AUTOMORPHISMS AND DERIVATIONS ON THE CENTER OF A RING

V.K.Bhat
School of Mathematics, SMVD University, P/o Kakryal, Katra, J and K, India- 182320
vijaykumarbhat2000@yahoo.com

Abstract

Let R be a ring, σ_{1} an automorphism of R and δ_{1} a σ_{1}-derivation of R. Let σ_{2} be an automorphism of $O_{1}(R)=R\left[x ; \sigma_{1}, \delta_{1}\right]$, and δ_{2} be a σ_{2-} derivation of $O_{1}(R)$. Let $S \subseteq Z\left(O_{1}(R)\right)$, the center of $O_{1}(R)$. Then it is proved that σ_{i} is identity when restricted to S, and δ_{i} is zero when restricted to $S ; i=1,2$. The result is proved for iterated extensions also.

1. Introduction

A ring R means an associative ring with identity $1 \neq 0 . Z(R)$ denotes the center of R. The set of positive integers is denoted by \mathbb{N}. Let A be a nonempty set and $\alpha: A \rightarrow A$ be a map and $B \subseteq A$. Then $\alpha \mid B$ means α restricted to B.

In this paper we investigate the nature of an automorphism σ and a σ-derivation δ of a ring R , when restricted to the center of R .

Recall that a σ-derivation of R is an additive map $\delta: R \rightarrow R$ such that

$$
\delta(a b)=\delta(a) \sigma(b)+a \delta(b), \text { for all } a, b \in R
$$

Let σ be an endomorphism of a ring R and $\delta: R \rightarrow R$ any map. Let $\phi: R \rightarrow M_{2}(R)$ be a homomorphism defined by

$$
\phi(r)=\left(\begin{array}{cc}
\sigma(r) & 0 \\
\delta(r) & r
\end{array}\right), \text { for all } r \in R
$$

Then δ is a σ-derivation of R .
In case σ is the identity map, δ is called just a derivation of R . For example let F be a field and $R=F[x]$. Then the formal derivative $\frac{d}{d x}$ is a derivation of R.

Recall that the Ore extension $R[x ; \sigma, \delta]=\left\{f=\sum_{i=0}^{n} x^{i} a_{i}, a_{i} \in R, n \in \mathbb{N}\right\}$, subject to the relation $a x=x \sigma(a)+\delta(a)$ for all $a \in R$. We take coefficients on the right as followed in McConnell and Robson [13]. Some authors take coefficients on the left as in Goodearl and Warfield [7]. We denote the Extension ring $R[x ; \sigma, \delta]$ by $O_{1}(R)$. In case σ is the identity map, we denote $R[x ; \delta]$ by $D_{1}(R)$ and in case δ is the zero map, we denote $R[x ; \sigma]$ by $S_{1}(R)$.

[^0]We also recall that the skew-Laurent extension $R\left[x, x^{-1} ; \sigma\right]=\left\{\sum_{i=-m}^{n} x^{i} a_{i}\right.$, $\left.a_{i} \in R ; m, n \in \mathbb{N}\right\}$, where multiplication is subject to the relation $a x=x \sigma(a)$ for all $a \in R$.

The rings that we deal with are the above mentioned rings and their iterations as given below:
(1) $S_{t}(R)=R\left[x_{1} ; \sigma_{1}\right]\left[x_{2} ; \sigma_{2}\right] \ldots\left[x_{t} ; \sigma_{t}\right]$, the iterated skew-polynomial ring, where each σ_{i} is an automorphism of $S_{i-1}(R)$.
(2) $L_{t}(R)=R\left[x_{1}, x_{i}^{-1} ; \sigma_{1}\right]\left[x_{2}, x_{2}^{-1} ; \sigma_{2}\right] \ldots\left[x_{t}, x_{t}^{-1} ; \sigma_{t}\right]$, the iterated skew-Laurent polynomial ring, where each σ_{i} is an automorphism of $L_{i-1}(R)$.
(3) $D_{t}(R)=R\left[x_{1} ; \delta_{1}\right]\left[x_{2} ; \delta_{2}\right] \ldots\left[x_{t} ; \delta_{t}\right]$, the iterated differential operator ring, where each δ_{i} is a derivation of $D_{i-1}(R)$.
(4) $O_{t}(R)=R\left[x_{1} ; \sigma_{1}, \delta_{1}\right]\left[x_{2} ; \sigma_{2}, \delta_{2}\right] \ldots\left[x_{t} ; \sigma_{t}, \delta_{t}\right]$, the iterated Ore extension, where σ_{i} is an automorphism of $O_{i-1}(R)$ and δ_{i} is a σ_{i}-derivation of $O_{i-1}(R)$.
We note that if σ is an automorphism of a ring R and δ is a σ-derivation of R , then σ can be extended to an automorphism of $R[x ; \sigma, \delta]$ by taking $\sigma(x)=x$, i.e. $\sigma(x a)=x \sigma(a)$, for all $a \in R$. Also δ can be extended to a σ-derivation of $R[x ; \sigma, \delta]$ by taking $\delta(x)=0$, i.e. $\delta(x a)=x \delta(a)$, for all $a \in R$.

In view of this, we note that each σ_{i} is an automorphism of $S_{t}(R)$ and $O_{t}(R)$. Also each δ_{i} is a derivation (respectively σ-derivation) of $D_{t}(R)$ (respectively $O_{t}(R)$).

2. Automorphisms and derivations

We prove the following:
(1) Let $L \subseteq Z\left(K_{t}(R)\right)$, where $K_{t}(R)$ is any of $S_{t}(R)$ or $L_{t}(R)$. Then $\sigma_{i} \mid L$ is the identity map; for all $\mathrm{i}, 1 \leq i \leq t$.
(2) Let $T \subseteq Z\left(D_{t}(R)\right)$, where R is an integral domain. Then $\delta_{i} \mid T$ is the zero map; for all $\mathrm{i}, 1 \leq i \leq t$.
(3) Let $S \subseteq Z\left(O_{t}(R)\right)$. Then $\delta_{i} \mid S$ is the identity map, and $\delta_{i} \mid S$ is the zero map; for all $\mathrm{i}, 1 \leq i \leq t$.
For more details on Ore extensions, and the basic results, the reader is referred to chapters (1) and (2) of [7]. Ore-extensions including skew-polynomial rings and differential operator rings have been of interest to many authors. For example $[1,5,7,8,9,10,11]$.

Prime ideals (in particular minimal prime ideals and associated prime ideals) of these extensions have been characterized in $[1,4,6,14]$.

Recall that a ring R is said to be 2-primal if the prime radical (i.e. the intersection of prime ideals of R) coincides with the set of all nilpotent elements of R. This property has been discussed in $[2,3,12]$.

We begin with the following Proposition:
Proposition 2.1. Let R be a ring σ be an automorphism of R. Then $\sigma \mid Z(R)$ is an automorphism.

Proof. It is enough to show that $a \in Z(R)$ implies that $\sigma(a) \in Z(R)$. Let $a \in Z(R)$ and $r \in R$. Then $\sigma(a) r=\sigma\left(a \sigma^{-1}(r)\right)=\sigma\left(\sigma^{-1}(r) a\right)=r \sigma(a)$ Therefore, $\sigma(a) \in$ $Z(R)$.

We now have the following proposition which is used to prove Proposition (2.5) and Theorem (2.6).
Proposition 2.2. Let R be an integral domain. Then $O_{1}(R)$ is an integral domain.

Proof. The proof is easy. We give a sketch. Let $f, g \in O_{1}(R)$ be such that $f g=0$. Say $f=\sum_{i=0}^{n} x^{i} a_{i}$, and $g=\sum_{i=0}^{m} x^{i} b_{i}, m, n \in \mathbb{N}$. Suppose that $g \neq 0$.

To prove the result, we use induction on m, n. For $m=n=0$, the result is trivial. For $m=n=1$, we have $f=x a_{1}+a_{0}$ and $g=x b_{1}+b_{0}$. Now $f g=0$ implies that

$$
x\left[x \sigma\left(a_{1}\right)+\delta\left(a_{1}\right)\right] b_{1}+\left[x \sigma\left(a_{0}\right)+\delta\left(a_{0}\right)\right] b_{1}+x a_{1} b_{0}+a_{0} b_{0}=0 ;
$$

i.e.

$$
x^{2} \sigma\left(a_{1}\right) b_{1}+x \delta\left(a_{1}\right) b_{1}+x \sigma\left(a_{0}\right) b_{1}+x a_{1} b_{0}+\delta\left(a_{0}\right) b_{1}+a_{0} b_{0}=0
$$

and so we have $\sigma\left(a_{1}\right) b_{1}=0, \delta\left(a_{1}\right) b_{1}+\sigma\left(a_{0}\right) b_{1}+a_{0} b_{0}=0, \delta\left(a_{0}\right) b_{1}+a_{0} b_{0}=0$. Now $g \neq 0$. Therefore, there are three possibilities:
(1) $b_{1} \neq 0, b_{0} \neq 0$. In this case $\sigma\left(a_{1}\right) b_{1}=0$ implies that $\sigma\left(a_{1}\right)=0$; i.e. $a_{1}=0$. Now $\delta\left(a_{1}\right) b_{1}+\sigma\left(a_{0}\right) b_{1}+a_{1} b_{0}=0$ implies that $\sigma\left(a_{0}\right) b_{1}=0$. Therefore $\sigma\left(a_{0}\right)=0$; i.e. $a_{0}=0$. Thus $f=0$.
(2) $b_{1} \neq 0, b_{0}=0$. This could be treated similarly as above.
(3) $b_{1}=0, b_{0} \neq 0$. In this case $\delta\left(a_{1}\right) b_{1}+\sigma\left(a_{0}\right) b_{1}+a_{1} b_{0}=0$ implies that $a_{1} b_{0}=0$, and therefore, $a_{1}=0$. Also $\delta\left(a_{0}\right) b_{1}+a_{0} b_{0}=0$ implies that $a_{0} b_{0}=0$, and so $a_{0}=0$. Thus $f=0$. So, in all cases we have $f=0$.
Therefore, the result is true for $m=n=1$. Suppose the result is true for $m=k$ and $n=1$. We shall prove for $m=k+1$. Now for $m=k+1$ and $n=1, f g=0$ implies that

$$
\left(x^{k+1} a_{k+1}+x^{k} a_{k}+\ldots+a_{0}\right)\left(x b_{1}+b_{0}\right)=0
$$

i.e.

$$
\begin{gathered}
x^{k+2} \sigma\left(a_{k+1}\right) b_{1}+x^{k+1} \delta\left(a_{k+1}\right) b_{1}+x^{k+1} \sigma\left(a_{k}\right) b_{1}+x^{k+1} a_{k+1} b_{0}+\ldots+ \\
x \sigma\left(a_{0}\right) b_{1}+\delta\left(a_{0}\right) b_{1}+a_{0} b_{0}=0 .
\end{gathered}
$$

Now for $g \neq 0$, there are three possibilities:
(1) $b_{1} \neq 0, b_{0} \neq 0$. In this case $\sigma\left(a_{k+1}\right) b_{1}=0$ implies that $\sigma\left(a_{k+1}\right)=0$; i.e. $a_{k+1}=0$. Therefore $f g=0$ reduces to $\left(x^{k} a_{k}+x^{k-1} a_{k-1}+\ldots+a_{0}\right)\left(x b_{1}+\right.$ $\left.b_{0}\right)=0$, and induction hypothesis implies that $f=0$.
(2) $b_{1} \neq 0, b_{0}=0$. This could be treated similarly as above.
(3) $b_{1}=0, b_{0} \neq 0$. In this case $\delta\left(a_{k+1}\right) b_{1}+\sigma\left(a_{k}\right) b_{1}+a_{k+1} b_{0}=0$ implies that $a_{k+1} b_{0}=0$, and therefore, $a_{k+1}=0$. Therefore $f g=0$ reduces to $\left(x^{k} a_{k}+x^{k-1} a_{k-1}+\ldots+a_{0}\right)\left(x b_{1}+b_{0}\right)=0$, and induction hypothesis implies that $f=0$.
Therefore, in all the cases $f=0$. In a similar way the result could be proved for higher degrees of g. Hence $O_{1}(R)$ is an integral domain.

Proposition 2.3. Let R be a ring and consider $S_{t}(R)$. Let $L \subseteq S_{t}(R)$. Then $\sigma_{i} \mid L$ is the identity map for all $i, 1 \leq i \leq t$.

Proof. Consider $S_{1}(R)$ and its automorphism σ_{2}. Let $a \in L$. Now $a f_{1}=f_{1} a$ for all $f_{1}=\sum_{i=0}^{n} x_{1}^{i} b_{i} \in S_{1}(R), n \in \mathbb{N}$,

$$
a\left(x_{1}^{n} b_{n}+\ldots+b_{0}\right)=\left(x_{1}^{n} b_{n}+\ldots+b_{0}\right) a
$$

So we have

$$
\left(x_{1}^{n} \sigma_{1}^{n}(a) b_{n}+\ldots+x_{1} \sigma_{1}(a) b_{1}+a b_{0}=\left(x_{1}^{n} b_{n} a+\ldots+x_{1} b_{1} a+b_{0} a\right)\right.
$$

Therefore $\sigma_{1}(a)=a$.
Now consider $S_{2}(R)$ and its automorphism σ_{3}. Let $a \in L$. Then $a f_{2}=f_{2} a$ for all $f_{2} \in S_{2}(R)$. Let $f_{2}=x_{2}^{k} f_{k}+\ldots+x_{2} f_{1}+f_{0}$, where $f_{i} \in S_{1}(R)$. Then $a f_{2}=f_{2} a$ implies that

$$
a\left(x_{2}^{k} f_{k}+\ldots+x_{2} f_{1}+f_{0}\right)=\left(x_{2}^{k} f_{k}+\ldots+x_{2} f_{1}+f_{0}\right) a
$$

i.e.

$$
x_{2}^{k} \sigma_{2}^{k}(a) f_{k}+\ldots+x_{2} \sigma_{2}(a) f_{1}+a f_{0}=x_{2}^{k} f_{k} a+\ldots+x_{2} f_{1} a+f_{0} a
$$

Therefore, $\sigma_{2}(a) f_{1}=f_{1} a=a f_{1}$ as $a \in Z\left(S_{2}(R)\right)$. Hence $\sigma_{2}(a)=a$. With the same process, we can see that $\sigma_{i} \mid L$ is the identity map for all $\mathrm{i}, 1 \leq i \leq t$.

Remark 2.4. The above result holds if $S_{t}(R)$ is replaced by $L_{t}(R)$, and the proof follows on the same lines.
Proposition 2.5. Let R be an integral domain and consider $D_{t}(R)$. If $T \subseteq$ $Z\left(D_{t}(R)\right)$. Then $\delta_{i} \mid T$ is the zero map, for all $i, 1 \leq i \leq t$.
Proof. Let $a \in T$. Consider $D_{1}(R)$. Let $f_{1}=x_{1} b+c, b \neq 0$. Then $a f_{1}=f_{1} a$; i.e. $a\left(x_{1} 1 b+c\right)=\left(x_{1} b+c\right) a$, which implies that

$$
x_{1} a b+\delta_{1}(a) b+a c=x_{1} b a+c a .
$$

Now $a \in Z\left(D_{1}(R)\right)$ implies that $\delta_{1}(a) b+a c=c a=a c$, and $\delta_{1}(a) b=0$. Thus $\delta_{1}(a)=0$. Polynomials of higher degree could be treated in a similar way.

Now consider $D_{2}(R)$. Let $f_{2}=x_{2} g_{1}+g_{0}$, where $g_{1} \neq 0 ; g_{1}, g_{0} \in D_{1}(R)$. Then $a f_{2}=f_{2} a$ implies that

$$
a\left(x_{2} g_{1}+g_{0}\right)=\left(x_{2} g_{1}+g_{0}\right) a
$$

or,

$$
x_{2} a g_{1}+\delta_{2}(a) g_{1}+a g_{0}=x_{2} g_{1} a+g_{0} a
$$

Now a $\in Z\left(D_{2}(R)\right)$ implies that

$$
\delta_{2}(a) g_{1}+a g_{0}=g_{0} a=a g_{0}
$$

Therefore $\delta_{2}(a) g_{1}=0$, and so Proposition (2.2) implies that $\delta_{2}(a)=0$. With the same process it can be shown that $\delta_{i} \mid T$ is the zero map, for all $\mathrm{i}, 1 \leq i \leq t$.

Theorem 2.6. Let R be an integral domain and consider $O_{t}(R)$. If $S \subseteq Z\left(O_{t}(R)\right)$, then $\sigma_{i} \mid S$ is the identity map and $\delta_{i} \mid S$ is the zero map, for all $i, 1 \leq i \leq t$.

Proof. Let $a \in S$. Let $f_{1}=x_{1} b+c \in O_{1}(R), b \neq 0$. Then $a f_{1}=f_{1} a$, and we have $a\left(x_{1} b+c\right)=\left(x_{1} b+c\right) a$, which implies that

$$
x_{1} \sigma_{1}(a) b+\delta_{1}(a) b+a c=x_{1} b a+c a
$$

Therefore $\sigma_{1}(a) b=b a=a b$ as $a \in Z\left(O_{t}(R)\right)$. So we have $\sigma_{1}(a)=a$. Also, $\delta_{1}(a) b+a c=c a=a c$. Thus $\delta_{1}(a) b=0$, and so $\delta_{1}(a)=0$. Polynomials of higher degree can be treated similarly.

Now let $f_{2}=x_{2} g_{1}+g_{0} \in O_{2}(R), g_{1} \neq 0$. Then $a f_{2}=f_{2} a$ implies that

$$
a\left(x_{2} g_{1}+g_{0}\right)=\left(x_{2} g_{1}+g_{0}\right) a
$$

Therefore

$$
x_{2} \sigma_{2}(a) g_{1}+\delta_{2}(a) g_{1}+a g_{0}=x_{2} g_{1} a+g_{0} a
$$

Now $a \in Z\left(O_{t}(R)\right)$ implies that

$$
x_{2} \sigma_{2}(a) g_{1}=g_{1} a+a g_{1} .
$$

Thus $\sigma_{2}(a)=a$. Also $\delta_{2}(a) g_{1}+a g_{0}=g_{0} a=a g_{0}$ as $a \in Z\left(O_{t}(R)\right)$. Therefore $\delta_{2}(a) g_{1}=0$ and thus Proposition (2.2) implies that $\delta_{2}(a)=0$. Polynomials of higher degree can be treated similarly.

With the same process it can be shown that $\sigma_{i} \mid S$ is the identity map for all i, $1 \leq i \leq t$ and $\delta_{i} \mid S$ is the zero map for all i, $1 \leq i \leq t$.

References

[1] S. Annin, Associated primes over skew polynomial rings. Comm. Algebra, Vol. 30 (2002), 2511-2528.
[2] V. K. Bhat, On 2-primal Ore extensions, Ukr. Math. Bull., Vol. 4(2) (2007), 173-179.
[3] V. K. Bhat, Differential operator rings over 2-primal rings, Ukr. Math. Bull., Vol. 5(2) (2008), 153-158.
[4] V. K. Bhat, Associated prime ideals of skew polynomial rings, Beitrge Algebra Geom., Vol. 49(1) (2008), 277-283.
[5] V. K. Bhat, Decomposability of extension rings, Albanian J. Math., Vol. 2(4) (2008), 283291.
[6] C. Faith, Associated primes in commutative polynomial rings, Comm. Algebra, Vol. 28 (2000), 3983-3986.
[7] K. R. Goodearl and R. B. Warfield Jr., An introduction to non-commutative Noetherian rings, Cambridge Uni. Press, 1989.
[8] C. Y. Hong, N. K. Kim and T.K.Kwak, Ore-extensions of baer and p.p.-rings, J. Pure Appl. Algebra, Vol. 151(3) (2000), 215-226.
[9] A. V. Jategaonkar, Skew-Polynomial rings over order in artinian rings, J. Algebra, Vol. 21 (1972), 51-59.
[10] J. Krempa, Some examples of reduced rings. Algebra Colloq., Vol. 3(4) (1996), 289-300.
[11] T. K. Kwak, Prime radicals of skew-polynomial rings, Int. J. Math. Sci., Vol. 2(2) (2003), 219-227.
[12] G. Marks, On 2-primal Ore extensions, Comm. Algebra, Vol. 29 (5) (2001), 2113-2123.
[13] J. C. McConnell and J. C. Robson, Noncommutative Noetherian Rings, (Wiley 1987; revised edition: American Math. Society 2001).
[14] H. Nordstrom, Associated primes over Ore extensions, J. Algebra, Vol. 286(1) (2005), 69-75.

[^0]: 1991 Mathematics Subject Classification. 16-XX; Secondary 16S36,16P40,16P50,16U20.
 Key words and phrases. Center; automorphism; σ-derivation; ore extension.

