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ABSTRACT. In this paper, we introduce a new class of variational inclusions
involving three operator. Using the resolvent operator technique, we establish
the equivalence between the general variational inclusions and the resolvent
equations. We use this alternative equivalent formulation to suggest and ana-
lyze some iterative methods for solving the general variational inclusions. We
also consider the criteria of these iterative methods under suitable conditions.
Since the general variational inclusions include the variational inequalities and
the related optimization problems as special cases, our results continue to hold
for these problems.

1. INTRODUCTION

Variational inclusions involving three operators are useful and important exten-
sions and generalizations of the the general variational inequalities with a wide
range of applications in industry, mathematical finance, economics, decision sci-
ences, ecology, mathematical and engineering sciences, see [1-45] and the references
therein. It is well known that the projection method and its variant forms including
the Wiener-Hopf equations can not be extended and modified for solving the vari-
ational inclusions. These facts and comments have motivated to use the technique
of the resolvent operators. This technique can lead to the development of very
efficient and robust methods since one can treat each part of the original operator
independently. A useful feature of these iterative methods for solving the general
variational inclusion is that the resolvent step involves the the maximal monotone
operator only, while other parts facilitates the problem decomposition. Essentially
using the resolvent technique, one can show that the variational inclusions are
equivalent to the fixed point problems. This alternative equivalent formulation has
played very crucial role in developing some very efficient methods for solving the
variational inclusions and related optimization problems, see [15-38] and the refer-
ences therein. Related to the variational inclusions, we have the problem of solving
the resolvent equations, which are mainly due to Noor [20,21,23]. Essentially using
the resolvent operator technique, we can establish the equivalence between the re-
solvent equations and the variational inclusions. This equivalence formulations is
more general and flexible than the resolvent operator method. Resolvent equations
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technique has been used to suggest and analyze several iterative methods for solving
variational inclusions and related problems, see [24-27,32,34-38] and the references
therein.

Motivated and inspired by the recent research activities in these areas, we intro-
duce some new classes of variational inclusions and resolvent equations. Essentially
using the resolvent operator methods, we establish the equivalence between the re-
solvent equations and the general variational inclusions. This alternative equivalent
formulation is used to suggest some iterative methods for solving the general vari-
ational inclusions. We study the convergence criteria of the new iterative method
under some mild conditions. Since the variational inclusions include the mixed
variational inequalities and related optimization problems as special cases, results
proved in this paper continue to hold for these problems.

2. Basic RESULTS

Let K be a nonempty closed and convex set in a real Hilbert space, whose inner
product and norm are denoted by (-,-) and ||.|| respectively. Let T, A,g: H — H
be three nonlinear operators.

We consider the problem of finding v € H such that

(1) 0€pTu+u—g+ pA(u), p>0, a constant,

which is known as the general variational inclusion GVI(T, A, g). Problem (1) is also
known as finding the zero of the sum of two (or more) monotone operators. Vari-
ational inclusions and related problems are being studied extensively by many au-
thors and have important applications in operations research, optimization, math-
ematical finance, decision sciences and other several branches of pure and applied
sciences, see [2-45] and the references therein.

If A(.) = 0p(.), where Op(.) is the subdifferential of a proper, convex and lower-
semicontinuous function ¢ : H — R U {400}, then the problem (1) reduces to
finding u € H such that

0 € pTu+u— g(u) + pdp(u),
or equivalently, finding v € H such that

(2) (pTu+u—g(u),g(v) —u) + pp(g(v)) — pp(u) >0, Vv e H.

The inequality (2) is called the general mixed variational inequality or the general
variational inequality of the second kind. It has been shown that a wide class
of linear and nonlinear problems arising in various branches of pure and applied
sciences can be studied in the unified framework of mixed variational inequalities,
see [2-38].

We note that if ¢ is the indicator function of a closed convex set K in H, that
is,
0, if uwekK
400, otherwise,

o(0) = I(w) = {

then the general mixed variational inequality (2) is equivalent to finding v € K
such that

(3) (pTu+u—g(u),g(v) —u) >0, VveH:g(v) €K,



RESOLVENT EQUATIONS METHOD FOR GENERAL VARIATIONAL INCLUSIONS 109

which is called the general variational inequality introduced and studied by Noor
[29] in connection with nonconvex functions. See also Noor and Noor [31,32] for
more details.

If g = I, the identity operator, then problem (3) is equivalent to finding u € K
such that

(4) (Tu,v—u) >0, Yvek,

which is known as the classical variational inequality introduced and studied by
Stampacchia [44] in 1964. For the recent trends and developments in variational
inclusions and inequalities, see [2-45] and the references therein.

We also need the following well known concepts and results.
Definition 2.1 [5]. If A is a maximal monotone operator on H, then, for a constant
p > 0, the resolvent operator associated with A is defined by

Ja(u) = (I +pA)~Y(u), foralluc H,

where I is the identity operator. It is well known that a monotone operator is
maximal if and only if its resolvent operator is defined everywhere. In addition, the
resolvent operator is a single-valued and nonexpansive, that is, for all u,v € H,

[Ta(w) = Ja()|| < [[u =]

Remark 2.1. It is well known that the subdifferential d¢ of a proper, convex and
lower semicontinuous function ¢ : H — RU{+00} is a maximal monotone operator,
we denote by

Jo(u) = (I + pdp)~t(u), forallue H,
the resolvent operator associated with dy, which is defined everywhere on H. In
particular, the resolvent operator J, has the following interesting characterization.
Lemma 2.1 [5]. For a given z € H, u € H satisfies the inequality

(u—z,v—u)+ pp(v) — pp(u) >0, forallveH,
if and only if
u=J,z,

where J, = (I 4+ pd¢p)~" is the resolvent operator.

This property of the resolvent operator J, plays an important part in developing
the numerical methods for solving the mixed variational inequalities.

If the function ¢(.) is the indicator function of a closed convex set K in H, then
it is well known that J, = P, the projection operator of H onto the closed convex
set K.

Related to the variational inclusions, we consider the problem of solving the
resolvent equations. To be more precise, let R4 = I — gJa, where J4 is the
resolvent operator associated with the maximal monotone operator A, and I is the
identity operator. For a given operator T', we consider the problem of finding z € H
such that

(5) TJaz+p *Raz =0,

which is called the general resolvent equation. If ¢ is the indicator function of a
closed convex set K, then J, = Pk, the projection of H onto the closed convex set
K. and Qx = I — gPk. In this case, resolvent equations (5) are equivalent to find
z € H such that

TPxz+p 'Qrz=0,
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which are called the Wiener-Hopf equations which were introduced and considered
by Noor [29]. If g = I, the identity operator, then obtain the original Wiener-Hopf
equations introduced and studied by Shi [43]. It is well known that the Wiener-Hopf
equations are equivalent to the variational inequalities. This equivalence alternative
formulation is more general and flexible that the projection fixed point problem. For
the formulation, numerical methods and applications of the Wiener-Hopf equations,
see [14,25,28,33,37,41,43] and the references therein.

Using the definition of the resolvent operator J,4, one can easily prove the fol-
lowing well known result. For the sake of completeness and to convey an idea, we
include its proof.

Lemma 2.2. The function u € H is a solution of the variational inclusion (1) if
and only if u € H satisfies the relation

u=Julg(u) — pTul,

where p > 0 is a constant and J4 = (I + pA)~! is the resolvent operator associated
with the maximal monotone operator.

Proof. Let u € H be a solution of (1). Then

0 € pTu+u—g(u)+pA(u)
= —(9(u) = pTu) + (I + pA)(u)
= u=(+pA) g(u) — pTu] = Ja[g(u) — pTu],

the required result.
O

It is clear from Lemma 2.2 that variational inclusion (1) and the fixed point
problems are equivalent. This alternative equivalent formulation has played a sig-
nificant role in the studies of the variational inequalities and related optimization
problems.
Algorithm 2.1. For a given z¢y € H, compute the approximate solution x,,1 by
the iterative schemes:

Tnt1 = (1 —ap)xy + andalg(z,) — pTay)].

where a,, € [0,1] for all n > 0. Algorithm 2.1 is also known as Mann iteration.

We now discuss some special cases of Algorithm 2.1 for solving the mixed vari-
ational inequalities (2).
I. If A(.) = ¢(.), the subdifferential of a proper lower-semicontinuous and convex
function ¢, then J4 = J, = (I + pdp)~! and consequently Algorithm 2.1 collapses
to:

Algorithm 2.2. For a given zy € H, compute the approximate solution x,, by the
iterative schemes

Tpy1 = (1 — ap)wy + aano[g(xn) — pTx,],

where a,, € [0, 1] for all n > 0. Algorithm 2.2 is called one-step method for solving
the general mixed variational inequalities (2) and appears to be a new one.

II. If ¢ is the indicator function of a closed convex set K in H, then J, = Pk, the
projection of H onto the closed convex set K. In this case Algorithm 2.1 reduces
to the following method.
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Algorithm 2.3. For a given zy € H, compute the approximate solution x,, by the
iterative schemes

Tn1 = (1 - an)xn + anPK[g(xn) - pTxn]a
where a,, € [0,1] for all n > 0. Algorithm 2.3 is a one-step method for solving the
general variational inequalities (3). Noor [29] has studied the convergence analysis
of Algorithm 2.3 and its various special cases.
From the above discussion, it is clear that Algorithm 2.1 is quite general and
it includes several new and previously known algorithms for solving variational
inequalities and related optimization problems.

We now recall some well known concepts and notions.
Definition 2.2. A mapping T : H — H is called p-Lipschitz if for all z,y € H,
there exists a constant 3 > 0, such that

[Tz —Ty|| < Bllz —yl|-

Definition 2.4. A mapping T : H — H is called € K, there exists a constant
a > 0, such that
(Tx —Ty,z —y) > ol |z —y||*
Lemma 2.3 [46]. Suppose {05}, is a nonnegative sequence satisfying the
following inequality:
Okt1 < (1 —Xg)dp + 0o, £>0
with A, € [0,1], D72 Ak = 00, and o), = 0(\;). Then limy_, o, 6 = 0.

3. MAIN RESULTS

In this section, we use the general resolvent equation technique to suggest and
analyze some iterative methods for solving the general variational inclusion (1). For
this purpose, we need the following result, which can be proved by using Lemma
2.2. However, for the sake of completeness and to convey an idea, we include its
proof.

Lemma 3.1. The element u € H is a solution of (1), if and only if, z € H satisfies
the resolvent equations (5), where

u = Jaz,

z = g(u) — pTu.
Proof. Let u € H be a solution of (1). Then, from Lemma 2.3, we have
(6) u = Jalg(u) — pTu].
(7) z=g(u) — pTu.
Form (6) and (7), we have

u = JAZ7

= g(u) = pTu,

from which, we have
z=gJaz — pTJaz,

which is exactly the resolvent equation (5), the required result.
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From Lemma 3.1, it follows that the variational inclusion (1) and the resolvent
equation (5) are equivalent. This alternative equivalent formulation has been used
to suggest and analyze a wide class of efficient and robust iterative methods for
solving variational inclusions and related optimization problems, see [3-16] and the
references therein.

Using Lemma 3.1, we now suggest and analyze a new iterative algorithm for
solving the general variational inclusion (1) and this is the main motivation of this
paper.

Algorithm 3.1. For a given 2y € H, compute the approximate solution z,; by
the iterative schemes

(8) U = (1—an)zn +anJazn
9) Znp1 = (I=an)zn + an{g(un) — pTun}
where a,, € [0,1] for all n > 0.

If g = I, the identity operator, then Algorithm 3.1 reduces to:

Algorithm 3.2. For a given zg € H, compute the approximate solution z,y1 by
the iterative schemes

Uy, = (1—an)zn +anJazn
Zne1 = (1 —an)zn +an{u, — pTu,}.
For a,, = 1, Algorithm 3.1 collapses to the following iterative method for solving
variational inclusions (1).

Algorithm 3.3. For a given 2y € H, compute the approximate solution z,; by
the iterative schemes

U, = Jazn
Zn+1 = g(un)_pTun

If ¢ is the indicator function of a closed convex set K in H, then J, = Pk, the
projection of H onto the closed convex set K. In this case Algorithm 2.1 reduces to
the following method for solving general variational inequalities (3). These iterative
methods are mainly due to Noor [29].

Algorithm 3.4. For a given zp € H, compute the approximate solution z,11 by
the iterative schemes

up, = (1—an)zn+anPrzn
Zny1 = (1= an)zn + an{g(un) — pTun}

where a,, € [0,1] for all n > 0.

In brief, Algorithm 3.1 is quite general and includes several iterative methods for
solving mixed variational inequalities and related optimization problems as special
cases.

We now study those conditions under which the approximate solution obtained
from Algorithm 3.1 to a solution of the variational inclusion (1).

Theorem 3.1. Let T be a strongly monotone with constant o > 0 and Lipschitz
continuous with constant 5 > 0 and let g be a strongly monotone with constant
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o > 0 and Lipschitz continuous with constant 6 > 0. If

« Vva? — p2(2k — k2)
P= g 72 ;
(11) a > BVEk(R2-k), k<1,

where
k=+v1-20+ 62,

and a, € [0,1], Y77, a, = oo, then the approximate solution 2,41 obtained from
Algorithm 3.1 converges to a solution z of the general resolvent equation (5).

Proof. Let z* € H be a solution of (5). Then, from Lemma 3.1, we have

(12) ' = (1—ap)z* +anJaz”

(13) z¢ = (1—an)z" +ap{g(u”) — pTu"}

where a,, € [0,1] and u* € H is a solution of (1). To prove the result, we need first

to evaluate ||z,41 — 2*|| for all n > 0. From (9) and (14), we have

zn41 = 2| = |[(1 = an)zn + an{g(un) — pTun}t — (1 — an)z" — an{g(u*) — pTu"}||
< (L=an)llzn = 27| + anllg(un) — g(u®) = p(Tun — Tu”)||
< (L=an)llzn = 27| + anllun — u” = (g(un) — g(u?))]|

(14) an||tn —u* — p(Tun, — Tu")||.

(10) <

From the strongly monotonicity and Lipschitz continuity of the operator T', we have
it =" = p(Tn, — T2

[t — u* || = 2p(Tup, — Tu* upy — u*) + p2|| Ty — Tu*||?

[l —u*|* = 2pllup — u|* + 6% ||un — w*||?]

01 un — %,

IN

(15)
where
(16) 01 = /1 —2pa+ pB2.
In a similar way, we have

e — u” = (g(un) — g < [1 =20 + 7] Jun — u*|2
(17) = K llun — |,

where k is defined by (12).
Combining (15), (16) and (18), we have

(18) [zn+1 = 27 < (1= an)|2n = 27[| + anb|un — u”|,

where 0 = 01 + k.
From (8), (13) and the nonexpansivity of the operators J4, we have

lun = < (L=an)l2n = 27| + anl[Jazn — Ja2"||
< (I=an)llzn = 27| + anllzn = 27
(19) = llzn =27l
From (19) and (20), we obtain that

Zne1 — 27l < (1= an)|lzn — 2% + anb||zn — 27|

= [ =an(l=0)][lzn — 27|I,
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and hence by Lemma 2.3, lim,, . ||z, — 2*|| = 0, completing the proof.

4. COMPUTATIONAL ASPECTS

In this paper, we have shown that the general variational inclusions are equivalent
to a new class of resolvent equations . This equivalence is used to suggest and
analyze an iterative method for solving the general variational inclusions. It is
worth mentioning that a special case of Algorithm 3.1 has been used by Pitonyak,
Shi and Schiller [41] to find the numerical solutions of the obstacle problems. The
results are encouraging and perform better than other methods. Noor, Wang and
Xiu [39] has developed a very efficient and robust method using the technique of
the Wiener-Hopf equations for solving the variational inequalities. It is interesting
to use the technique and idea of this paper to develop other new iterative methods
for solving the variational inequalities involving the nonexpansive operators. This
is another direction for future work.
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