xn,xn−1)
2 , then we have

d(xn+1, xn) ≤ k d(xn+1, xn) + d(xn, xn−1)

2

≤ 1

2
d(xn+1, xn) +

k

2
d(xn, xn−1),

and hence (3.1.1) holds;
if p(xn−1, xn) = 1

2d(xn+1, xn−1), then we have

d(xn+1, xn) ≤ 1

2
d(xn+1, xn) +

k

2
d(xn, xn−1),

and hence (3.1.1) holds.
Hence, in both cases the inequality (3.1.1) holds.
By repeated application of (3.1.1), we get

d(xn+1, xn) ≤ kn d(x1, x0), n = 1, 2, · · · . (3.1.2)

We show that {xn} is a Cauchy sequence in X. For n > m, we have

d(xn, xm) ≤ d(xn, xn−1) + d(xn−1, xn−2) + · · ·+ d(xm+1, xm)

≤ (kn−1 + kn−2 + · · ·+ km)d(x1, x0)

≤ km

1− k
d(x1, x0)→ 0 as m→∞. (3.1.3)

Let 0 � c. From (3.1.3) and Remark 1.3 (5), there exists an integer N such
that km(1− k)−1d(x1, x0)� c for all m > N . By Remark 1.3 (2), d(xn, xm)� c.
Hence, by Definition 1.2 (1), {xn} is a Cauchy sequence in X. By the completeness
of X, there exists z in X such that xn → z as n→∞.

We claim that fz = z.
Let 0� c. Without loss of generality we assume that n is odd. Then,

d(fz, z) ≤ d(fz, gxn) + d(gxn, z)

≤ k p(z, xn) + d(xn+1, z), (3.1.4)

where

p(z, xn) ∈ {d(z, xn),
d(z, fz) + d(xn, gxn)

2
,
d(z, gxn) + d(xn, fz)

2
}

= {d(z, xn),
d(z, fz) + d(xn, xn+1)

2
,
d(z, xn+1) + d(xn, fz)

2
}.

Clearly one of the following cases hold for infinitely many n.
If p(z, xn) = d(z, xn), then from (3.1.4) we have

d(fz, z) ≤ k d(z, xn) + d(xn+1, z)� k
c

2k
+
c

2
= c;

if p(z, xn) = d(z,fz)+d(xn,xn+1)
2 , then from (3.1.4) we get

d(fz, z) ≤ k d(z, fz) + d(xn, xn+1)

2
+ d(xn+1, z)

≤ (1 +
k

2
) d(z, xn+1) +

k

2
d(xn, z) +

1

2
d(z, fz),
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so that

d(fz, z) ≤ (2 + k) d(z, xn+1) + k d(xn, z)� (2 + k)
c

2(2 + k)
+ k

c

2k
= c.

if p(z, xn) = d(z,xn+1)+d(xn,fz)
2 , then from (3.1.4) we get

d(fz, z) ≤ k d(z, xn+1) + d(xn, fz)

2
+ d(xn+1, z)

≤ (1 +
k

2
) d(z, xn+1) +

k

2
d(xn, z) +

1

2
d(z, fz),

so that

d(fz, z) ≤ (2 + k) d(z, xn+1) + k d(xn, z)� (2 + k)
c

2(2 + k)
+ k

c

2k
= c.

In all cases, we obtain d(fz, z) � c for each c ∈ int P . Using Remark 1.3 (4), it
follows that d(fz, z) = 0, or fz = z.

Next we prove that gz = z.
Consider

d(z, gz) = d(fz, gz) ≤ k p(z, z), (3.1.5)

where

p(z, z) ∈ {d(z, z),
d(z, gz) + d(z, fz)

2
,
d(z, fz) + d(z, gz)

2
}

= {0, d(z, gz)

2
}.

Now if p(z, z) = 0, from (3.1.5) trivially we get gz = z. If p(z, z) = d(z,gz)
2 , then

from (3.1.5) and Remark 1.3 (8), we have d(z, gz) = 0; i.e., z = gz.
Hence, fz = gz = z.
The uniqueness of z follows from the inequality (1.11.2). Hence the theorem

follows. �

The following is an example in support of Theorem 3.1.

Example 3.2. Let X, E, P , d, ϕ, f and g be as in Example 1.12.
The pair (f, g) is a Zamfirescu pair with k = 2

3 ; and the maps f and g satisfy all
the conditions of Theorem 3.1 and 0 is the unique common fixed point of f and g.

The following are corollaries which follow from Theorem 3.1.

Corollary 3.3. Let (X, d) be a complete cone metric space and P a cone with
nonempty interior. Let f, g : X → X be selfmaps. Suppose that for some constant
k ∈ (0, 1) and for every x, y ∈ X,

d(fx, gy) ≤ k d(x, y).

Then f and g have a unique common fixed point in X.

Corollary 3.4. Let (X, d) be a complete cone metric space and P a cone with
nonempty interior. Let f, g : X → X be selfmaps. Suppose that for some constant
k ∈ (0, 12 ) and for every x, y ∈ X,

d(fx, gy) ≤ k [d(x, fx) + d(y, gy)].

Then f and g have a unique common fixed point in X.
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Corollary 3.5. Let (X, d) be a complete cone metric space and P a cone with
nonempty interior. Let f, g : X → X be selfmaps. Suppose that for some constant
k ∈ (0, 12 ) and for every x, y ∈ X,

d(fx, gy) ≤ k [d(x, gy) + d(y, fx)].

Then f and g have a unique common fixed point in X.

Remark 3.6. Corollary 3.3, Corollary 3.4 and Corollary 3.5 are extensions of
Theorem 2.3, Theorem 2.4 and Theorem 2.5 of Rezapour and Hamlbarani [4]
respectively and hence generalize some results of Huang and Zhang [2] since we do
not use the assumption ‘normality of cone’ in our results.
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