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Abstract. Convexity and log convexity results are established for sums in-

volving ratios of binomial coefficients. We utilise recent results in which inte-
gral identities have been given to represent sums involving ratios of binomial

coefficients.

1. Introduction

The integral representation of series of ratios of binomial coefficients have re-
cently been investigated by a number of authors, see in particular Amghibech [1],
Batir [2], and Sofo [5, 6, 7]. Recently Purkait and Sury [4], using mainly combina-
torial methods, obtained expressions for

S =
p∑

n=0

(−1)n nr
(
p
n

)(
n+j
n

)
and deduced that for even integer r ≥ 0 and p = j > r

2 , S is identically zero or
1
2 according as to whether r > 0 or not. In this paper we supplement the results
of Purkait and Sury by considering convexity properties of slightly more general
forms of S.

In particular, the following theorem was given in [5].

Theorem 1. for a > 0, p ≥ 1, t ∈ R and j > 0

(1.1) S (a, j, p, t) =
1
j

p∑
n=0

tn
(
p
n

)(
an+j
j

) =
∫ 1

0

(1− x)j−1 (1 + txa)p dx.

For an integer a we can write
p∑

n=0

tn
(
p
n

)(
an+j
j

) = a+1Fa

[
1
a ,

2
a ,

3
a , . . . ,

a
a ,−p

1+j
a , 2+j

a , 3+j
a , . . . , a+j

a

∣∣∣∣∣− t
]
,
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where the generalised hypergeometric representation pFq [·, ·] , is defined as

pFq

[
a1, a2, ..., ap

b1, b2, ..., bq

∣∣∣∣∣ t
]

=
∞∑
n=0

(a1)n (a2)n ... (ap)n tn

(b1)n (b2)n ... (bq)n n!

and (w)α = w (w + 1) (w + 2) ... (w + α− 1) = Γ(w+α)
Γ(w) is Pochhammer’s symbol.

The following analysis establishes the monotonicity and convexity properties of
S (a, j, p, t), by the use of its integral representation (1.1).

2. Convexity Properties

The following theorem is proved.

Theorem 2. For p ≥ 1, a ≥ 1, t > 0 and j > 0 the function a 7→ S (a, j, p, t), as
given in Theorem 1 is strictly decreasing and convex with respect to the parameter
a ∈ [1,∞) for every x ∈ [0, 1] .

Proof. Let

(2.1) g (x, a) = (1− x)j−1 (1 + txa)p

be an integrable function for x ∈ [0, 1] and put

f (a) =
∫ 1

0

g (x, a) dx,

so that f (1) = 1
j 2F1

[
1,−p
1 + j

∣∣∣∣∣− t
]
.

Applying the Leibniz rule for differentiation under the integral sign, we have that

f ′ (a) =
∫ 1

0

∂

∂a
g (x, a) dx

= pt

∫ 1

0

xa (1− x)j−1 (1 + txa)p−1 lnxdx(2.2)

Since
xa (1− x)j−1 (1 + txa)p−1 lnx < 0 for x ∈ (0, 1) ,

then f ′ (a) < 0, so that the sum of the ratio of binomial coefficients (1.1), is a
strictly decreasing sum with respect to the parameter a for x ∈ [0, 1] . Now

f ′′ (a) =
∫ 1

0

∂2

∂2a
g (x, a) dx

= pt

∫ 1

0

(1− x)j−1 (1 + txa)p−2
xa (ptxa + 1) (lnx)2

dx,(2.3)

and since
(1− x)j−1 (1 + txa)p−2

xa (ptxa + 1) (lnx)2
> 0,

then f ′′ (a) > 0 so that (1.1) is a convex function for x ∈ [0, 1] . �

In the following we establish the log convexity of the function a 7→ S (a, j, p, t)
with respect to the positive parameter a. Firstly, we state the Cauchy-Buniakowsky-
Schwarz inequality.
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Cauchy-Buniakowsky-Schwarz inequality: Let p (x) , q (x) and r (x) be inte-
grable functions for x ∈ [α, β] , then(∫ β

α

p (x) q2 (x) dx

)(∫ β

α

p (x) r2 (x) dx

)
≥

(∫ β

α

p (x) q (x) r (x) dx

)2

.

A proof of this theorem can be found in [3].

Theorem 3. For p ≥ 1, a ≥ 1, t > 0 and j > 0, the function a 7→ S (a, j, p, t) as
given in Theorem 1 is log convex with respect to the parameter a ∈ [1,∞) for every
x ∈ [0, 1] .

Proof. Let

h (a) = log
(∫ 1

0

g (x, a) dx
)
,

where g (x, a) is given by (2.1), and applying the Leibniz rule for differentiation
under the integral sign, we have that:

h′ (a) =
pt
∫ 1

0
xa (1− x)j−1 (1 + txa)p−1 lnxdx∫ 1

0
(1− x)j−1 (1 + txa)p dx

< 0.

Now,

(2.4) h′′ (a) =

(∫ 1

0
∂2

∂2ag (x, a) dx
)(∫ 1

0
g (x, a) dx

)
−
(∫ 1

0
∂
∂ag (x, a) dx

)2

(∫ 1

0
g (x, a) dx

)2 ,

where g (x, a) is given by (2.1),
∫ 1

0
∂
∂ag (x, a) dx is given by (2.2) and

∫ 1

0
∂2

∂2ag (x, a) dx
is given by (2.3).

Since we require h′′ (a) > 0 it will suffice to prove that

pt

∫ 1

0

(1− x)j−1(1 + txa)p−2xa (ptxa + 1) (ln x)2 dx

∫ 1

0

(1− x)j−1 (1 + txa)p dx

>

(
pt

∫ 1

0

xa (1− x)j−1 (1 + txa)p−1 ln xdx

)2

> 0

(2.5)

Now,

pt

∫ 1

0

(1− x)j−1 (1 + txa)p−2
xa (ptxa + 1) (lnx)2

dx

> pt

∫ 1

0

(1− x)j−1 (1 + txa)p−2
xa (ptxa) (lnx)2

dx

=
∫ 1

0

(1− x)j−1 (1 + txa)p
(
ptxa lnx
1 + txa

)2

dx > 0,

hence from (2.5),(∫ 1

0

(1− x)j−1 (1 + txa)p
(
ptxa lnx
1 + txa

)2

dx

)(∫ 1

0

(1− x)j−1 (1 + txa)p dx
)

>

(∫ 1

0

(
ptxa lnx
1 + txa

)
· (1− x)j−1 (1 + txa)p dx

)2
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is satisfied by application of the Cauchy-Buniakowsky-Schwarz inequality and iden-
tifying

p (x) = (1− x)j−1 (1 + txa)p , q (x) =
ptxa lnx
1 + txa

and r (x) = 1.

From (2.4) we can claim h′′ (a) > 0 and the theorem is proved. �

Note: The series (1.1) can be represented in the generalised hypergeometric form
as:

(2.6) a+1Fa

[
1
a ,

2
a ,

3
a , . . . ,

a
a ,−p

1+j
a , 2+j

a , 3+j
a , . . . , a+j

a

∣∣∣∣∣− t
]
.

We can therefore claim that (2.6) is a log convex function with respect to the
parameter a ≥ 1.

In the paper [5], Sofo further generalised Theorem 1 to obtain the following
representation.

Theorem 4. For a > 0, p ≥ 1, t ∈ R, r ≥ 0 and j > 0 we have

1
j
S (a, j, p, t, r) :=

1
j

p∑
n=1

tn nr
(
p
n

)(
an+j
j

)
=
∫ 1

0

(1− x)j−1 (ρ (x))(r)

ar
dx

where 
(ρ (x))(0) = (1 + txa)p

...

(ρ (x))(r) = x d
dx

(
x d
dx

(
· · ·x d

dx ((1 + txa)p)
))

is the consecutive derivative operator of the continuous function (1 + txa)p for x ∈
(0, 1) .

An example for Theorem 4 is:

1
j
S (a, j, p, t, 1) :=

1
j

p∑
n=1

tn n
(
p
n

)(
an+j
j

)
(2.7)

= pt

∫ 1

0

(1− x)j−1
xa (1 + txa)p−1

dx(2.8)

=
pt

j

(
a+ j
j

) a+1Fa

[
a+1
a , a+2

a , a+3
a , . . . , a+a

a , 1− p
a+1+j
a , a+2+j

a , a+3+j
a , . . . , a+a+j

a

∣∣∣∣∣− t
]

The following remark claims a convexity and log convexity property for the series
1
jS (a, j, p, t, 1) by the use of its integral representation (2.8).

Remark 1. For a ≥ 1, p ≥ 1, t > 0, r ≥ 0 and j > 0, the function a 7→
1
jS (a, j, p, t, 1) as given in Theorem 4 is strictly decreasing and convex with respect
to the parameter a ∈ [1,∞) for every x ∈ [0, 1] , it is also log convex.
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As in the proofs of Theorems 2 and 3 we can outline the following steps. From
(2.8), let

(2.9) G (x, a) = pt (1− x)j−1
xa (1 + txa)p−1

be an integrable function for x ∈ [0, 1] and put

F (a) =
∫ 1

0

G (x, a) dx,

applying the Leibniz rule for differentiation under the integral sign and using (2.8),
we obtain

(2.10) F ′ (a) = pt

∫ 1

0

(1− x)j−1
xa (1 + txa)p−2 (1 + ptxa) ln (x) dx < 0,

and
(2.11)

F ′′ (a) = pt

∫ 1

0

(1− x)j−1
xa (1 + txa)p−3

(
1 + (3p− 1) txa + (ptxa)2

)
(ln (x))2

dx > 0,

since p ≥ 1, so that (2.7) is a monotonic decreasing function for every x ∈ [0, 1] .
Similarly, if we let

H (a) = log
(∫ 1

0

G (x, a) dx
)
,

H ′ (a) =

∫ 1

0
(1− x)j−1

xa (1 + txa)p−2 (1 + ptxa) ln (x) dx∫ 1

0
(1− x)j−1

xa (1 + txa)p−1
dx

< 0,

and we require that

H ′′ (a) =

(∫ 1

0
∂2

∂2aG (x, a) dx
)(∫ 1

0
G (x, a) dx

)
−
(∫ 1

0
∂
∂aG (x, a) dx

)2

(∫ 1

0
G (x, a) dx

)2 > 0,

whereG (x, a) is given by (2.9),
∫ 1

0
∂
∂aG (x, a) dx is given by (2.10) and

∫ 1

0
∂2

∂2aG (x, a) dx
is given by (2.11). It is sufficient to investigate

(2.12)
(∫ 1

0

(1− x)j−1
xa (1 + txa)p−3

(
1 + (3p− 1) txa + (ptxa)2

)
(ln (x))2

dx

)
×
(∫ 1

0

(1− x)j−1
xa (1 + txa)p−1

dx

)
>

(∫ 1

0

(1− x)j−1
xa (1 + txa)p−2 (1 + ptxa) ln (x) dx

)2

.

Now since∫ 1

0

(1− x)j−1
xa (1 + txa)p−3

(
1 + (3p− 1) txa + (ptxa)2

)
(ln (x))2

dx

>

∫ 1

0

(1− x)j−1
xa (1 + txa)p−1

(
(1 + ptxa) ln (x)

1 + txa

)2

dx,

if we identify

p (x) = (1− x)j−1
xa (1 + txa)p−1

, q (x) =
(1 + ptxa) lnx

1 + txa
,
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and r (x) = 1 and applying the Cauchy-Buniakowsky-Schwarz inequality we con-
clude that (2.12) is satisfied, hence (2.7) is log convex with respect to the parameter
a for every x ∈ [0, 1] .

We make the following observation.
For an integer a ≥ 1, p ≥ 1, t > 0, and j > 0,

(2.13)
p∑

n=1

tnn
(
p
n

)(
an+j
j

) =
pt

j

(
a+ j
j

) a+1Fa

[
a+1
a , a+2

a , a+3
a , . . . , a+a

a , 1− p
a+1+j
a , a+2+j

a , a+3+j
a , . . . , a+a+j

a

∣∣∣∣∣− t
]
.

Hence we make the claim that the generalised hypergeometric function in (2.13) is
a log convex function with respect to the parameter a ≥ 1.

3. Conclusion

We have demonstrated convexity and log convexity properties for a class of series
involving ratios of binomial coefficients.
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