
ALBANIAN JOURNAL
OF MATHEMATICS
Volume 3, Number 4, Pages 189–197
ISSN 1930-1235: (2009)

ON INTEGERS WITH TWO PRIME FACTORS

BENJAMIN JUSTUS

Abstract. Integers with two prime factors occur in the RSA cryptosystem.

In this paper, we provide density estimates for such integers occuring in the

RSA cryptosystem satisfying various conditions. Cryptographic applications
are given as a consequence of the estimates obtained.

1. Introduction

The implementation of the RSA cryptosystem requires the selection of an integer
n of the form n = p·q where the distinct prime factors p, q satisfy certain conditions.
Such an integer in the literature is often referred as a RSA integer. We follow this
convention in the paper. For certain cryptographic applications, it is important to
know

• What is the probability that a randomly selected integer is a RSA integer?

In order to answer the question above adequately, one has to know a priori
the specific conditions that are imposed on the prime factors p, q of n. A survey
of literature shows that no precise and consistent definitions exist. The specific
requirements for the the prime factors p, q of n differ among authors. The inventors
of the RSA cryptosystem [1, 2] wrote that the primes factors p, q need to be large
and be randomly selected. In [9], it is required to select p, q of approximately equal
magnitude. In more applied works [3, 10], the authors require p, q to be of equal
bit-length.

If one assumes the fact that a randomly selected integer in the interval [1, x] has
the probability log−1 x (a consequence of the prime number theorem) of being a
prime and furthermore that the events of selecting prime numbers are independent,
then one may guess that the answer to the above question is of the order log−2 x.
This intuition turns out to be true (see Theorem 2.1 and Theorem 3.1) only if one is
willing to impose conditions on the prime factors p, q of n. The specific conditions
imposed have to do with how close the prime factors p, q are with respect to each
other and the tightness of the interval in which p, q are bounded.

Indeed, our original intention of writing the paper is to investigate the question
how the density of RSA integers is related the conditions that are imposed upon
the prime factors p, q of n. It turns out that in order to obtain the density estimate
in the order of log−2 x, it is necessary to impose those conditions on the prime
factors p, q as described in section 2 and section 3. An early theorem of Landau [6]
shows that, the number of integers n ≤ x of the form n = p · q with distinct p and
q satisfies as x goes to infinity
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π2(x) ∼ x log log x

log x
.

In particular this result implies that the probability of a randomly selected in-
teger n in the interval [1, x] being of the form n = p · q (no conditions imposed on

p, q) is of the order log log x
log x .

The organization of the paper is as follows. In section 2 and section 3, we
formulate two analytic notions of RSA integers which allow us to quantify: how
close the prime factors of a RSA integer are with respect to each other and what
we mean by selecting p, q of the same bit-length. We then count respectively the
RSA integers satisfying each of the notions. In section 4, we give applications and
thereby answer the question that is set out in the introduction.

For the benefit of the readers, we have included appendices at the end of the
paper. The appendices contain some well known results from analytic number
theory which are used in the paper.

2. First Notion

The first notion reflects the idea that a RSA integer n = p · q should have its
prime factors p, q close to each other. Thus we say,

Definition 1. A RSA integer n = p · q in the interval [1, x] is called θ-spaced if it
satisfies the property: if p < q, then p < q ≤ xθp.

In order to provide the density estimate, we need to count θ-spaced RSA integers.
Let us consider the following set

S(x; θ, c) := {n = p · q ≤ x : p < q ≤ xθp, p ≤ xc}.
Note: since p is the smaller of the two prime factor we can always take c ≤ 1

2 .
The main result of the section is

Theorem 2.1. Let 0 < θ < 1 and 0 < c ≤ 1
2 be fixed. Then the following estimates

for the cardinality of S(x; θ, c) hold:

|S(x; θ, c)| =


1

2c(θ+c)
x2c+θ

log2 x
+ O

(
x2c+θ

log3 x

)
, c ≤ 1−θ

2 ;

B x
log x + O

(
x

log2 x

)
, 1−θ

2 < c ≤ 1
2 .

where B = B(θ, c) is an explicitly computable nonzero constant that depends only
on θ and c.

The above theorem shows that how the density of RSA integers changes accord-
ing to the set parameters θ, c. It should be noticed, in particular, in order to achieve
the density in the order of log−2 x, the prime factors p, q need to be close (small θ)
to each other.

Proof. We deal with the case c ≤ 1−θ
2 first. Notice xθp ≤ x

p if and only if p ≤ x 1−θ
2 .

We have

|S(x; θ, c)| =
∑
p

p≤xc

∑
q

p<q≤xθp

1.
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The inner sum is treated by the prime number theorem (see Appendix A). Thus

|S(x; θ, c)| = xθ
∑
p

p≤xc

p

log xθp
+ O

xθ ∑
p

p≤xc

p

log2 xθp


Partial summation gives (see Appendix B):

=
1

2c(θ + c)

x2c+θ

log2 x
+ O

(
x2c+θ

log3 x

)
+ O

 xθ

log2 x

∑
p

p≤xc

p


=

1

2c(θ + c)

x2c+θ

log2 x
+ O

(
x2c+θ

log3 x

)
.

This settles the first case. In the second case 1−θ
2 < c ≤ 1

2 , we have

|S(x; θ, c)| =
∑
p

p≤x
1−θ
2

∑
q

p<q≤xθp

+
∑
p

x
1−θ
2 <p≤xc

∑
q

p<q≤ x
p

1.(2.1)

We can bound the first double sum as follows

∑
p

p≤x
1−θ
2

∑
q

p<q≤xθp

1�
∑
p

p≤x
1−θ
2

π(xθp)� xθ
∑
p

p≤x
1−θ
2

p

log xθp
� x

log2 x
.

The second double sum in (2.1) is the main term. We have

∑
p

x
1−θ
2 <p≤xc

∑
q

p<q≤ x
p

1

=
∑
p

x
1−θ
2 <p≤xc

(π(x/p)− π(p))

=x
∑
p

x
1−θ
2 <p≤xc

1

p log x/p
−

∑
p

x
1−θ
2 <p≤xc

p

log p
+ O

x ∑
p

x
1−θ
2 <p≤xc

1

p log2 x/p

 .

We have
∑ p

log p = O(x log−2 x) (Example 2, Appendix B) and the term

x
∑
p

x
1−θ
2 <p≤xc

1

p log2 x/p
� x

log2 x

∑
p

x
1−θ
2 <p≤xc

1

p
� x

log2 x
.

Thus, (2.1) becomes

|S(x; θ, c)| = x
∑
p

x
1−θ
2 <p≤xc

1

p log x/p
+ O

(
x

log2 x

)
.(2.2)
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We are done for the proof except for the evaluation of the sum
∑

1
p log x/p . The

evaluation of the sum is technical in nature and the proof of which is given at the
end this section. Let us for the moment assume the result: for any 0 < θ < 1,∑

p≤xθ

1

p log x/p
=

log log x

log x
+
f(θ)

log x
+ O

(
1

log2 x

)
where f(θ) is a strictly increasing function in θ. Using this result, (2.2) becomes

|S(x; θ, c)| = B(θ, c)
x

log x
+ O

(
x

log2 x

)
.

The constant B(θ, c) is positive and nonzero. The theorem is proved. �

Proposition 2.1. Let 0 < θ < 1. Then the following estimate holds:

∑
p≤xθ

1

p log x/p
=

log log x

log x
+

(
log

θ

1− θ
+ c1

)
1

log x
+ O

(
1

log2 x

)
where c1 is an absolute constant.

Proof. We have∑
p≤xθ

1

p log x/p
=
∑
p≤xθ

1

p log x(1− log p
log x )

=
1

log x

∑
p≤xθ

1

p
+
∑
m≥1

1

logm+1 x

∑
p≤xθ

logm p

p

=
∑
m≥1

1

logm+1 x

∑
p≤xθ

logm p

p
+

log log x+ c1 + log θ

log x
+ O

(
1

log2 x

)
.(2.3)

The inner sum over p can be dealt with using the following lemma:

Lemma 2.1. For a positive integer m ≥ 1,∑
p≤z

logm p

p
=

logm z

m
+ O(logm−1 z).

Proof. The case m = 1 is a standard result. For example, the reader may see [7]
for a proof. When m ≥ 2, one has by partial summation

∑
p≤z

logm p

p

=

∑
p≤z

1

p

 logm z −
∫ z

2

∑
p≤z

1

p

 d logm t

=(log log z + c1) logm z −
∫ z

2

log log t(d logm t)− c1
∫ z

2

d logm t+ O(logm−1 z)

=(log log z) logm z −
∫ z

2

log log t(d logm t) + O(logm−1 z)
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Performing intergeration by parts to the integeral gives

=
logm z

m
+ O(logm−1 z).

This proves the lemma. �

Thus in view of the lemma, (2.3) becomes

∑
p≤xθ

1

p log x/p

=
1

log x

∑
m≥1

θm

m
+

log log x+ c1 + log θ

log x
+ O

 1

log2 x

∑
m≥1

θm−1

+ O

(
1

log2 x

)

=− log (1− θ)
log x

+
log log x+ c1 + log θ

log x
+ O

(
1

log2 x

)
=

log log x

log x
+

(
log

θ

1− θ
+ c1

)
1

log x
+ O

(
1

log2 x

)
.

This proves the proposition. �

The techniques used in the proof can be adapted to more general settings. We
briefly mention that in the case θ = 0, there is a result of Decker and Moree [4] in
the same spirit.

Corollary 2.1 (Decker, Moree). Let Cr(x) denote the number of RSA integers
n = p · q such that p < q < rp, where r > 1 is a fixed real number. Then as x tends
to infinity, we have

Cr(x) = 2 log r
x

log2 x
+ O

(
x

log3 x

)
.

3. Second Notion

The second notion reflects the idea that the prime factors of a RSA integer should
roughly have the same length. Thus, one is lead to consider the following set

B(x; a, b) := {n = p · q ≤ x : xa < p < q ≤ xb}.
The set parameters a, b describe how small or large the prime factors p, q of a

RSA integer are. The main result here is

Theorem 3.1. Let a, b be two fixed real numbers such that a < 1
2 and a < b ≤ 1.

Then the following estimates hold:

|B(x; a, b)| =


1

2b2
x2b

log2 x
+ O

(
x2b

log3 x

)
, b ≤ 1

2 ;

B x
log x + O

(
x

log2 x

)
, b > 1

2 .

where B = B(b) is an explicitly computable nonzero constant depending only on b.

The theorem basically says that, for a fixed a, the density of RSA integers under
the current notion really hinges upon what the value b is. In order to achieve the
density in the order of log−2 x, b must be less than 1

2 .
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Proof. We first consider the case b ≤ 1
2 . We have

|B(x; a, b)| =
∑
p

xa<p≤xb

∑
q

p<q≤xb

1

= π(xb)
∑
p

xa<p≤xb

1−
∑
p

xa<p≤xb

π(p)

= π(xb)2 −
∑
p

xa<p≤xb

p

log p
+ O

(
x2b

log3 x

)

now by the prime number theorem and partial summuation, this is equal to

=
1

2b2
x2b

log2 x
+ O

(
x2b

log3 x

)
.

This settles the first case. In the second case b > 1
2 . If a+ b < 1, then

|B(x; a, b)| =
∑
p

xa<p≤x1−b

∑
q

p<q≤xb

1 +
∑
p

x1−b<p≤x1/2

∑
q

p<q≤x/p

1 = I + II.(3.1)

The term I is at most

I � π(x1−b)π(xb)� x

log2 x
.(3.2)

And the second term II

II =
∑
p

x1−b<p≤x1/2

(π(x/p)− π(p))(3.3)

= x
∑
p

x1−b<p≤x1/2

(
1

p log x/p
− p

log p

)
+ O

x ∑
p

x1−b<p≤x1/2

1

p log2 x/p


= B

x

log x
+ O

(
x

log2 x

)
.

The estimate in the last line comes from Proposition 2.1. Therefore the assertion
is true in view of (3.2), (3.3) and (3.1).

In the remaining case a+ b ≥ 1,

|B(x; a, b)| =
∑
p

x1−b<p≤x1/2

∑
q

p<q≤x/p

1

=
∑
p

x1−b<p≤x1/2

(π(x/p)− π(p))

= B
x

log x
+ O

(
x

log2 x

)
.

�
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4. Generating RSA integers

In this section, we will answer the question that is set out in the introduction.
Suppose first, we are generating RSA integers by picking the prime factors p, q
inside a bounded interval. We then have

Theorem 4.1. Let positive integers m,n and l be fixed such that m − 1 < l ≤ n
2 .

Randomly generate a positive integer N with at most n bits. Then the probability
of N being a RSA integer whose prime factors have at least m bits and at most l
bits is asymptotic to (as n→∞)

P (N) =
1

(l log 2)22n−2l+1
.

Proof. The set of RSA integers whose prime factors have at least m bits and at
most l bits is the set

B
(

2n;
m− 1

n
,
l

n

)
:= {N = p · q < 2n : 2m−1 < p < q < 2l}.

|B
(
2n; m−1n , ln

)
| can be estimated using Theorem 3.1. This gives∣∣∣∣B(2n;

m− 1

n
,
l

n

)∣∣∣∣ =
22l

2(l log 2)2
+ O

(
22l

n3

)
.

The theorem readily follows. �

Definition 2. Let s and t be positive integers. We say that s and t are l bits apart
if

1 <
s

t
(or

t

s
) ≤ 2l.

We may alternatively generate RSA integers by picking one prime first then
selecting the other prime near the first prime. We then have the following result.

Theorem 4.2. Let positive integers m,n and l be fixed such that 2m + l ≤ n.
Randomly generate a positive integer N with at most n bits. Then the probability
of N being a RSA integer whose prime factors have at most m + l bits and are at
most l bits aprart is asymptotic to (as n→∞)

P (N) =
1

(log 2)2(ml +m2)2n−2m−l
.

Proof. The set of RSA integers less than 2n and whose prime factors have at most
m bits and are at most l bits apart has the cardinality twice the size of the following
set:

S
(

2n;
l

n
,
m

n

)
:= {N = p · q < 2n : p < q < 2lp, p < 2m}.

We invoke Theorem 2.1 for the estimate of |S
(
2n; ln ,

m
n

)
|. Indeed∣∣∣∣S (2n;

l

n
,
m

n

)∣∣∣∣ =
22m+l

2(ml +m2)(log 2)2
+ O

(
22m+l

n3

)
.

The theorem readily follows. �
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Appendix A. The Prime Number Theorem

One usually denotes by π(x) the number of primes not exceeding x. We have
the following estimate for π(x)

Theorem A.1. As x goes to infinity, we have

π(x) =
x

log x
+ O

(
x

log2 x

)
.

We mention that better error terms exist (see [8]) though the error bound x
log2 x

is

good enough for our applications. In particular, the prime number theorem implies

Corollary A.1. The number of primes in any interval (xa, xb] with a < b is∑
xa<p≤xb

1 =
xb

b log x
+ O

(
xb

log2 x

)
.

The following estimate is needed in the paper. (See [5] for a proof)

Theorem A.2. There exists a positive constant c such that for x ≥ 2, one has∑
p≤x

1

p
= log log x+ c+ O

(
1

log x

)
.

Appendix B. The method of Partial Summation

The method of partial summation is a simple but effective tool for handling
arithmetic sums.

Theorem B.1. Let 〈an〉 be a sequence of complex numbers. Set

A(t) =
∑
n≤t

an (t > 0).

Let b(t) be continuously differentiable function on the interval [1, x]. The we have∑
1≤n≤x

anb(n) = A(x)b(x)−
∫ x

1

A(t)b′(t)dt.(B.1)

The readers can consult [5] for a proof. We illustrate the method by some
examples.

Example 1. As z goes to infinity,∑
p≤z

p =
z2

2 log z
+ O

(
z2

log2 z

)
.
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Indeed in the setting of Theorem B.1, define 〈an〉 by an = 1, n = p and an = 0
otherwise; b(t) = t. In view of the prime number theorem, B.1 gives

∑
p≤z

p = zπ(z)−
∫ z

2

t

log t
dt =

z2

log z
−
∫ z

2

t

log t
dt+ O

(
z2

log2 z

)
.

Performing integration by parts on the integral, the estimate follows.

Example 2. Let θ ≥ 0 and c > 0 be fixed. Then x goes to infinity∑
p≤xc

p

log xθp
=

x2c

2c(θ + c) log2 x
+ O

(
x2c

log3 x

)
.

Define 〈an〉 by an = n when n = p and 0 otherwise; b(t) = 1
log xθt

.
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[5] Gérald Tenenbaum. Introduction to analytic and probabilistic number theory. Cambridge stud-

ies in advanced mathematics 46, 1995.
[6] E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen. Chelsea Publishing Co.,

New York, 1953.

[7] G.H. Hardy, E.M. Wright. An introduction to the theory of numbers, fourth Edition. The
Clarendon Press, Oxford, 1968.
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