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NEAR-EXTREMES AND RELATED POINT PROCESSES

N. BALAKRISHNAN, E. HASHORVA, AND J. HÜSLER

Abstract. Let Xi, i ≥ 1 be a sequence of random variables with continuous

distribution functions and let {N(t), t ≥ 0} be a random counting process.

Denote by Xi:N(t), i ≤ N(t) the i-th lower order statistics of X1, . . . , XN(t), t ≥
0 and define a point process in R by Mt,m(·) :=

∑N(t)
i=1 1(XN(t)−m+1:N(t) −

Xi ∈ ·), m ∈ N. In this paper we derive distributional and asymptotical results

for Mt,m(·). For special marginals of the point process we retrieve some general

results for the number of m-th near-extremes.

1. Introduction

Let Xi, i ≥ 1 be a sequence of random variables with continuous distribution
functions and let {N(t), t ≥ 0} be a random counting process independent of
Xn, n ≥ 1. Denote byXN(t)−i+1:N(t) the i-th largest order statistic ofX1, . . . , XN(t),
if N(t) ≥ i. For any positive constant a and m ∈ N define the discrete random
variable Kt(a,m) by

Kt(a,m) :=
N(t)∑
i=1

1(XN(t)−m+1:N(t) −Xi ∈ [0, a)), if N(t) ≥ m,

and 0, otherwise. Kt(a,m) counts the number of sample points Xi which fall in
the random window Wt,a,m := (XN(t)−m+1:N(t) − a,XN(t)−m+1:N(t)] (1(·) stands
for the indicator function).

Basic asymptotic properties of Kt(a,m) are obtained in Hashorva (2003), Hashorva
and Hüsler (2008). The motivation for considering the random variable Kt(a,m)
comes from the fact that for some applications the randomly indexed order statis-
tics are of direct interest, for instance when dealing with claim sizes in an insurance
context. Statistical applications can be found in Hashorva and Hüsler (2005).

Distributional and asymptotical results in connection with the number of sample
points Xi such that Xn−m+1:n−Xi ∈ B, where B = [0, a) or B = (−a, 0] are derived
in Balakrishnan and Stepanov (2004, 2005) and Dembinska et al. (2007).

In an asymptotic context it is of some interest to allow the length of the random
window Wt,a,m to depend directly on t. This can be achieved for instance if a = a(t)
or a = a(N(t)). In Balakrishnan and Stepanov (2004, 2005) fixed length random
windows are dealt with in detail.

In this paper we have following objectives in mind:
a) Instead of defining different random variables (like Kt(a,m), a > 0), we choose a
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more general approach utilising point processes. In fact a point processes approach
(considering only the maxima) is suggested in Hashorva and Hüsler (2000). One
advantage of the point process approach is that several previously studied random
quantities are retrieved when the Borel set B is an interval [a, b) ⊂ R.

b) We allow the random window to grow/shrink with t by considering a scaling
of the Borel set B.

c) Besides the iid case (independence and common distribution assumption on
Xi, i ≥ 1) we consider the general setup where Xi, i ≥ 1 can be dependent. From
the statistical point of view this extension is interesting since dependence is often
observed in practical situations.

Explicitly, define a family of point processes Mt,m(·) by

Mt,m(B) :=
N(t)∑
i=1

1(XN(t)−m+1:N(t) −Xi ∈ B).

The random variable Mt,m(B) counts the number of sample points Xi in the Borel
set B ⊂ R near the m-th randomly indexed order statistics. We suppose without
loss of generality that N(0) = m almost surely. Further, we assume throughout
this paper that {N(t), t ≥ 0} has almost surely non-decreasing sample paths. If
m = 1 and B ⊂ (−∞, 0] put Mt,1(B) := 1(0 ∈ B). Hashorva and Hüsler (2008)
derive distributional and asymptotic properties of the point process

Mn,m(B) :=
n∑
i=1

1(Xn−m+1:n −Xi ∈ B), n > 1, B ⊂ [0,∞)

assuming that Xn, n ≥ 1 possess a common continuous distribution function F .
In this paper we deal with distributional and asymptotic properties of Mt,m(·). For
m > 1 we consider in some detail also the interesting case B ⊂ (−∞, 0].
When B = [0, a), or B = (−a, 0], a > 0 Balakrishnan and Stepanov (2005), and
Dembinska et al. (2007) derive some distributional and asymptotical properties of
Mt,m(B)|N(t) = n.

Outline of the rest of the paper: In the next section we provide few preliminary
results. In Section 3 we begin with some asymptotic results for the iid case. Then
we focus on the situation where the sample points Xi, i ≥ 1 can be dependent. Two
illustrating examples are presented in Section 4. The proofs of all the results are
relegated to Section 5.

2. Preliminaries

Let Xi, i ≥ 1 be independent random variables with common continuous distri-
bution function F and let N(t) be as defined above independent of Xi, i ≥ 1.
In this section we derive the probability generating function (p.g.f.) of marginals
of the point process Mt,m(·). Then we give a preliminary result on the joint weak
convergence of randomly indexed upper order statistics.

Write in the following d= to mean equality of distribution functions of two given
random variables. In the next lemma we derive the p.g.f. of the point process of
interest.

Lemma 1. Let {Xi, i ≥ 1} be independent random variables with common con-
tinuous distribution function F . Let x ∈ R and m,n be two integers such that
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F (x) ∈ (0, 1), and 1 ≤ m < n,m, n ∈ N. Then we have for any Borel set B ⊂ [0,∞)
or B ⊂ (−∞, 0](

Mn,m(B)|Xn−m+1:n = x
)

d= 1(0 ∈ B) +
nB,m∑
i=1

1(x− η[x]
i ∈ B),(1)

where nB,m := n − m, η
[x]
i

d= X1|X1 ≤ x, i ≥ 1 if B ⊂ [0,∞), and nB,m :=

m − 1, η[x]
i

d= X1|X1 > x, i ≥ 1 if B ⊂ (−∞, 0] and m > 1, with η
[x]
i , i ≥ 1

independent random variables.
Furthermore, if N(t), t ≥ 0 is a counting process such that N(0) = m almost surely
being further independent of Xi, i ≥ 1, then we have

E

{
sMt,m(B)−1(0∈B)

}
=

∞∑
n=m

P {N(t) = n}
∫

R

[
1− (1− s)P

{
x− η[x]

1 ∈ B
}]nB,m

× dFn−m+1:n(x), ∀s ∈ (0, 1),(2)

with Fn−m+1:n the distribution function of Xn−m+1:n.

By the above lemma for n > m > 1 we obtain (suppose 0 6 inB)

E{Mt,m(B)|N(t) = n} = nB,m

∫
R
P {x− η[x]

1 ∈ B} dFn−m+1:n(x),(3)

where the distribution function Fn−m+1:n of Xn−m+1:n has F -density (cf. Theorem
1.5.1 of Reiss (1989))

n!Fn−m(x)(1− F (x))m−1

(n−m)!(m− 1)!
, x ∈ R.(4)

Consequently E{Mt,m(B)} <∞ if E{N(t)} <∞, t > 0.

Remark 1. If B = B1 ∪ B2 with B1, B2 two disjoint Borel sets such that B1 ⊂
(−∞, 0], B2 ⊂ [0,∞) we have

Mn,m(B) = Mn,m(B1) +Mn,m(B2), n > m > 1.

For any x ∈ R such that F (x) ∈ (0, 1) the random variableMn,m(B1) andMn,m(B2)
are conditionally independent given Xn−m+1:n. This fact is important and leads to
general results for general Borel sets B ⊂ R.

A common asymptotic assumption on the counting process {N(t), t ≥ 0}, which
we want to impose for our asymptotic results is the convergence in probability

N(t)/t
p→ Z, t→∞,(5)

where Z is a non-negative random variable such that P {Z ∈ (0,∞)} = 1.
The second important asymptotic assumption concerns the asymptotic behaviour

of the sample maxima of the random sequence Xi, i ≥ 1. Specifically, we assume
that the underlying distribution function F is in the max-domain of attraction of
a univariate extreme value distribution function H (write this as F ∈ MDA(H)),
i.e.

lim
t→∞

sup
x∈R

∣∣∣F t(q(t)x+ r(t))−H(x)
∣∣∣ = 0,(6)
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with q(t) > 0, r(t) two measurable functions. For further details on extreme value
theory we refer the reader to the following monographs: Leadbetter et al. (1983),
Resnick (1987), Reiss (1989), Falk et al. (2004), De Haan and Ferreira (2006).

Denote by αH , xH the lower and the upper endpoint of the distribution function
H. The univariate extreme value distribution function H is either the Gumbel
distribution Λ(x) = exp(− exp(−x)), x ∈ R, the Weibull distribution Ψα(x) =
exp(−|x|α), x < 0, α > 0, or the Fréchet distribution Φα(x) = exp(−x−α), x >
0, α > 0. Note in passing that if

lim
x→∞

1− F (x+ a)
1− F (x)

= β(a) ∈ (0, 1), ∀a > 0,(7)

then F is in the Gumbel max-domain of attraction with q(t) := 1, t > 0.
The asymptotic condition on F in (6) is equivalent with the joint convergence

in distribution (see e.g. Falk et al. (2004))(Xn:n − r(n)
q(n)

, . . . ,
Xn−k+1:n − r(n)

q(n)

)
d→ (Y1, . . . , Yk), ∀k ≥ 2(8)

as n→∞, with (Y1, . . . , Yk) a random vector in Rk with density function

hk(x1, . . . , xk) = H(xk)
k∏
i=1

H ′(xi)
H(xi)

(9)

which is positive for αH < xl < xl−1 < · · · < x1 < xH . If Xi, i ≥ 1 are dependent,
then the convergence in distribution of the upper order statistics follows under
additional asymptotic restrictions. Indeed, several results for asymptotic behaviour
of univariate sample extremes of non-iid sequences are available in the literature.
For instance, if Xi, i ≥ 1 is a stationary random sequence such that (6) holds and
the weak distributional mixing conditions Dl(un), l ∈ N, D′(un) (see Falk et al.
(2004)) are satisfied with un = q(n) + r(n),un = (un, . . . , un) ∈ Rk, then (8) holds
with l = k. The definitions of Dk(un) and D′(un) are given in Leadbetter et al.
(1983). The mixing conditions are satisfied if Xn, n ≥ 1 are independent with
distribution function F such that (6) holds.

3. Main Results

In this section we shall derive several asymptotic results for the scaled point
process

M̃t,m(B) := Mt,m(q̃(t)B), B ⊂ R,
where q̃(t) is a positive measurable scaling function. In our asymptotic results we
relate q̃(t) with the scaling function q(t) (provided that assumption (6) is valid) by
the following relation

lim
t→∞

q̃(t)
q(t)

= Q ∈ [0,∞).(10)

We consider briefly the iid setup, i.e., we assume that Xi, i ≥ 1 are independent with
common continuous distribution function F . As previously shown in Hashorva and
Hüsler (2008), Hashorva (2003), Hashorva and Hüsler (2005), under this assumption
a convenient approach to derive asymptotic results for the scaled point process of
interest is to utilise (2).
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If both (5) and (6) hold, then Proposition 2.1 of Hashorva (2003) implies for any
k ≥ 1 as t→∞(XN(t):N(t) − r(t)

q(t)
, . . . ,

XN(t)−k+1:N(t) − r(t)
q(t)

)
d→ (Y ∗1 , . . . , Y

∗
k ),(11)

where for any i ≥ 1 we have if H = Λ

Y ∗i
d= Yi + lnZ

and
Y ∗i

d= Z−1/αYi, Y ∗i
d= Z1/αYi

holds if H = Ψα or H = Φα, respectively. Furthermore, Z is independent of
Yi, i ≥ 1.

When H = Λ or H = Ψα, α > 0 we obtain with similar arguments as in Hashorva
(2004) using (2) and (11) for all s ∈ (0, 1)

lim
t→∞

E{sM̃t,m(B)} = E

{
exp(−(1− s)Z ln

(
H(Y ∗m −Qb)/H(Y ∗m −Qa)

)}
,(12)

with B := [a, b), 0 < a < b < ∞. The above limiting expression is the p.g.f. of
a mixed Poisson random variable. Hence convergence in distribution for M̃t,m(B)
follows. If H = Λ, then the limiting p.g.f. in (12) does not depend on Z. This fact
is mentioned in Corollary 2.7 of Hashorva (2003) (only for the case a, b positive
and m = 1). F ∈ MDA(Λ) follows if for instance F satisfies (7) so that we can
choose the scaling function q(t) as a positive constant. Consequently, (12) implies
the result of Theorem 2.1 of Balakrishnan and Stepanov (2005) (for β(a) ∈ (0, 1)).
If (10) holds with Q = 0, then by (12)

lim
t→∞

E{sM̃t,m(B)} = E{exp(−(1− s)Z ln(H(Y ∗m)/H(Y ∗m))} = 1, ∀s ∈ (0, 1)

implying the convergence in probability

M̃t,m(B)
p→ 0, t→∞.

In case that H = Φα the sequence Mt,m(B), t > 0 is not tight.
Similarly, if F ∈ MDA(H) we obtain for any m > 1, B := [a, b),−∞ < a < b < 0

lim
t→∞

E{sM̃t,m(B)} = E

{[
1− (1− s) 1

lnH(Y ∗m)
ln
(H(Y ∗m −Qb)
H(Y ∗m −Qa)

)]m−1
}

(13)

for all s ∈ (0, 1). The limiting expression in (13) is the p.g.f. of a mixed binomial
random variable. It is interesting, that again if H = Λ, the limiting p.g.f. does not
depend on Z. Explicitly, for any s ∈ (0, 1) we have

lim
t→∞

E{sM̃t,m(B)} =
[
1− (1− s)[exp(Qb)− exp(Qa)]

]m−1

.(14)

The above convergence holds if F satisfies (7) implying thus the result of Theorem
3.1 in Balakrishnan and Stepanov (2005).

The iid case is tractable due to the fact that we have a compact formula for
the p.g.f. of the marginals of the point process given in (2). As in Hashorva and
Hüsler (2008) we discuss next the asymptotic behaviour of the scaled point process
dropping the independence assumption on Xn, n ≥ 1.
Our next results are motivated by the following observation (see Pakes and Steutel
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(1997)): If ξ, ξ∗ are two positive constants and i, i∗,m,m∗ are given integers such
that m− 1 ≥ i ≥ 1,m∗ − 1 ≥ i∗ ≥ 1, then we may write using (5) and (11)

P
{
M̃t,m([0, ξ)) > i, M̃t,m∗((−ξ∗, 0]) > i∗

}
= P

{
M̃t,m([0, ξ)) > i, M̃t,m∗((−ξ∗, 0]) > i∗, N(t) > max(i+m,m∗)

}
= P

{
XN(t)−m+1:N(t) −XN(t)−i−m+1:N(t) ≤ ξq(t),

XN(t)−(m∗−i∗)+1:N(t) −XN(t)−m∗+1:N(t) ≤ ξ∗q(t), N(t) > max(i+m,m∗)
}
.

Consequently, as t→∞

P
{
M̃t,m([0, ξ)) > i, M̃t,m∗((−ξ∗, 0]) > i∗

}
→ P {Y ∗m − Y ∗m+i ≤ ξ, Y ∗m∗−i∗ − Y ∗m∗ ≤ ξ∗}.(15)

In the above derivation we do not use explicitly the fact that Xi, i ≥ 1 are iid. In the
following we suppose that (11) holds, dropping thus the independence assumption
on Xi, i ≥ 1. We consider next the joint weak convergence of the point processes
M̃t,1(·), . . . , M̃t,m(·).

Theorem 2. Let Xi, i ≥ 1 be random variables with common continuous distribu-
tion function F , and let {N(t), t ≥ 0} be a counting stochastic process. Assume that
(11) holds with q(t) > 0 and r(t) two real functions. If the convergence in prob-
ability N(t)

p→ ∞ as t → ∞ holds, then for indices j := {ji,k}i≤I,k≤K , j∗ :=
{j∗i,k}i≤I,k≤K , I,K ∈ IN, j∗i,k < K, i ≤ I, k ≤ K and positive constants ξ :=
{ξi,k}i≤I,k≤K , ξ∗ := {ξ∗i,k}i≤I,k≤K we have

lim
t→∞

P {M̃t,k([0, ξi,k)) ≤ ji,k, M̃t,k((−ξ∗i,k, 0]) ≤ j∗i,k, for all 1 ≤ i ≤ I, 1 ≤ k ≤ K}

= P {Y ∗k − Y ∗k+ji,k
> ξi,k, Y

∗
k−j∗i,k

− Y ∗k > ξ∗i,k, for all 1 ≤ i ≤ I, 1 ≤ k ≤ K}

:= GK(ξ, ξ∗, j, j∗)(16)

and {M̃t,k((−ξ∗i,k, 0])}1≤i≤I,1≤k≤K converge in distribution to a random vector in
RIK . If in addition

Y ∗n
p→ −∞, n→∞(17)

holds, then we have the weak convergence

(M̃t,1(·), . . . , M̃t,K(·)) w→ L(·), t→∞,(18)

with L(·) a point processes defined on RK .

The joint distribution function of the marginals of L(·) can be obtained using
(16). If we impose some additional assumptions on the dependence of Xi, i ≥ 1
and further assume (5) it is possible to obtain a more explicit description of the
limiting point process.

Corollary 3. Under the assumptions of Theorem 2 if (5) holds with Xi, i ≥ 1
independent of N(t), t > 0 and further (6) holds and conditions D2K(un), D′(un)
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are satisfied with un = q(n) + r(n),un = 1un,K ∈ N, then we have the stochastic
representation

(Y ∗1 , . . . , Y
∗
2K) d= (ZγY1 + β lnZ, . . . , ZγY2K + β lnZ),(19)

where γ := 0, 1/α,−1/α if H = Λ,Φα,Ψα, α > 0, respectively, and β := 1 if H = Λ
and 0 otherwise. Furthermore,

GK(ξ, ξ∗, j, j∗)

= P {Zγ [Yk − Yk+ji,k
] > ξi,k, Z

γ [Yk−j∗i,k
− Yk] > ξ∗i,k, 1 ≤ i ≤ I, 1 ≤ k ≤ K}.(20)

In the case H = Λ above we have a stochastic representation (see Hashorva
(2006))

(Y1, . . . , Ym)

d=
(
E1 +

∞∑
l=2

El − 1
l

+ C1, . . . , Em +
∞∑

l=m+1

El − 1
l

+ Cm

)
, 2 ≤ m ≤ K,(21)

where Ei, i ≥ 1 are independent random variables with unit exponential distribution
and Ci := C −

∑i
l=1

1
l , i ≥ 1 where C == 0.5772 is the Euler constant. Remark

that (19) is initially obtained in Hashorva (2003).
Making use of Corollary 3 weak convergence of M̃t,m(·) for H = Λ or H =

Φα, α > 0 can be easily established utilising further (12) and (13). We discuss
below briefly two special cases. Next, write Y ∼ Nb(m, q) if the random variable Y
has a negative binomial distribution function with parameters m, q and probability
density function

Γ(m+ k)
Γ(m)Γ(k + 1)

qmpk, k ≥ 0, q ∈ (0, 1), p := 1− q,

where Γ(·) is the Gamma function.

Corollary 4. Under the assumption of Corollary 3 if further H = Λ, then we have:
i) For any m ≥ 2 and −∞ < a < b ≤ 0 two negative constants

M̃t,m((a, b]) d→ Um(a, b) + 1(b ∈ {0}), t→∞,(22)

where Um(a, b) is a Binomial random variable with parameters m−1, p := eb−ea ∈
(0, 1).
ii) For any 0 ≤ a < b ≤ ∞ and m ∈ N

M̃t,m((a, b]) d→ Vm(a, b) + 1(a ∈ {0}), t→∞,(23)

with Vm(a, b) ∼ Nb(m, [1 + eb − ea]−1). iii) Furthermore, for any k ≥ 2, r ≥ 1 and
ai, bi such that −∞ < ai < bi ≤ 0, i = 1, . . . , k we have (U2(a2, b2), . . . , Uk(ak, bk))
is independent of Vk(ak, bk), . . . , Vk+r(ak+r, bk+r) with 0 ≤ ak+i < bk+i < ∞, i =
0, . . . , r.

Remark 2. a) As noted above Z and Y1, . . . , Ym,m ≥ 2 in Corollary 3 are inde-
pendent random variables.
b) By Corollary 4 we have that under iii) both M̃t,m((a, b]) and M̃t,m((a′, b′])

with 0 ≤ a < b <∞,−∞ < b′ < a′ ≤ 0 are asymptotically independent. Balakrish-
nan and Stepanov (2005) show in Theorem 4.2 this fact for the case a = 0, a′ = 0
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and assuming that F satisfies (7) . The result of Corollary 4 subsumes that of
Theorem 4.2 of Balakrishnan and Stepanov (2005).

4. Examples

To illustrate the results we choose two special distribution functions F .
Example 1. Assume that N(t) is independent of {Xi, i ≥ 1} which are inde-

pendent standard exponential random variable, i.e. F (x) = 1 − exp(−x)1(x > 0).
It is well-known that

Xn:n − lnn d→ Y, n→∞,

with Y a unit Gumbel random variable. A convenient representation for order
statistics exists in the exponential case (cf. Reiss (1989))

{Xn−m+1:n}m=1,...,n
d=
{ n∑
i=m

Ei/i
}
m=1,...,n,n∈N

.

Using further (4) we may write for m, j ∈ N,m+ j ≤ n

P {Mt,m([0, a)) > j|N(t) = n} = P {Xn−m+1:n −Xn−m+1−j:n ≤ a}

= P
{m+j−1∑

i=m

Ei/i ≤ a
}

= P {Xj:(m+j−1) ≤ a}

=
(m+ j − 1)!

(j − 1)!(m− 1)!

∫ a

0

e−ms(1− e−s)j−1 ds

=
(m+ j − 1)!

(j − 1)!(m− 1)!

∫ 1−e−a

0

yj−1(1− y)m−1dy.

Note that the above probability does not dependent of n, if n is sufficiently large
(n ≥ j +m).
So we get for t large assuming further that N(t)

p→∞ as t→∞

P {Mt,m([0, a)) > j} = P {Kt(a,m) > j,N(t) ≥ j +m}

=
∞∑

n=j+m

P {Xj:m+j−1 ≤ a}P {N(t) = n}

= P {Xj:m+j−1 ≤ a}P {N(t) ≥ j +m},

hence Corollary 4 yields

lim
t→∞

P {Mt,m([0, a)) > j} = P {V > j − 1},

with V a negative binomial random variable with parameters m and q := e−a.
Consequently we obtain for any x ∈ (0, 1) and 1 ≤ j ≤ m, j,m ∈ N the following
Taylor expansion

(1− x)−m
(m+ j − 1)!

(j − 1)!(m− 1)!

∫ x

0

yj−1(1− y)m−1dy =
∞∑
k=j

Γ(m+ k)
Γ(m)k!

xk.(24)
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For Mt,m((−a, 0]),m > 1, 1 ≤ j ≤ m− 1

P {Mt,m((−a, 0]) > j|N(t) = n} = P {Xn−m+j+1:n −Xn−m+1:n ≤ a}

= P
{ m−1∑
i=m−j

Ei/i ≤ a
}

= P {Xj:m−1 ≤ a}

=
(m− 1)!

(j − 1)!(m− j − 1)!

∫ 1−e−a

0

yj−1(1− y)m−j−1dy.

Example 2. Another tractable instance is when F is the uniform distribution
on (0, 1). Corollary 1.6.10 in Reiss (1989) implies the following stochastic represen-
tation (Renyi representation)

{Xn−m+1:n}m=1,...,n
d=
{∑n−m+1

i=1 Ei∑n+1
i=1 Ei

}
m=1,...,n

,

with E1, . . . , En+1 iid standard exponential random variables. Thus for 1 ≤ j ≤
n−m and a > 0

P {Mt,m([0, a)) > j|N(t) = n} = P {Xn−m+1:n −Xn−m+1−j:n ≤ a}

= P
{∑n−m+1

i=n−m−j+2Ei∑n+1
i=1 Ei

≤ a
}

= P {Xj:n ≤ a}

=
n!

(j − 1)!(n− j)!

∫ a

0

sj−1(1− s)n−j ds

depending on n but not on m, if j ≤ n−m. Hence again

P {Mt,m([0, a)) > j} = P {Kt(a,m) > j,N(t) ≥ j +m}

=
∞∑

n=j+m

P {Xj:n ≤ a}P {N(t) = n}

= P {Xj:N(t) ≤ a,N(t) ≥ j +m}.

Similarly we get for 1 ≤ j ≤ m− 1

P {Mt,m((−a, 0]) > j|N(t) = n} = P {Xn−m+j+1:n −Xn−m+1:n ≤ a}
= P {Xj:n ≤ a}.

The asymptotics of Mt,m([0, a) and Mt,m((−a, 0]) follows now easily by the prop-
erties of the order statistics Xj:n.

5. Proofs

Proof of Lemma 1 Let B be a Borel set of [0,∞). Rearranging the terms we
may write

Mn,m(B) = 1(0 ∈ B) +
n−m∑
i=1

1(Xn−m+1:n −Xi:n ∈ B), n > m, n,m ∈ N.
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For any x ∈ R such that F (x) ∈ (0, 1) the stochastic representation (cf. Reiss (1989)
p. 52) (

(X1:n, . . . , Xn−m:n)|Xn−m+1:n = x
)
d= (Y1:n−m, . . . , Yn−m:n−m)

holds, where the random variables (Y1:n−m, . . . , Yn−m:n−m) are the order statis-
tics of iid random variables η

[x]
1 , . . . , η

[x]
n−m with distribution function Fx(y) :=

F (y)/F (x),∀y ≤ x. If B ⊂ (−∞, 0] we have

Mn,m(B) = 1(0 ∈ B) +
m−1∑
i=1

1(Xn−m+1:n −Xn−m+i+1:n ∈ B),

hence (1) follows by conditioning on Xn−m+1:n. Since {N(t), t ≥ 0} is independent
of the random sequence Xi, i ≥ 1 the expression of the p.g.f. follows easily using
(1). 2

Proof of Theorem 2 The result in (16) follows along the same arguments as
in (15). The limit of GK(ξ, ξ∗, j, j∗) as jik →∞ is a proper distribution function in
RIK , hence {M̃t,k((−ξ∗i,k, 0])}1≤i≤I,1≤k≤K converge in distribution. If (17) holds,
then it follows that GK(ξ, ξ∗, ·, ·) is a proper distribution function in R2IK . Hence
by the continuous mapping theorem the convergence of the point process in (18)
follows, thus the proof is complete. 2

Proof of Corollary 3 By the assumptions (11) is satisfied. Since N(t) is
independent of Xi, i ≥ 1 and (5) then Proposition 2.2 of Hashorva (2003) implies
(11) with k = 2K, and furthermore

(Y ∗1 , . . . , Y
∗
k ) d= (ZγY1 + β lnZ, . . . , ZγYk + β lnZ),

where γ = 0, 1/α,−1/α if H = Λ,Φα,Ψα, α > 0, respectively and β = 1 if H = Λ
and 0 otherwise. Hence the result follows from Theorem 2. 2

Proof of Corollary 4 In view of (9) we have

P {Y ∗i ≤ x} = E{Γi(−Z lnH(x))}

for x ∈ (αH , xH) where Γi(s) =
∫∞
s
ti−1e−t dt/Γ(i) is the upper tail of the standard

Gamma distribution. Since for all s > 0

Γn(s) =
n−1∑
r=0

e−ssr/Γ(r + 1)→ 1, n→∞

the dominated convergence theorem yields

lim
n→∞

P {Y ∗n ≤ x} = 1.

Consequently, if H = Λ or H = Ψα we get the almost sure convergence

Y ∗n
a.s.→ αH = −∞.

Thus the weak convergence follows by Theorem 2 using further Corollary 3.
Both (22) and (23) follow then using further (12), (13) and (19). In the following

we show directly (23) for H = Λ using (2). We may write for s ∈ (0, 1) and
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b > 0, b > a ≥ 0 (set q := eb − ea)

lim
t→∞

E{sM̃t,m((a,b])−1(a∈{0})}

=
∫

R

(
H(x− b)
H(x− a)

)1−s

d(P {Ym ≤ x})

=
∫

R
e−(1−s)qe−x

d(P {Ym ≤ x})

= −
∫ ∞

0

e−(1−s)qt d
(m−1∑
r=0

tre−t/Γ(r + 1)
)

=
m−1∑
r=0

1
Γ(r + 1)

∫ ∞
0

e−(1+(1−s)q)ttr dt−
m−1∑
r=1

1
Γ(r)

∫ ∞
0

e−(1+(1−s)q)ttr−1 dt

=
m−1∑
r=0

(
1

1 + (1− s)q

)r+1

−
m−1∑
r=1

(
1

1 + (1− s)q

)r
=

(
1

1 + (1− s)q

)m
=
(

[1 + q]−1

1− sq/[1 + q]

)m
.

The last claim on the independence of the random vectors (U2(a2, b2), . . . , Uk(ak, bk))
and Vk(ak, bk), . . . , Vk+r(ak+r, bk+r)) follows easily by calculating the limit of the
joint probability density function of the corresponding marginals, or using the sto-
chastic representation (21) together with (20). 2
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