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MEAN STAIRCASES OF THE RIEMANN ZEROS: A COMMENT
ON THE LAMBERT W-FUNCTION AND AN ALGEBRAIC
ASPECT
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ABSTRACT. In this note we discuss explicitly the structure of some simple sets
of values on the critical line (the “trivial critical values”) which are associated
with the mean staircases emerging from the Zeta function. They are given
as solutions of an equation involving the Lambert W-function. The argument
of the latter function may then be set equal to a special N x N (classical)
matrix (for every N) related to the Hamiltonian of the Mehta-Dyson model.
In this way we specify a function of an hermitean operator whose eigenvalues
are exactly these values. In the general case, the sets of such trivial critical
values (zeros) are special solutions of a parametric equation involving a linear
combination of Re( (s) and Im ¢ (s) on the critical line.

This research note is dedicated to the international Swiss-Italian mathematician
and physicist Professor Dr. Sergio Albeverio on the occasion of his seventieth birth-
day; a friend and long-standing scientific director of Cerfim (Research Center for
Mathematics and Physics of Locarno, situated opposite the “Rivellino™ ).

1. INTRODUCTION: A SEARCH FOR AN HERMITEAN OPERATOR ASSOCIATED
WITH THE RIEMANN ZETA FUNCTION

There is much interest in understanding the complexity related to the Riemann
Hypothesis (RH) and concerned with the location and the structure of the nontrivial
zeros of the Riemann Zeta function ((s), where s = p + it is the complex variable.

Following a suggestion of Hilbert and Polya, in recent years many efforts have
been devoted to a possible construction of an hermitean operator having as eigen-
values the imaginary parts ¢, of the nth nontrivial zeros of ¢ (¢ being meromor-
phic, the zeros are countable). These are given by the solutions of the equation
Clpn+ity) =0, n=12,.... If p, = % for all n, then all the zeros lie on the
critical line (the RH is true); the program is then to find an hermitean “operator”
T such that T - ¢,, = t, - ¢, in some appropriate (Hibert) space (¢, would be the
nth eigenvector of T).

There are today many strategies in the direction of constructing such an operator
and in the sequel we will shortly comment on some (among many others) very
stimulating works on the subject.
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In [1], Pitkénen’s heuristic work goes in the direction of constructing orthog-
onality relations between eigenfunctions of a non hermitean operator related to
the superconformal symmetries; a different operator than the one just mentioned
has also been proposed in [2] by Castro, Granik and Mahecha in terms of the
Jacobi Theta series and an orthogonal relation among its eigenfunctions has also
been found. In the rigorous work by Elizalde et al.[3] some problems with those
approches have been pointed out.

In a work of some years ago Julia [4] proposed a fermionic version of the Zeta
function which should be related to the partition function of a system of p-adic
oscillators in thermal equilibrium.

In two others pioneering works of these years, Berry and Keating [5, 6] proposed
an interesting heuristic operator to study the energy levels ¢,, (the imaginary parts
of the nontrivial zeros of the Zeta function). The proposed Hamiltonian (in one
dimension) has a very simple form given, on a dense domain, by: H = p-z + %,
where

1) p= (1) 2

As explained by the authors, the difficulty is then to define appropriate spaces and
boundary conditions to properly determine p and H as hermitean operators. In
such an approach the heuristic appearance of “instantons” is also discussed.

In another important work Bump et al. [7] introduced a local RH and proved in
particular that the Mellin transform of the Hermite polynomials (associated with
the usual quantum mechanical harmonic oscillator) contains as a factor a polyno-
mial p,(s), corresponding to the nth energy eigenstate of the oscillator, whose zeros
are exactly located on the critical line 0 = % The relation of the polynomials p,,(s)
with some truncated approximation of the entire funcion £(s) (the Xi-function),
related to the Riemann Zeta function seems to be still lacking.

Other important mathematical results concerning the nontrivial Riemann zeros,
have been obtained by many leading specialists (see among others the work by
Connes [8], the work by Albeverio and Cebulla [9] and the recent work on the xp
Hamiltonian by Sierra [10]).

Let us also mention that for the nontrivial zeros of the Zeta function an inter-
esting equation has been proposed originally by Berry and Keating in [5]. In fact,
remembering the definition of £(s), given by:

(2) €(s) =5 (s~ 1) T (3)¢(s) =01 —5)

an equation possibly giving an approximation to the zeros of £ is proposed in [5]
and given by:

s 1—s

; b mE
“ e T
As stated by the authors, (3) could be considered as a “quantization condition”.
Unfortunately, as mentioned in [5], (3) possesses complex zeros and so can not be
used to provide an hermitean operator which would generate the nontrivial zeros
of .

The content of our note is concerned with the “mean staircase” of the Riemann
zeros. We first construct sets of solutions of a parametric equation involving a linear
combination of Re( (s) and Im( (s) and point out an explicit characterization of

=0.
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them using the Lambert W-function. Then we introduce a specific argument (an
n X n hermitean matrix H, describing a discrete harmonic oscillator with creation
and annihilation “operators” a and a* such that [a, a*] = —2) into the Lambert W-
function. So we obtain, for the above values, the same goal that the “Polya-Hilbert
program” has for the nontrivial zeros of the Zeta function.

2. THE MEAN STAIRCAISE OF THE RIEMANN ZEROS AND THE TRIVIAL CRITICAL
VALUES ON THE CRITICAL LINE ASSOCIATED WITH IT

Let £(s) be the Xi-function given by (2) and s = 5 + it a complex variable on the
critical line. If N(t) denotes the number of zeros of £ in the critical strip of height
smaller or equal to ¢, and if S(¢) := %arg (C (% + it)), then from [11] we have:

(4) N(t) = (N() + S (1) + 0 (1)

(5) (N (D) = 5 (m (;;) - 1> + g

(N(t)), the “bulk contribution” to N, is called the “mean staircase of the zeros”.
The fluctuations of the number of zeros around the mean staircase, are given by

the function S(t). It is known [11] that S(¢) = O (Int) without assuming RH while,
assuming RH is true, it is known that S(t) = O (lnl(rl‘intt))

We introduce a model related to (4) by replacing (4) by (6), which corresponds
to setting S(t) + O (1) = A for a fixed real parameter A. So (4) becomes:

(6) N(t) = % (m (;ﬁ) - 1) 4 g .y

For each fixed A\ and for each n € N, we can define a set of real values ¢, ()
which are solutions of:

t t 7
7 Nt)==—|In{—) -1 —+A=n.
(™ ®) 27T(n<2ﬂ') )+8+ "
We call the t,(\) “trivial values on the critical line” or shortly “trivial critical
values”. Trivial because they are fully given by (7) and critical because they lie on
the critical line. On the other hand, we will indicate the imaginary part of the nth
nontrivial zero of ¢ simply by ¢,, and call it a true zero (of ().

Im ¢(5+it) .
W , We obtain

Notice that since arg (( (% + zt)) = arctan (
Im¢ (3 +it)
Re( (3 +1it)

So for every A and for Re( (% + it) # 0 the sequences {t,()\) } are defined by:

(8) = tan (Arr).
©)  {t.(\)} = {t €R|Im( (;Jrit) — tan (M) Re ¢ (;+z‘t> 0}.

Note that we may restrict the values of A to the interval ]f%, %[ and for |A| = %
(8) is aquivalent to Re( (% + it) =0 and Im( (% + it) #0.
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Two particular sets of interest are defined by the choices A = 0 and A = % In
the first case we have the set:

(10) {t;}::{tn(o)}:{teR|ReC<;+it) 7A0A1m<<;+¢t> :0}

or equivalently each ¢} is the solution of

(11) % <ln <;ﬁ) - 1> + g —n.

This set has been known for a long time and constitutes the “Gram points” [11].
The second set is given by the solutions ¢;* of

t t 7 1

(13) {t;*}::{tnu/z)}:{teRReg(;ﬂ't) :0/\Img<;+it) 740}

We note that the values ¢; and t;* are given by the abscissa of the intersection
points between the staircase (5) and the two functions 7~ !arg (f (% —|—it)) and
7 larg (§ (% + Zt)) - % . The plot of Fig.1 illustrates the situation for some low
lying true zeros. The values for ¢} lie mostly in between the exact value of the
Riemann zeros t,,—1 and t,, but it is known that the “Gram law” [11] fails for the
first time at t = 282.4... (“first instanton” according to [5]).

The solution of the above equations which give ¢ and ¢;* using a very special
function (the Lambert W-function, see [12]) is given below in Section 3.

3. AN EXACT SOLUTION FOR THE SEQUENCE t*, t** AND ¢, (A
n n

The equation corresponding to (11), may be written in the form

(&) ()

and the equation corresponding to (12) in the form

t 5rs n—L1_1
1 o _ 2 8
1 (3) oo (=)

Ti

1_
n—s

e

z
8

_T
so that introducing the new variables z = ~ & respectively z = we obtain

the equation (from (14) and (15), z > 0)
(16) W (z)exp (W(x)) = x.

The function W (z) defined by the functional equation (16) is called the Lambert
Wh-function and has been studied extensively in these recent years. In fact such
an equation appears in many fields of science. In particular the use of such a
function has appeared in the study of the wave equation in the double-well Dirac
delta function model or in the solution of a jet fuel problem. See [12] for an
important work on the subject. Moreover the Lambert W-function appears also
in combinatorics as the generating function of trees and as explained in [12] it has
many applications, although its presence often goes unrecognized.
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FIGURE 1. Plot of (N(t)) = 5= (In(5%) —1) + £ (red curve),

(N(t))+5(t) (green stair) and (N (t))+S(t)— 1 (blue stair), where
S(t) = targ (¢ (5 +it))

The Lambert W-function has many complex branches; of interest here is the
principal branch of W which is analytic at = 0. The solutions of (11) and (12)
are given by:

(17) t* = 2re - exp (W (”—§)>
(18) £ = 2me - exp (W (”ig»

with W here understood as the principal branch of the Lambert W-function. We
have thus constructed, with the help of the Lambert W-function, the sequences
{tz} and {t;*}. In the general case where S(t) + O (1) = A, we obtain the general
set of t,, () values given by:

9 I S )

Getting back now to the case A = 0, it should be noted that, having replaced in
(4) S(t) + O (3) by 0 we cannot expect in (11) n, which would correspond to the
exact value t,, of a true zero, to be an integer. For the first few low lying true zeros
t, of ¢, it may be observed numerically that the corresponding values of the index
n, let say n*, are randomly distributed mostly between two consecutive integers,

1

but their mean values are nearby the integers plus 5. A calculation with some

known true zeros of ¢ gives a mean value of 0.49. So, in average it seems that the

[¢)
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behavior of the true zeros ¢,, “follows” more the pattern of the ¢;;*. In a similar way
the values of the first set, i.e. ¢, lie mostly in between two true zeros of ¢, but of
course it is known that there are very complicated phenomena associated with the
chaotic behavior of the non trivial zeros of the Riemann ¢ function.

As an example, the first of the instantons [5] corresponding to n = 127, is located
at the value of t107 = 282.4651 . ... In Table 1 we give the values of ¢ and of ¢, (a
true zero) around ¢ = 280.

t106 = 279.22925
t156 = 280.80246
t197 = 282.4547596
t107 = 282.4651147
t108 = 283.211185
t1as = 284.1045158
t129 = 284.8359639
TABLE 1

From such numerical computations we see that two consecutive zeros of Im(
alone are followed by two consecutive true zeros, in particular ¢],, anticipates ¢;27.
The difference between the two subsequent t values (i.e. t127 — t]97) is very small
and given by At = 0.0103. The phase change is given by 7 as illustrated on the
plot of Im In (C (% + zt)) (step curve) and that of Im ¢ (% + it).

FIGURE 2. Plot of Im( (4 +it) (continuous curve) and
ImIn (¢ (3 +it)) = 7S(t) (step curve).

For the first 500 energy levels, that is for values of ¢ from 0 to ¢t = 811.184...
(level number n = 500), it may be seen that there are 13 instantons (in the language
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of [5]), all with a Maslov phase change of +im or of —im. The width At is usually
small but it is larger for the instanton located at ¢ = 650.66 (n corresponding to
379), where At = 0.31.... Returning now to the two sets { ¢} } and {¢:* }, we note
the elementary relation which follows from (11) and (12) given by:

(20) % =lny1

and
A T o
2 o
(20) and (21) say that the zeros of the real part of ¢ (4 + it) alone are obtained
by those of the imaginary part alone by simple average and viceversa. The two
sequences are regularly spaced and the mean distance between two trivial critical

values at the height ¢, as the mean staircase indicates (5), is given approximatively
by:

(21)

t 2T 2
(22) N@) mL  Inn

for ¢t and n large.

Before proposing an hermitean operator for the sequences of the trivial critical
values it is important to investigate a possible “quantization condition” for the
nontrivial zeros. For this we start with the functional equation of the ¢ function.

From the exact relation for the £-function given by:

(23) &)= 5t (3) cl)ss ~ 1)

—¢(1—s) = %fl?r (125> C1—s)(1—s)(1—s—1)

s € C, we have that

1—s

s s

(21) i (3) o = a7 (152 ) <o

In equation (24) we limit ourselves to consider the values s = % +e+it, t, e €R,

€ >0, and thus 1 — s = % — € — it; moreover we are interested in high values of ¢

so that we may use Stirling’s formula for the Gamma function given (in the sense
of asymptotic equivalence) by:

(25) I(z) = (2#)% T

as ¢ — oo. From (24) and (25) we then obtain (asymptotically for ¢ — 00)

o0 o (o (L () 1)) o (¢ (5 ))) -

el @) ) ) )

oo iw(c(2 o)) o s (e (L) o))
oo (c (L2 va))
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we then have, taking the limit ¢ — 0 i.e. at p =

1
2
t t s 1
(27) cos U =0 where ¥ = 3 <ln <27r> 1> f§+arg <C <2 +’Lt)>.

) with n € N. We then obtain:

t t 1 1 1 .
271_(11'1(27_(_) —1) _8+7Targ<< <2+Zt>) =n —
hence
(28) 2t7r(ln(;;>—1)+;+71Targ(g<;+it)>:n—i—;.

(28) may be seen as a “quantum condition” for the nontrivial zeros of ¢ and
it is a consequence of the functional equation (24). In fact, if in (27) we neglect
the last term arg((), then (27) has as a solution the second set of trivial critical
values {t**}. It is true, as remarked by Berry and Keating, that their equation
stated above as (3) has complex zeros which are not the nontrivial zeros of ¢, but it
should be remarked that if in (3) we set Res = % then (3) reduces to (27) without
the fluctuation term arg(¢); so the solution of (3) for Res = % is the same as the
second set of trivial critical values {t}*}.

Below the plots of cos ¥, with and without the term arg (Q (% + it)), are given.
As an illustration, we may observe on that plot the first instanton discussed above
and the second one located around ¢t = 295. In fact the maximum of the function
which gives t¥ ((27) without the term arg(()) is outside the plot of the step function
given by (27). This is visible on the plot near ¢ = 282 and near t = 296 (the second
instanton). This concludes our remark on (3) and (27). In the next Section, we
shall costruct an hermitean operator whose eigenvalues are the trivial critical values
of the Zeta function defined above in (9).

Now in (19) a trivial critical value t,,()) is given through its index n by means of
the Lambert W-function so that such values are related in a non linear way to the
integers n, i.e. in principle to the spectrum of an harmonic oscillator. So, for the
trivial critical values, no boundary condition is needed here, since they are obtained
by means of (19) in the large ¢ limit. At this moment we are free to introduce an
hermitean matrix which may generate the trivial critical values.

DN | =

4. AN HERMITEAN OPERATOR (MATRIX) ASSOCIATED WITH THE MEAN
STAIRCASE (TRIVIAL CRITICAL VALUES) OF THE RIEMANN ZETA FUNCTION

As remarked above, in (19) the only “quantal number” is the index n of the triv-
ial critical values and the construction may be given using, for any n, an hermitean
n X n matrix H related to the classical one dimensional many body system whose
fluctuation spectrum around the equilibrium positions is that of the harmonic oscil-
lator. In fact, the one dimensional Mehta-Dyson model of random matrices (which
may be seen as a classical Coulomb system with n particles) has, at low temper-
ature, an energy fluctuation spectrum given by the integers and it is possible to
introduce correspondingly annihilation and creation operators, as studied in [13] (a
short discussion is presented in the Appendix). The matrix elements of the associ-
ated hermitean matrix are then functions of the zeros of the Hermite polynomials;
in this case we do not have a Hilbert space and no Schrodinger equation will be
associated with the Lambert W-function.
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FIGURE 3. Plot of the function cos ¥ of (27) with the term
arg (¢ (3 +1it)) (step function) and without that term.

Another direction, i.e. that of introducing a Schréodinger equation to describe
the trivial critical values may in principle be obtained as an application of the
results given by Nash [14]; this is so because for large n, as it is known, (19) gives
the behavior ([11], page 214) related to the asymptotic behavior of the Lambert
W-function:

(29) £\ = 2T (1 - 7/8“>

Inn n

and thus the spectrum appears in fact as one for which the associated Schrodinger
equation contains a Gaussian type of potential [14].

Here we will consider the matrix formulation: the point may seem to be some-
what artificial but the hermitean matrix we will use (specified in the Appendix)
is related to the Mehta-Dyson model, the “starting point” of the random matrix
theory and we are free to choose such a matrix (of course other choices are possi-
ble). To do this, we begin to write (19) in a slighly different form using the Stirling
formula for the Gamma function of real argument given by (in the sense of the
asymptotic equivalence):

I(z) = (27r)% 2" %e™" as x — 0.
We then have that, as t — oo,
4 1 4 t 7 1 7
In(I'{=—4+=z])2—h{—-1 —+-In@2m)—=--A
(30) n< <27r+2>> 27rn<271' >+8+2n(ﬂ) 8
7

= (N(0) + 31 (2m) — £~ A= (N(1)) + 6.3

where 0 (A\) = $In(27) — £ — A,
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Thus introducing the operator T' = T'(H ) whose eigenvalues should be the trivial
critical values (as defined in the general case by (19)) as well as H, the hermitean
matrix given in the Appendix and related to the Mehta-Dyson model, we may write
following (30) the heuristic matrix equation:

T I
(31) (=45 )=eft™
2r 2

where I is the unit matrix. (31) is the equation for T, giving the trivial critical
values. The inversion of this formula (if it is possible to take it) yields heuristically:

(32) T(\) =T(H) =2n (F—l (efH?) — g) :

To conclude, if Hp,, = (n + %) ©n, where ¢, is the nth eigenfunction of H, then
(33)

Ty, =2m (I‘l (eHJra()‘)) — ;) On = 2m <F1 (e”+9(>‘)> — ;) On = tn(N)en.

Of course (31) for the operator T is more appealing than (19) (where n is re-
placed by H and t,(A) is replaced by matrix T') due to the combinatorial nature
of the Gamma function, but the eigenvalues of the operators T" are the same in the
“termodynamic limit”, dim H = n — oo.

This completes the second part of our note i.e. the algebraic aspect in the
construction of the trivial critical values using the two creation and annihilation
operators a, a* with [a,a*] = aa®™ — a*a = —2I connected with the Mehta-Dyson
model.

Remark: If one considers the map s = o+ it — 1 — % = z then the critical line
s = 3+it (t € R) is mapped onto the unit circumference |z| = 1; the set { +it,,(\) }
has as accumulation point z =1 (as n — 00), which is the same accumulation point
for the trivial zeros of the ( function given by z, =1 — %2” =1+ ﬁ, as m — 00
(see Fig. 4). Neglecting the trivial zeros {z,}, Fig. 4 illustrate by means of the
set of trivial critical values {t,(\)} an analogon of the Lee-Yang Theorem [15] for
the zeros of the partition function for some general spin lattice system studied in
statistical mechanics. If RH is true, then all nontrivial zeros of ((z) shall be located
at the same circumference |z| =1, with z = 1 as accumulation point.

Remark: Of course, (19) in matrix form or equivalently (31) or (32) give also
the true zeros t,,, if A is the corresponding value of the true zero. In fact a true zero
(for example the first one given by t; = 14.13472514... where \; = —0.449...,
i.e. where tan (mA;) = —6.28...) may be seen as the groundstate of the sequence
of trivial critical values given by the Lambert W-function with A = A\;. The same
for all the other true zeros. Thus as A is varying in ]—%, % [ we obtain a continuous
spectrum including the imaginary part of the nontrivial zeros which are on the
critical line. If A is such that Re{ and Im( are not both zero, then we obtain
a continuous spectrum where the true zeros are missing. It is also interesting to
analyse the two sequences t,, (A1) and ¢,(—X\1) and keeping those values of the two
sequences which are closer to a true zero as given on Table 2 for n up to 19. From
this Table we may compute the mean value of the absolute percentual error and
we find the value 0.7%. Notice that such a value is smaller than the one computed
with the sequence where A = 1 (i.e. with the ¢*).
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zZ|=1
|Z| =0
z=1
o= E
FIGURE 4. z-plane
tn tn(A1) or tn tn(A\1) or
tn(=A1) tn(—A1)
14.134 14.138 52.970 53.066
21.022 20.919 56.446 56.263
25.010  25.266 59.347  59.097
30.424  29.942 60.831 61.595
32.424 33.435 65.112 64.593
37.586 37.434 67.079 66.999
40.918  40.869 69.546  69.632
43.327  43.831 72.067  72.225
48.005  47.321 75.704  75.043

49.773  50.081
TABLE 2

5. CONCLUSION

In this note we have first obtained ¢, (), the explicit solution of (9) for the case
where S(t)+O(t) = Ai.e. the zeros of the function Im ¢ (3 + it) —tan (7A) Re { (5 + it)
by means of the Lambert W-function.

The particular case A = 0 gives the well known sequence of Gram points and for
each value of A, all the sequences of such trivial critical values are regularly spaced
contrary to that of the nontrivial zeros which have so far been found numerically
to lie on the critical line.
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In the second part of our work concerning the algebraic aspect of ¢, () we have
formally given the construction of an operator equation for the operator T'(\),
related to an Hamiltonian H emerging from the one dimensional Mehta-Dyson
model of N point charges. T'(\) appears to be related to H in a strong nonlinear
way, formally given by (19) or equivalently by (31), in operator form and has as
eigenvalues the sets of trivial critical values given by (9). So in the construction,
the sets of trivial critical values are related to the eigenvalues n = 1,...,N of a
discrete harmonic oscillator furnished by the matrices a, a*, i.e. the two discrete
annihilation and creation operators of H (the only quantal number we have used
is the index n of the corresponding trivial critical value given by (9)).

To the best of our knowledge, we do not know of any explicit existing treatment
along these lines for the sets of the trivial critical values given by (9).

In a subsequent note we intend to treat (at least numerically) another sequence
of values possibly ”‘more related”’ to the nontrivial zeros of the Zeta function but
not obtainable by a Lambert W-function or a Gamma function.

Updates

(1) Sierra and Townsend [16] introduced and studied an interesting physical
model (a charged particle in the plane in the presence of an electrical and
a magnetic potential). In particular, the lowest Landau level is connected
with the smoothed counting function that gives the average number of
zeros, i.e. the staircase which here we have studied, by means of a classical
one-dimensional model of IV interacting charged particles.

(2) Very recently Schumayer et al. [17] constructed (in particular) a quantum
mechanical potential for the zeros of ((s), using the first 10° energy eigen-
values (nontrivial zeros). It is expected that the same form of a quantum
mechanical potential would appear using only the values ¢,(\) we have
found in this note. For the construction of an Hamiltonian whose spectrum
coincides with the primes, see also the interesting work of Sekatskii [18].

6. APPENDIX

We shall discuss the hermitean matrix H associated with the Mehta-Dyson model
and the discrete annihilation and creation operators associated with H whose spec-
trum is given by the set of integers (1, 2, ..., N), for any finite N.

In [13, 19] the one dimentional Mehta-Dyson model defined by the potential

N
energy F = ;} <§yz2 - Z<Nlog (lys — yJ|)> was studied, where y; is the position
1= 1<J<

of the ith particle on the line. The fluctuation around the equilibrium positions
(these are given by the zeros of the Hermite polynomials of degree N, where N is
the number of particles on the line, for every finite V), i.e. the harmonic fluctuation
spectrum, is given by the eigenvalues of the hermitean N x N real matrix whose
elements are given by:

_ -1 o
i = lwi—a;]? i#]

Hi =1+ pegp 1=
i



MEAN STAIRCASES OF THE RIEMANN ZEROS 173

i,7 = 1,..., N, where the x; are the “equilibrium positions” i.e. the zeros of the
Hermite polynomials of degree N.

The spectrum of H is given exactly by the integers (1, 2, ..., N) for every finite
N and the eigenfunctions are given in terms of the Mehta-Dyson polynomials of
order 1 up to N. The Hamiltonian describing the harmonic fluctuations takes then
the form [13]:

1
H=N-I- §aa*
where [ is the unit matrix of order N and a, resp a*, are the discrete annihila-
tion and creation operators (matrices of order N x N) of H, which satisfy the

commutation relation [a,a*] = —2I. Moreover [H,a*] = a* and [H,a] = —a.
If Xj is the kth eigenvector of H with eigenvalue the integer k, one has:

a* Xpy1 = Xiyo
and
aXpt1 =2 (N — k) X.
Explicitly, if X = (p1x (1), ..., 9Nk (xn)) is the kth eigenvector, where () is
the kth Mehta-Dyson polynomial of argument z, then

d ) = i%ﬂ (1) — pra1 (24)

a X = — X
Pk+1 ( 1) ] L (‘pk+1 ( 1 < ( L 7’)
and
a Qr+1\T1 2171 I Pr+1 (1) -

H as above, with N = n may be used to give the first n trivial critical values of
the first set in (17) i.e. 5, ..., t while H + % may be used for obtaining the first

n trivial critical values of the second set in (18) i.e. 1%, ..., t5* in the discussion

on the mean staircases given in Section 2. The same holds true for the general case
A different from 0 and :I:%.

REFERENCES

[1] Pitkdnen M. A strategy for proving Riemann Hypothesis. Acta Math. Univ. Comenianae,
72(1):1-13, 2003.

[2] Castro C., Granik A., and Mahecha J. On susy-qm, fractal strings and steps towards a proof
of the Riemann Hypothesis, arXiv:hep-th/0107266v3, September 2001.

[3] Elizalde E., Moretti V., and Zerbini S. On recent strategies proposed for proving the Riemann
hypothesis. Int. J. Mod. Phys, A18:2189-2196, 2003.

[4] Julia B. On the statistics of primes. Journal de physique, 50(12):1371-1375, 1989.

[5] Berry M.V. and Keating J.P. H = xp and the Riemann zeros. In Supersymmetry and Trace
Formulae: Chaos and Disorder, edited by Lerner et al., page 355-367, New York, Kluwer
Academic Publishers, 1999.

[6] Berry M.V. and Keating J.P. The Riemann zeros and eigenvalue asymptotics. STAM Review,
41(2):236-266, 1999.

[7] Bump D., Choi Kwok-Kwong, Kurlberg P., and Vaaler J. A local Riemann hypothesis, I.
Mathematische Zeitschrift, 233(1):1-18, 2000.

[8] Connes A. Trace formula in noncommutative geometry and the zeros of the Riemann zeta
function. Selecta Mathematica, New Series, 5(1), May 1999.

[9] Albeverio S. and Cebulla C. Miintz formula and zero free regions for the Riemann zeta
function. Bulletin des Sciences Mathématiques, 131(1):12-38, 2007.

[10] Sierra G. A quantum mechanical model of the Riemann zeros. New Journal of Physics, 10,
033016, 2008.



174

DAVIDE A MARCA, STEFANO BELTRAMINELLI, AND DANILO MERLINI

[11] Titchmarsh E.C. The Theory of the Riemann Zeta-Function. Ozford University Press, 2

edition, 1986.

[12] Corless R.M., Gonnet G.H., Hare D.E.G., Jeffrey D.J., and Knuth D.E. On the Lambert

W-function. Advances in Computational Mathematics, 5:329-359, 1996.

[13] Merlini D., Rusconi L., and Sala N. I numeri naturali come autovalori di un modello di

oscillatori classici a bassa temperatura. Bollettino della Societa ticinese di Scienze naturali,
87:29-32, 1999.

[14] Nash C. The spectrum of the Schrodinger operator and the distribution of primes. Advances

in Applied Mathematics, 6(4):436-446, December 1985.

[15] Yang C.N., Lee T.D. Statistical Theory of Equations of State and Phase Transitions. I. Theory

of Condensation, Physical Review Letters, 87:404—409, 1952.

[16] Sierra G. and Townsend P.K. Landau levels and Riemann zeros. Physical Review Letters,

101, 110201, 2008.

[17] Schumayer D., van Zyl B., and Hutchinson D. Quantum mechanical potentials related to the

prime numbers and Riemann zeros. Physical Review E, 78, 056215, 2008.

[18] Sekatskii S.K. On the hamiltonian whose spectrum coincides with the set of primes.

arXiv:0709.0364v1 [math-ph], 2007.

[19] Bernasconi A., Merlini D., and Rusconi L. Complex aspects of the Riemann Hypothesis:

a computational approach. In Losa G. et al., editors, Fractals in Biology and Medicine,
volume 3, page 333. Birkh&user, 2002.

D. A Marca, CERFIM, RESEARCH CENTER FOR MATHEMATICS AND PHYsIcs, PO Box 1132,

6600 LOCARNO, SWITZERLAND

E-mail address: davide.amarca@ti.ch

S. BELTRAMINELLI, CERFIM, RESEARCH CENTER FOR MATHEMATICS AND PHYsIcS, PO Box

1132, 6600 LOCARNO, SWITZERLAND

E-mail address: stefano.beltraminelli@ti.ch

D. MEeRrLINI, CERFIM, RESEARCH CENTER FOR MATHEMATICS AND PHysIics, PO Box 1132,

6600 LOCARNO, SWITZERLAND

E-mail address: merlini@cerfim.ch



