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ivan.loncar1@vz.htnet.hr

Abstract. Let a mapping f : X → Y between continua X and Y be given.
We shall prove: a) if the induced mapping 2f : 2X → 2Y is light, then

w(X) = w(Y ). In particular, if Y is metrizable, then X is metrizable, b) if

the induced mapping C(f) : C(X) → C(Y ) is light and X is a D-continuum,
then w(X) = w(Y ).

1. Introduction

All spaces in this paper are compact Hausdorff and all mappings are continuous.
The weight of a space X is denoted by w(X). The cardinality of a set A is denoted
by card(A).

Let X be a space. We define its hyperspaces as the following sets:

2X = {F ⊆ X : F is closed and nonempty},
C(X) = {F ∈ 2X : F is connected},
X(n) = {F ∈ 2X : F has at most n points}, n ∈ N.

For any finitely many subsets S1, ..., Sn, let

〈S1, ..., Sn〉 =

{
F ∈ 2X : F ⊂

n⋃
i=1

Si, and F ∩ Si 6= ∅, for each i

}
.

The topology on 2X is the Vietoris topology, i.e., the topology with a base
{< U1, ..., Un >: Ui is an open subset of X for each i and each n <∞ }, and C(X)
is a subspace of 2X .

Given a mapping f : X → Y between continua X and Y , we let 2f : 2X → 2Y

to denote the corresponding induced mapping defined by 2f (F ) = f(F ) for F ∈ 2X .
By [8, 5.10] 2f is continuous and 2f (C(X)) ⊂ C(Y ) and 2f (X(n)) ⊂ Y (n). The
restriction 2f |C(X) is denoted by C(f).

A continuous mapping f : X → Y is light (zero-dimensional) if all fibers
f−1(y) are hereditarily disconnected (zero-dimensional or empty) [3, p. 450], i.e.,
if f−1(y) does not contain any connected subsets of cardinality larger that one
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(dim f−1(y) ≤ 0). Every zero-dimensional mapping is light, and in the realm of
mappings with compact fibers the two classes of mappings coincide.

In this paper we shall prove that the lightness of C(f) or 2f implies the equality
of the weights of continua.

It is clear that the lightness of 2f : 2X → 2Y implies the lightness of C(f) :
C(X)→ C(Y ), but not conversely. The following result is known.

THEOREM 1.1. [1, Theorem 5.4]. Let continua X and Y and a mapping f : X →
Y be given. Consider the following conditions:

(a): C(f) : C(X)→ C(Y ) is light;
(b): for every two continua P,Q ∈ C(X)�X(1) with P∩Q = ∅ the inequality
f(P )�f(Q) 6= ∅ holds;

(c): 2f : 2X → 2Y is light.

Then (c) implies (b), and (b) implies (a). Consequently, (c) implies (a). The
other implications do not hold.

A family N = {Ms : s ∈ S} of a subsets of a topological space X is a network
for X if for every point x ∈ X and any neighbourhood U of x there exists an s ∈ S
such that x ∈ Ms ⊂ U [3, p. 170]. The network weight of a space X is defined
as the smallest cardinal number of the form card(N ), where N is a network for X;
this cardinal number is denoted by nw(X).

Remark. It is known that for every compact space X we have nw(X) = w(X)
[3, p. 171, Theorem 3.1.19].

2. Lightness of 2f : 2X → 2Y implies w(X) = w(Y )

In this section we shall prove the following result.

THEOREM 2.1. Let a mapping f : X → Y between continua X and Y be given.
If the induced mapping C(f) : C(X)→ C(Y ) satisfies the condition that for every
two continua C,D ∈ C(X)�X(1) with C ∩D = ∅ the inequality f(C)�f(D) 6= ∅
holds, then w(X) = w(Y ).

Proof. It is obvious that w(Y ) ≤ w(X) [3, p. 171, Theorem 3.1.22]. Let us prove
that w(Y ) ≥ w(X). The proof is broken into several steps.

Step 1. C(f) : C(X) → C(Y ) is one-to-one on C(X)�X(1). Moreover, C(f)
is a homeomorphism of C(X)�X(1) onto C(f)(C(X)�X(1)). Suppose that C(f)
is not one-to-one. Then there exists a continuum F in Y and two continua C,D in
X such that f(C) = f(D) = F . We have to consider the following cases.

a) C∩D = ∅. Now f(C)�f(D) = ∅. This is impossible because of the condition
(b) of Theorem 1.1.

b) C ⊂ D or D ⊂ C. Suppose that C ⊂ D. The proof is similar if D ⊂ C. By [7,
p. 1209, Theorem] we infer that there exists an order arc L ⊂ C(X) from C to D.
If a subcontinuum E of X is in L then f(E) = F since f(C) = f(D) = F . This
means that C(f)(L) = F , i.e., (C(f))−1(F ) contains a non-degenerate continuum
L. This is impossible since C(f) is light (see Theorem 1.1).

c) C ∩ D 6= ∅ and C �D 6= ∅, C �D 6= ∅. Let C ∪ D = K. It is clear
f(K) = f(C) = f(D) = F .

Moreover C ⊂ K. By b) this is impossible.
Hence, the proof of Step 1 is completed.
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We infer that C(f)−1[Y�Y (1)] = C(X)�X(1). It follows that the restriction
P = C(f)|(C(X)�X(1)) is one-to-one and closed [3, p. 95, Proposition 2.1.4].
From C(f)−1[Y�Y (1)] = C(X)�X(1) it follows that P is surjective. Hence, P is
a homeomorphism.

Step 2. w(C(X)�X(1)) ≤ w(Y ). Now we have

w(C(X)�X(1)) = w(C(f)|(C(X)�X(1))) ≤ w(C(Y )�Y (1)) ≤ w(2X) = w(Y )

since w(2X) = w(Y ) [3, p. 306, Problem 3.12.26 (a)].
Step 3. w(X) ≤ w(Y ). Let B = {Bα : α ∈ A} be a base of C(X)�X(1). For

each Bα let Cα = {x ∈ X : x ∈ B, B ∈ Bα}, i.e., the union of all continua B
contained in Bα.

Claim 1. The family {Cα : α ∈ A} is a network of X. Let X be a point of
X and let U be an open subsets of X such that x ∈ U . There exists and open set
V such that x ∈ V ⊂ ClV ⊂ U . Let K be a component of ClV containing x. By
Boundary Bumping Theorem [10, p. 73, Theorem 5.4] K is non-degenerate and,
consequently, K ∈ C(X)�X(1). Now, 〈U〉 ∩ (C(X)�X(1)) is a neighbourhood of
K in C(X)�X(1). It follows that there exists a Bα ∈ B such that K ∈ Bα ⊂
〈U〉 ∩ (C(X)�X(1)). It is clear that Cα ⊂ U and x ∈ Cα since x ∈ K. Hence, the
family {Cα : α ∈ A} is a network of X.

Claim 2. nw(X) = w(C(X)�X(1)). Apply Claim 1. Moreover, by Remark
at the end of Introduction, it follows that w(X) = w(C(X)�X(1)). Finally, from
Step 2 we obtain w(X) ≤ w(Y ). �

The condition that for every two continua C,D ∈ C(X)�X(1) with C ∩D = ∅
the inequality f(C)�f(D) 6= ∅ holds, used in the proof of Theorem 2.1, is actually
condition (b) of Theorem 1.1. Hence, Theorems 2.1 and 1.1 imply the following
result.

COROLLARY 2.2. Let a mapping f : X → Y between continua X and Y be given.
If the induced mapping 2f : 2X → 2Y is light, then w(X) = w(Y ).

3. The lightness of C(f) : C(X)→ C(Y ) implies w(X) = w(Y ) for
D-continua

A continuum X is called a D-continuum if for every pair C,D of its disjoint
non-degenerate subcontinua there exists a subcontinuum E ⊂ X such that C∩E 6=
∅ 6= D ∩ E and (C ∪D)�E 6= ∅.

The class of D-continua is very large. Each arcwise connected continuum and
each locally connected continuum is a D-continuum. Moreover, each aposyndetic
continuum is a D-continuum.

In the proof of Theorem 2.1 only the subspace C(X) of 2X and the lightness
of the mapping C(f) : C(X) → C(Y ) is used. If X is a D-continuum then the
lightness of the mapping 2f : 2X → 2Y can be omitted. In this case the condition
(b) of Theorem 1.1 is replaced by the assumption that X is a D-continuum. This
assumption enables to prove the step of the new proof similar to proof of Step1 of
the proof of Theorem 2.1. The remaining part of the proof of Theorem 2.1 works
in a new situation. Hence we have the following result.

THEOREM 3.1. Let X be a D-continuum and let f : X → Y be a mapping such
that C(f) : C(X)→ C(Y ) is light. Then w(X) = w(Y ).
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4. The lightness of C(f) : C(X)→ C(Y ) and Whitney map for C(X)

The lightness of the mapping C(f) : C(X)→ C(Y ) play important role in theory
of continua, in particular, in the study of Whitney maps.

Let Λ be a subspace of 2X . By a Whitney map for Λ [9, p. 24, (0.50)] we will
mean any mapping g : Λ→ [0,+∞) satisfying

a) if A,B ∈ Λ such that A ⊂ B and A 6= B, then g(A) < g(B) and
b) g({x}) = 0 for each x ∈ X such that {x} ∈ Λ.
If X is a metric continuum, then there exists a Whitney map for 2X and C(X)

([9, pp. 24-26], [4, p. 106]). On the other hand, if X is non-metrizable, then it
admits no Whitney map for 2X [2]. It is known that there exist non-metrizable
continua which admit and ones which do not admit a Whitney map for C(X) [2].

The following theorem explains the role of light mappings in the study of Whitney
maps for continua.

THEOREM 4.1. A continuum X admits a Whitney map for C(X) if and only if
there exists a light mapping f : C(X)→ Y onto a metric continuum Y .

Proof. a) Suppose that X admits a Whitney map for C(X). By [5, Theorem 1.8]
there exists a σ-directed inverse system X = {Xa, pab, A} of metric continua
Xa such that X is homeomorphic to lim X. Now we have a σ-directed inverse
system C(X) = {C(Xa), C(pab), A} of metric continua such that C(X) is home-
omorphic to limC(X). From [6, Corollary 3.2.] it follows that the projections
C(pb) : C(lim X) → C(Xb) are light for every b ∈ B, where B is cofinal subset
of A. Hence, each C(pb) is a required light mapping onto a metric continuum
Y = C(pb)(limC(X)).

b) Suppose now that there exist a light mapping f : C(X) → Y onto a metric
continuum Y . Consider, as in a), a σ-directed inverse system C(X) = {C(Xa),
C(pab), A} of metric continua such that C(X) is homeomorphic to limC(X). There
is a subset B cofinal in A such that there exists a mapping fb : C(pb)(limC(X))→
Y such that f = fbC(pb) since C(X) is σ-directed and Y is metric. Let us prove
that C(pb) is light. Suppose that it is not light. Then there exist a point z ∈
C(pb)(limC(X)) such that C(pb)−1(z) contains a continuum Z. It follows that
f−1(fb(z)) contains Z since C(pb)−1(z) ⊂ f−1(fb(z)). This is impossible since f
is light. Hence, C(pb) is light. By [6, Corollary 3.2.] we infer that X admits a
Whitney map for C(X). The proof of Theorem is completed. �

The notion of an irreducible mapping was introduced by Whyburn [11, p. 162].
If X is a continuum, a surjection f : X → Y is irreducible provided no proper
subcontinuum of X maps onto all of Y under f . Some theorems for the case when
X is semi-locally-connected are given in [11, p. 163].

A mapping f : X → Y is said to be hereditarily irreducible [9, p. 204, (1.212.3)]
provided that for any given subcontinuum Z of X, no proper subcontinuum of Z
maps onto f(Z).

Proposition 1. [9, p. 204, (1.212.3)]. If f : X → Y is a mapping between continua,
then C(f) : C(X)→ C(Y ) is light if and only if f is hereditarily irreducible.

Proposition 1 and Theorem 4.1 imply the following result.

COROLLARY 4.2. A continuum X admits a Whitney map for C(X) if and only if
there exists a hereditarily irreducible mapping f : X → Y onto a metric continuum
Y .
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COROLLARY 4.3. Let f : C(Y ) → C(Y ) be a light mapping. If Y admits a
Whitney map for C(Y ), then X admits a Whitney map for C(X).

Proof. Consider a σ-directed inverse system C(Y) = {C(Ya), C(qab), A} of metric
continua such that C(Y ) is homeomorphic to limC(Y). There is a subset B cofinal
in A such that the projections C(qb) are light. Now, the composition C(qb)f :
C(X) → Yb is light since the composition of light mappings is light. By Theorem
4.1 X admits a Whitney map for C(X). �

We close this Section with theorem which shows that the existence of Whitney
map for C(X) is equivalent to the metrizability of X.

THEOREM 4.4. A D-continuum X admits a Whitney map for C(X) if and only
if X is metrizable. In particular, if X is either an arcwise connected, or locally
connected or aposyndetic continuum, then X admits a Whitney map for C(X) if
and only if X is metrizable.

Proof. By Theorem 4.1 a continuum X admits a Whitney map for C(X) if and
only if there exists a light mapping f : C(X) → Y onto a metric continuum Y .
Moreover, from Theorem 3.1 it follows that w(X) = w(Y ). Hence, X is metrizable
since w(Y ) = ℵ0. IF X is either an arcwise connected continuum or a locally
connected continuum or aposyndetic continuum, then X is a D-continuum and,
consequently, metrizable. �
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